
An 
(n

4

3

) lower bound on the

randomized complexity of graph properties

P�eter Hajnal *

Department of Computer Science, Princeton University

and

Bolyai Institute, University of Szeged, Hungary

*

The paper was written while the author was a graduate student at the

University of Chicago and was completed at M.I.T. The work was supported in

part by NSF under GRANT number NSF 5-27561, the Air Force under Contract

OSR-86-0076 and by DIMACS (Center for Discret Mathematics and Theoretical

Computer Science), a National Science Foundation Science and

Technology Center { NSF-STC88-09648.



Abstract.

We improve King's 
(n

5

4

) lower bound on the randomized decision tree complexity

of monotone graph properties to 
(n

4

3

). The proof follows Yao's approach and improves

it in a di�erent direction from King's. At the heart of the proof are a duality argument

combined with a new packing lemma for bipartite graphs.

0. Introduction.

Our universe is the set of graphs on the vertex set V = f 1; 2; :::; n g i.e. the set of labeled

graphs G

n

. A graph property P is a subset of G

n

, closed under isomorphisms. We use

�

P to

denote G

n

�P , the complement of P . The dual, P

�

is de�ned as follows: G 2 P

�

i�

�

G =2 P

where

�

G is the complement of the graph G. P is monotone (increasing) if H � G;H 2 P

implies G 2 P . P is non-trivial if it di�ers from ; and G

n

. Let P

n

be the set of non-trivial,

monotone, graph properties over the universe G

n

.

De�nition 0.1. A decision tree algorithm A computes a graph property P for any input

G by asking questions of the form \Is edge fi,jg in the graph?". The choice of question

may depend only on the information gained so far. Let A

P

be the set of all decision tree

algorithms for P . Let cost(A;G) be the number of queries asked by A when G is the input.

The deterministic complexity of P is C(P ) = min

A2A

P

max

G2G

n

cost(A;G):

The randomized decision tree algorithm is a probability distribution � over A

P

. The

expected number of queries asked by � for input G is cost

R

(�;G) =

P

A2A

�(A)cost(A;G).

The randomized complexity of P is C

R

(P ) = min

�

max

G2G

n

cost

R

(�;G):

It has been conjectured by Aanderaa and Rosenberg [R] that the deterministic com-

plexity of any non-trivial monotone graph property is C(P ) = 
(n

2

). The conjecture

was proved by Rivest and Vuillemin [RV]. Further progress was made by Kahn, Saks and

Sturtevant [KSS]. Subsequently it has been conjectured that the randomized complexity

of any non-trivial monotone graph property is C

R

(P ) = 
(n

2

). The �rst nonlinear lower

bound was obtained by Yao [Y2] who proved C(P ) = 
(nlog

1

12

n). More important, Yao

introduced methods which form the basis of further progress. A signi�cant improvement

is due to Valerie King: C(P ) = 
(n

5

4

). We further improve this to 
(n

4

3

).

Main Theorem. (Theorem 7.1.) The randomized decision tree complexity of any non-

trivial monotone graph property P 2 P

n

is

C

R

(P ) = 
(n

4

3

):

Our lower bound (as King's) will be based on a method described by Yao in [Y2].

See chapter 2 for a formal description. In the proof, we shall utilize our ability to choose

between the properties P;

�

P; P

�

, each having the same complexity. This liberty can be

exploited through the following new packing lemma which may be of independent interest.

Packing Lemma. (Theorem 5.5.) Let G and H be two bipartite graphs with the same

two color classes, V and W , both of them of size n. Assume that

(a) d

average

(G)d

max;V

(H) �

n

3000

,

(b) d

average

(H)d

max;V

(G) �

n

3000

,

(c) d

max;W

(G); d

max;W

(H) �

n

10 logn

.

Then G and H can be packed.



1.Preliminaries, notations.

Let C

R

(n) = min

P2P

n

C

R

(P ).

A property P 2 P

n

can be characterized by the collection of minimal graphs having

that property. We refer to them as minimal or critical graphs. Let min(P ) be the list of

critical graphs for P . In many of cases we consider P as it is given by min(P ).

We use standard graph theoretical notions. We refer the reader to [L]. If G 2 G

n

then

V (G) is the set of vertices of G. d

max

(G) and d

average

(G) are the maximal and average

degree of G. K

n

; K

n;m

; E

n

are the complete graph on n vertices, the complete bipartite

class with color classes of size m and n and the empty graph on n vertices, respectively.

G[A] is the subgraph of G induced by the set A.

We need to build up the same system of notions for another universe, namely the

universe of labeled bipartite graphs. We have bipartite graphs with the two color classes:

V = f 1; 2; :::; n g and W = f

�

1;

�

2; :::; �mg. The set of all these labeled bipartite graphs is

denoted by G

n;m

. It is straightforward to extend the previous notions, like non-trivial,

monotone bipartite graph property P to this class. (When we refer to a bipartite property,

we automatically mean that the property is non-trivial, monotone and that it does not

depend on the labelling.) The set of these bipartite properties will be denoted by P

n;m

.

We also use the other corresponding notions C

R

(P ), C

R

(n;m), min(P ), P

�

(it will be clear

from the context whether the universe we are working with is graphs or bipartite graphs).

If G 2 G

n;m

and U is a subset of the vertices then d

max;U

(G) and d

average;U

(G) are the

maximal and average degree in the set U . For example if jV j = jW j then d

average;V

(G) =

d

average;W

(G). (Let us remember that if G comes from G

n;m

then V and W are the two

color classes.) Some obvious modi�cations of the graph theoretical de�nitions are made

when dealing with bipartite graphs, for example the complement of a bipartite graph will

come from G

n;m

.

2. Previous techniques.

In previous papers several methods giving lower bounds for the random complexity of

properties were presented. The lower bounds on C

R

(P ) given by these methods depended

explicitly on min(P ). None of these bounds could give a general lower bound for all

properties, but the combination of several methods led to superlinear lower bounds.

Theorem 2.1. (Basic Method [Y1]).

(i) Let P 2 P

n

and G 2 min(P ) be any minimal graph for P . Then

C

R

(P ) = 
(jV (G)jd

average

(G)):

(ii) Let P 2 P

n;m

and G 2 min(P ) be any minimal graph for P . Then

C

R

(P ) = 
(jV jd

average;V

(G)):



De�nition 2.2. Let L be a list of graphs from G

m;n

. For each G 2 L let us consider

the sequence of degrees in color class V . Let S(G) = d

1

� d

2

� ::: � d

n

be the ordered

list of degrees. If (d

1

; d

2

; :::; d

n

) is the lexicographically �rst sequence considering all the

ordered lists are gotten from elements of L then we refer to G as the V -lexicographically

�rst element of L.

Theorem 2.3. (Yao's Method [Y2]).

Let P 2 P

n;m

and G 2 min(P ) be the V -lexicographically �rst graph. Then

C

R

(P ) = 
(

d

max;V

(G)

d

average;V

(G)

jV j):

Remark. In the case of bipartite universe the roles of V and W are exchangeable.

All these lower bounds are proven using a basic lemma of Yao [Y1].

Yao's method [Y2] is very powerful. The only problem with it is that we can apply

it only for a very speci�c graph of the list min(P ). We need a slight extension of this

method.

Lemma 2.4. Let P 2 P

n;m

and let us assume that there is a graph in min(P ) which has

at least

n

2

isolated nodes in V . Let G be the V -lexicographically