
Decision tree complexity of Boolean functions

P�eter Hajnal

JATE, Bolyai Institute

Szeged, Hungary

Suppose we would like to determine the value of a function at an unknown input and we

can obtain information only by asking questions of a special form. Depending on the type of

functions and questions we consider we obtain several models of computation. These are called

decision tree models. The complexity of a computation is the number of questions asked. We

investigate some natural problems raised by complexity theory. For example: Exhibit hard

functions. How much speed up we can obtain by randomization? We give a survey of the

results and open questions about these and similar questions.

0. Introduction

In the decision tree model we would like to compute the value of a given function at

an unknown input. To do so we collect information on the input by asking questions.

The decision tree model is very suitable for several type of functions. E.g. when the

inputs are coming from an ordered set and the output can be the minimal or maximal

input element, the median or the sorted order of the input. An other type of suitable

functions is where the input is n real values and we want to compute an algebraic function

of these inputs ([40], [13], [1]). We will consider Boolean functions. A Boolean function is

a function f : f 0; 1 g

n

! f 0; 1 g. Several basic computational tasks lead to computing a

Boolean function.

Another \ingredient" of the decision tree model is the type of queries we are allowed

to ask. We will investigate several possibilities and so several versions of the decision tree

model. All the types we consider will be binary queries, i.e. the possible answers to the

query will be 0 and 1.

Finally we must de�ne the way we generate our questions. In the standard interpre-

tation each question asked depends only on the information gained so far. This model is

called the deterministic model. We obtain a strengthen model if we allow randomized or

nondeterministic generation of the questions. We will de�ne and discuss the corresponding

models in the later chapters.

De�nition 0.1. A (deterministic) decision tree is a rooted binary tree with labels on

each node and edge. Each inner node is labeled by a query. One of the two edges leaving

the node is labeled 0, the other is labeled 1. The two labels represent the two possible

answers to the query. The two subtrees at a node describe how the algorithm proceeds

1



after receiving the corresponding answer. Each leaf is labeled 0 or 1. These labels give the

output, i.e. the value of the function.

Clearly, each truth-assignment to the variables determines a unique path, the compu-

tation path, from the root to a leaf of the tree. The Boolean function computed by the

given decision tree takes the label at this leaf as the value on the given input.

De�nition 0.2. Let cost(A; x) be the number of queries asked when the decision tree A

is executed on input x. This is the length of the computation path forced by x.

max

x

cost(A; x) is the worst case complexity of A, i.e. the depth of the tree.

The decision tree complexity of a Boolean function f is C(f) = min

A

max

x

cost(A; x),

where the �rst minimum is taken over all decision trees A computing the function f .

So the cost of a computation is just the number of queries asked. We ignore the time

needed for the generation of queries and the computation of the output. The main topic

of this paper how the complexity of a function changes if we vary the model.

1. Deterministic decision trees

1.1. Boolean decision trees.

In the Boolean decision tree model we allow questions of the form \What is the value

of input x

i

?" (shortly \x

i

?"). The corresponding complexity measure is C

b

(f), where the

b subscript stands for Boolean.

It is obvious, that any function f : f 0; 1 g

n

! f 0; 1 g can be computed by asking n

questions. (The underlying tree will be a full binary tree of depth n. The nodes of the i-th

level of the tree are labeled by x

i

?. It is easy to check that the parity function requires a

full binary tree to compute it and only the parity and its negation are the functions with

that high complexity.)

In the next paragraphs we discuss the known results on the deterministic Boolean

decision tree complexity.

Speci�c functions.

At the begining of this line of research there were many results stating that a given

function has complexity n ([21], [27], [28], [4]). Some of these functions are now standard

examples and homework assignments in introductory complexity courses. These examples

suggest the following notation. A Boolean function f on n variables is called evasive if

its decision tree complexity is n. A few example for evasive Boolean functions: parity,

majority, graph connectivity, having isolated node in a graph. A good survey on this topic

is [7] and chapter VIII. of [5].

Random functions.

Let f be a random Boolean function on n variables, all Boolean functions on n variables

being equally likely. Let P be a certain property of Boolean functions. If the probability

that a f has property P is p

n

and lim

n!1

p

n

= 1, then we say a random Boolean function

has property P .

2



Theorem 1.1.1. (R. Rivest and J. Vuillemin [30]) A random Boolean function is evasive.

The theorem suggests that there are so many evasive functions that we should look

for a class of functions and prove uniformly that its members are all evasive.

Transitive functions.

The automorphism group of a Boolean function f is the group Aut(f) of those permu-

tations of its variables, that preserve the function. We say that a function is transitive if

its automorphism group is transitive i.e. for any two variables x and y there is an element

� 2 Aut(f) such that �x = y. Roughly speaking a function is transitive if we cannot

distinguish its variables. This class is quite wide: it includes the symmetric functions and

graph properties. The importance of this class is shown by the following theorem.

Theorem 1.1.2. (R. Rivest and J. Vuillemin [30]) Let n be a prime power, and f be a

transitive function on n variables. If f(0; . . . ; 0) 6= f(1; . . . ; 1), then f is evasive.

It is known [18] that the theorem becomes false if we do not assume n to be a prime

power. A Boolean function is monotone if changing the value of a variable from 0 to 1

cannot change the value of the function from 1 to 0. A Boolean function is non-trivial if

it is not constant. It is still an open problem, whether monotone, non-trivial, transitive

Boolean functions are evasive (without any assumption on the number of variables).

Monotone graph properties.

One important subclass of transitive functions is the class of graph properties. We can

identify graphs with 0�1-strings of length

�

v

2

�

, where v is the number of vertices. The graph

properties are Boolean functions f : f0; 1g

(

v

2

)

! f 0; 1 g taking equal values on isomorphic

graphs. Theorem 1.1.2. does not apply here, since

�

v

2

�

is never a prime power if v > 3. J.

Kahn, M. Saks and D. Sturtevant [19] succeded in proving the analogous theorem. Their

proof is based on a topological idea. An input assignment can be considered as the subset of

the variables which have value 1. The inputs where the function is 0 give us a set system.

If the graph property P is monotone then this set system �

P

is a (abstract) simplicial

complex, i.e. B � A 2 � implies B 2 �. Evasiveness of P can be approximated by several

topological properties of �

P

. Hence our computational question can be \translated" to a

topological problem. Along this line they proved the following theorem.

Theorem 1.1.3. (J. Kahn, M. Saks, D. Sturtevant [19]) If v is a prime power then every

non-trivial monotone graph property on v vertices is evasive.

It is a central open question whether the theorem remains true when we drop the

assumption that the number of vertices is a prime power.

Functions with high symmetry.

There are several other classes of Boolean functions of high symmetry. We mention

only the class of bipartite graph properties. The monotone, non-trivial bipartite graph

properties are proven to be evasive. A. Yao was who realized that the topological method

can be applied without any assumption on the number of vertices in the bipartite graph.

Theorem 1.1.4. (A. Yao [43]) Every monotone, non-trivial, bipartite graph property is

evasive.

3



For discussion on digraphs see [19], on directed bipartite graphs see [20], on partially

ordered set properties see [9] and [10].

1.2. Linear decision trees.

In the linear decision tree model we allow queries of the form \�

1

x

1

+ �

2

x

2

+ . . . +

�

n

x

n

� �?" The queries of a Boolean decision tree can be expressed in this model, hence

any Boolean function can be computed with n queries in the linear decision tree model.

The following improvement is due to Gy. Tur�an [37].

Proposition 1.2.1. If f is a Boolean function on n � 3 variables, then C

l

(f) � n� 1.

The idea of the proof is that any function on 3 variables can be computed by asking

only 2 questions.

Simple counting argument gives a lower bound on the complexity of random functions.

Proposition 1.2.2. For a random Boolean function f on n variables, C

l

(f) > n�� log

2

n.

It is still an open problem whether C

l

(f

n

) < n � �

0

log

2

n is true for all f

n

Boolean

functions on n variables and some �

0

constant.

We note that the linear decision tree complexity of connectivity is still unknown (see

[12]).

1.3. Miscellaneous models.

Further we mention a model which is stronger than Boolean decision trees, but it is

not as strong as linear decision trees. It was introduced by A. Hajnal, W. Maass and Gy.

Tur�an in [14]. They allow questions like \x

i

1

_ x

i

2

_ . . ._ x

i

k

=", where fx

i

1

; x

i

2

; . . . ; x

i

k

g

an arbitrary subset of variables. They called this generalized decision tree model. The

corresponding complexity measure will be denoted by C

g

(f).

In [14] they proved the following theorem.

Theorem 1.3.1. (A. Hajnal, W. Maass, and Gy. Tur�an [14])

(i) C

g

(Connectivity) = �(v log v),

(ii) C

g

(s� t� Connectivity) = �(v log v),

(iii) C

g

(Bipartiteness) = �(v log v).

2. Randomized decision trees

In the manner common in complexity theory one can introduce decision trees using

extra power like nondeterminism, randomization or alternation (see [24], [26], [35], [38]).

Now we consider the power of randomization.

2.1. Randomization.

A randomized decision tree is a rooted, not necessarily binary, tree. Each of its inner

nodes is labeled a variable, i.e. by a query. The edges leaving a node are labeled 0 or 1.

The subtrees which can be reached from a given node by an edge labeled 0 are the possible

continuations of the algorithm after receiving answer 0. The role of the edges labeled 1 is

symmetric. During the execution of the algorithm the next step will be chosen randomly.

An alternative de�nition might be the following. Let us say that the random choice

is based on coin tossing. If one �xes the outcome of the coin tosses than we have a

4



deterministic computation. In this way we can describe the probabilistic decision tree as

a probability distribution on the set of deterministic trees.

We face the question: how to de�ne that a randomized decision tree computes a

function?

There are many di�erent ways to answer this questions. We use the simplest conven-

tion when we require that the algorithm always give the correct answer. Using the second

formalization of the randomized decision tree, it computes a function f i� the distribution

is non-zero only on deterministic trees computing f .

De�nition 2.1.1. Let fA

1

; . . . ;A

N

g be the set of all the deterministic decision trees

computing the function f . LetR = f p

1

; . . . ; p

N

g be a randomized decision tree computing

f , where p

i

is the probability of A

i

.

The cost of R on input x is cost(R; x) =

P

i

p

i

cost(A

i

; x).

The randomized decision tree complexity of a function f is

C

R

(f) = min

R

max

x

cost(R; x);

where the minimum is taken over all randomized decision trees computing the function f .

There are alternative de�nitions in which we allow errors. We obtain di�erent models,

depending on what kind of errors we allow (1-way or 2-way).

Let fA

1

; . . . ;A

N

g be the set of all the deterministic decision trees (not necessarily

computing a given function f). Let R = f p

1

; . . . ; p

N

g be a probability distribution on

deterministic decision trees, where p

i

is the probability of A

i

.

R is �-tolerant for f if

P

A

i

doesn't output f(x) on x

p

i

� �, for all possible inputs

x.

The cost of R on input x is cost(R; x) =

P

i

p

i

cost(A

i

; x).

The 2-way error randomized decision tree complexity of a function f with error � is

C

R2

�

(f) = min

R

max

x

cost(R; x);

where the minimum is taken over all �-tolerant randomized decision trees computing the

function f .

Let C

R2

(f) = C

R2

1

3

(f).

The constant

1

3

doesn't have an important role. If we neglect constants in the com-

plexity than we can substitute it with anything less than

1

2

.

The possible algorithms can output anything. The mistake can be either way. This

fact is indicated by the superscript 2. If our randomized algorithm is restricted to produce

deterministic trees where the mistake occurs in only one direction (it might output 0 instead

of the real value 1 but not the other way around) then it is called 1-way error computation

(the corresponding complexity measure is denoted by C

R1

). For further information we

refer the reader to [38], [29] and [34].

The main question is this: how much can we save by adding the extra power of

randomization?

2.2. Boolean decision trees.

First we mention some basic inequalities on the relation between deterministic and

randomized complexity.

5



Theorem 2.2.1. (M. Blum [3]) For any Boolean function f

p

C

b

(f) � C

R

b

(f) � C

b

(f):

Using the C

R1

(f), resp. C

R2

(f) notation for the randomized complexity of f allowing

1-way and 2-way errors, resp. Noam Nisan obtained the following results.

Theorem 2.2.2. (Noam Nisan [29]) For any Boolean function f

(i)

q

1

2

C

b

(f) � C

R1

b

(f),

(ii)

1

2

3

p

C

b

(f) � C

R2

b

(f).

These theorems give a lower bound for the power of randomization. We refer to them

as the basic bounds.

Transitive functions.

There are several known examples of transitive functions where randomization does

help.

Example 2.2.3. (Snir [35]) Let f be the following Boolean function on n = 2

d

variables.

First let us build a binary tree based on these variables as leaves. Plug a NAND gate into

each inner node. The circuit that we get in this way will compute f .

It is not hard to see that the deterministic complexity of this function is n (see Theorem

1.1.2.). However, there is a randomized algorithm which computes f faster on average.

Choose a child of the root at random and evaluate its subtree recursively. If it evaluates

to 0, then the value of f is 1. Otherwise recursively evaluate the other child of the root.

The complexity of this algorithm is �(n

�

), where � = log

2

�

1+

p

33

4

�

= 0:753 . . .. As it

turns out this is exactly the randomized complexity of f . For more details see [33].

R. Boppana exhibited another example of a function where randomized and deter-

ministic complexities di�er in the exponent (this construction is described also in [33]).

It is conjectured that the 2.2.3. example above are the best possible up to a constant

factor.

Conjecture 2.2.4. (M. Saks and A. Wigderson [33]) For any Boolean function f

C

R

b

(f) = 
(C

b

(f)

0:753...

):

Graph properties.

Example 2.2.5. (M. Saks and A. Wigderson [33]) Consider the digraph property \every

vertex has an incoming arc".

Deterministically, this is an evasive property, so its deterministic complexity is v(v�1).

Let us examine the following randomized algorithm. It considers each vertex one at

a time in random order and it scans the possible incoming edges into that vertex until it

�nds one or realizes that there aren't any. It is easy to see that the complexity of this

algorithm is at most

v(v+1)

2

. So randomization can save a constant factor.

The analog graph property example is \having isolated node". The undirected version

of the algorithm above gives a constant saving although the analysis of the algorithm is

more complex. Up to now these are the most e�ective savings.

6



Conjecture 2.2.6. (attributed to R.M. Karp by [33]) For any non-trivial, monotone graph

property P

C

R

b

(P ) = 
(C

b

(P )) = 
(v

2

):

Only in the case of graph properties are there results better than the basic inequalities

known (Theorem 2.2.1.). (In this case we know that the deterministic complexity is of the

order of v

2

. Blum's bound shows that the randomized complexity of any graph property is

at least linear in v.) The �rst step to prove a non-trivial lower bound was done by A. Yao

[42] who proved an 
(v log

1

12

v) lower bound on the randomized deciosion tree complexity

of any non-trivial, monotone graph property. Later this lower bound was improved to


(v

5

4

) by V. King [20]. So far the best improvement is the following.

Theorem 2.2.7. (P. Hajnal [15]) For any non-trivial, monotone graph property P ,

C

R

b

(P ) = 
(v

4

3

) = 
(C

b

(P )):

There is a little progress when we assume that the graph property is \G has a certain

subgraph". In this case H.D. Gr�oger proved [11] an 
(v

3

2

) lower bound.

Functions with other symmetries.

One can consider several other symmetries like 3-uniform set system properties or

partially ordered set properties. Very little is known about these questions.

2.3. Linear decision trees.

We mention only one result. It gives an 
(n) lower bound on the randomized com-

plexity of the inner product mod 2 of two n-bit vectors.

Theorem. 2.3.1. (H.D. Gr�oger and GY. Tur�an [12])

C

R

l

(Inner product mod 2

n

) = 
(n):

Unfortunately, very little is known about the randomized linear decision tree com-

plexity of other functions, for example of graph properties.

3. Nondeterministic decision trees

3.1. Nondeterminism.

De�nition 3.1.1. A nondeterministic decision tree is a rooted tree. Each of its inner

nodes is labeled by a variable. This label represents a query. Each edge leaving the node

is labeled 0 or 1. The subtrees which can be reached from a given node by an edge labeled

0 are the possible continuations of the algorithm after getting answer 0. The role of the

edges labeled by 1 is symmetric. During the execution of the algorithm the next step will

be chosen nondeterministically.

The de�nition above describes the notion of a nondeterministic decision tree and

its execution on an input. But this execution is nondeterministic. So what function

is computed by this tree? We say that an input is accepted if there exists a computation

path leading to a leaf labeled 1. The function f is computed by a nondeterministic decision

tree when f(x) = 1 if and only if x is accepted.

7



De�nition 3.1.2. The nondeterministic decision tree complexity of a Boolean function f

is the minimum depth of the nondeterministic decision trees computing f . This complexity

is denoted by C

ND

(f).

3.2. Boolean decision trees.

Let eq be the `equality' function on the variables x

1

; x

2

; . . . ; x

n

; y

1

; y

2

; . . . ; y

n

i.e. eq =

(x

1

= y

1

) ^ (x

2

= y

2

) ^ . . . ^ (x

n

= y

n

). Then the nondeterministic complexity of eq

is 2n while the :eq has complexity 2. We can make the nondeterministic decision tree

complexity notion to be symmetric by considering the

~

C

ND

b

(f) = maxfC

ND

b

(f); C

ND

b

(:f)g

complexity measure.

The nondeterministic complexity of a function f can be expressed the following way.

De�nition 3.2.1. 1-certi�cate of a Boolean function is a partial assigment to its variables

that forces the value of the function to be 1. 0-certi�cate is a partial assigment that forces

the value to be 0. The size of a certi�cate is the size of the domain of the partial assignment.

The certi�cate complexity of f on an input w, cert

w

(f) is the size of the smallest certi�cate

that agrees with w. The certi�cate complexity of f , cert(f) is the maximum of cert

w

(f)

over all w inputs.

It is easy to check that this is a simple reformulation of nondeterministic Boolean

decision tree complexity i.e

~

C

ND

b

(f) = cert(f). The basic relation between deterministic

and nondeterministic Boolean decision tree complexity was discovered independently by

several people.

Theorem 3.2.2. ([3], [36])

~

C

ND

b

(f) � C

b

(f) � (

~

C

ND

b

(f))

2

:

Next we discuss the basic lower bound technique for the nondeterministic complexity.

First we introduce a useful notion and its generalization by N. Nisan.

De�nition 3.2.3. Let f be a Boolean function and w is an input string. We say that f is

sensitive to the i-th variable on w if f(w) 6= f(w

(i)

), where w

(i)

is the input that we obtain

from w by changing the i-th input bit. The sensitivity of f on w is s

w

(f), the number of

variables f is sensitive to on the input w. The sensitivity of f , s(f) is the maximum of the

s

w

(f)'s over all w inputs.

De�nition 3.2.4. Let f be a Boolean function and w is an input string and S is a subset

of the variables. We say that f is sensitive to S on w if f(w) 6= f(w

S

), where w

S

is

the input that we obtain from w by changing the value of the variables in S. The block

sensitivity of f on w, bs

w

(f) is the maximum number b such that there exists disjoint

subsets of variables S

1

; . . . ; S

b

such that f is sensitive to S

i

(i = 1; 2; . . . ; b) on the input

w. The block sensitivity of f , bs(f) is the maximum of the bs

w

(f)'s over all w inputs.

The following proposition says that these notions give a lower bound on the nonde-

terministic Boolean complexity.

8



Propsition 3.2.5. (N. Nisan [29])

s(f) � bs(f) �

~

C

ND

b

(f):

An important question is how good these lower bounds are. The block sensitivity is

proven to be `close' to the nondeterministic Boolean decision tree complexity.

Theorem 3.2.6. (N. Nisan [29])

q

~

C

ND

b

(f) � bs(f) �

~

C

ND

b

(f):

The same question corresponding to the sensitivity is still open. The biggest gap

between the sensitivity and block sensitivity of a function is quadratic [32].

4. Conclusion

We summarized the basic notions, results and open problems related to the decision

tree complexity of Boolean functions. The decision tree model is a very simple model of

computation. But even the most basic questions are far from being solved. We hope that

the simplicity of the model gives us a chance to develope a \theory" and answer the natural

questions suggested by complexity theory. A similar program for more general models of

computation seems extremely hard and hence unrealistic in the near future.

Acknowledgement. The author would like to thank L. Csirmaz for fruitful discus-

sions and helpful suggestions

References

[1] M. Ben-Or, Lower bounds for algebraic computational trees, Proc. 15th ACM STOC

(1983), 247{248.

[2] M. R. Best, P. van Emde Boas and H. W. Lenstra, Jr., A sharpened version of the

Aanderaa�Rosenberg conjecture Report ZW 30/74, Mathematish Centrum, Amster-

dam (1974).

[3] M. Blum and R. Impagliazzo, Generic oracles and oracle classes, Proc. 28th IEEE

FOCS (1987), 118{126.

[4] B. Bollob�as, Complete subgraphs are elusive, J. Combinatorial Theory Ser. B

20(1976), 1{7.

[5] B. Bollob�as, Extremal Graph theory , Academic Press, London, 1978.

[6] B. Bollob�as, Random graphs, Academic Press, London, 1985.

[7] B. Bollob�as and S. E. Eldridge, Packing of graphs and applications to computational

complexity, J. of Combinatorial Theory Ser. B 25(1978), 105{124.

[8] M. Dietzfelbinger and W. Maass, Two lower bound arguments with `inaccessible'

number, Structure in Complexity Theory, Lecture Notes in Computer Science, 223,

Springer, Berlin - New york, 1986, 163{183.

9



[9] U. Faigle and Gy. Tur�an, The complexity of interval orders and semiorders, Discrete

Math 63(1987), 131{141.

[10] U. Faigle and Gy. Tur�an, Sorting and recognition problems for ordered sets, SIAM J.

Comput. 17(1988), 100{113.

[11] H. D. Gr�oger, On the randomized complexity of monotone graph properties, submitted

for publication.

[12] H. D. Gr�oger and Gy. Tur�an, On linear decision trees computing Boolean functions,

University of Illinois at Chicago, Research report in computer science, No. 44, Septem-

ber 1990.

[13] E. Gy}ori, An n-dimensional search problem with resticted questions, Combinatorica

1(1981), 377{380.

[14] A. Hajnal, W. Maas and Gy. Tur�an, On the communication complexity of graph

properties, Proc. 20th ACM STOC (1988), 186{191.

[15] P. Hajnal, The complexity of graph problems, Ph.D. Thesis, University of Chicago,

TR88-13.

[16] P. Hajnal, On the power of randomness in the decision tree model, Proc. of 5th

Structure in Complexity Theory (1990), 66{77.

[17] P. Hajnal, An 
(n

4

3

) lower bound on the randomized complexity of graph properties,

Combinatorica 11(1991), 131{143.

[18] N. Illies, A counterexample to the generalized Aanderaa�Rosenberg conjecture, Info.

Proc. Letters 7(1978), 154{155.

[19] J. Kahn, M. Saks and D. Sturtevant, A topological aproach to evasiveness, Combina-

torica 4(1984), 297{306.

[20] V. King, Lower bounds on the complexity of graph properties, Proc. 20th ACM STOC

(1988), 468{476.

[21] D. Kirkpatrick, Determining graph properties from matrix represantation, Proc. 6th

SIGACT Conf. (1974), 84-90.

[22] D. Kirkpatrick and R. Seidel, The ultimate planar convex hull algorithm, SIAM J.

Comput. 15(1986), 287{299.

[23] D. J. Kleitman and D. J. Kwiatkowski, Further results on the Aanderaa�Rosenberg

conjecture, J. Combinatorial Theory 28(1980), 85{95.

[24] U. Manber and M. Tompa, The complexity of problems on probabilistic, non-

deterministic and alternating decision trees, J. ACM 32(1985), 732{740.

[25] F. Meyer auf der Heide, Fast algorithms for n-dimensional restrictions of hard prob-

lems, J. Assoc. Comput. Mach. 35(1988), 185{203.

[26] F. Meyer auf der Heide, Non-deterministic versus probabilistic linear search algo-

rithms, Proc. 26th IEEE FOCS (1985), 65{73.

[27] E. C. Milner and D. J. A. Welsh, On the computational complexity of graph theoritical

properties, Univ. of Calgary, Res. Paper No.232 1974.

[28] E. C. Milner and D. J. A. Welsh, On the computational complexity of graph theoritical

properties, Proc. Fifth British Combinatorial Conf. (ed: C.St.J.A. Nash-Williams and

J. Sheehan), Utilitas Math., Winnipeg, Ontario, Canada, 1976, 471-487.

[29] N. Nisan, CREW PRAMs and decision trees, Proc. 21th ACM STOC (1989), 327{335.

10



[30] R. Rivest and S. Vuillemin, On recognizing graph properties from adjacency matrices,

Theor. Comp. Sci. 3(1976), 371{384.

[31] A. L. Rosenberg, On the time required to recognize properties of graphs: A problem,

SIG ACT News 5(1973), 15{16.

[32] D. Rubinstein, personal communication.

[33] M. Saks and A. Wigderson, Probabilistic Boolean decision trees and the complexity

of evaluating game trees, Proc. 26th IEEE FOCS (1986), 29{38.

[34] M. Santha, On the Monte Carlo Boolean Decision Tree Complexity of Read-Once

Formulae, manuscript, 1991.

[35] M. Snir, Lower bounds for probabilistic linear decision trees, Theor. Comp. Sci.

38(1985), 69{82.

[36] G. Tardos, Query complexity, or Why is it di�cult to seperate NP

A

\ coNP

A

from

P

A

by a random oracle A, manuscript, 1987.

[37] Gy. Tur�an, personal communication.

[38] A. Yao, Probabilistic computation: towards a uni�ed measure of complexity, Proc.

18th IEEE FOCS (1977), 222-227.

[39] A. Yao, Some complexity questions related to distributed computations, Proc. 11th

ACM STOC (1979), 209{213.

[40] A. Yao, A lower bound to �nding convex hulls, J. ACM 28(1981), 780{789.

[41] A. C. Yao, Lower bounds by probabilistic arguments, Proc. 24th IEEE FOCS (1983),

420{428

[42] A. Yao, Lower bounds to randomized algorithm for graph properties, Proc. 28th

IEEE FOCS (1987), 393{400.

[43] A. Yao, Monotone bipartite graph properties are evasive, SIAM J. Comput. 17(1988),

517{520.

11


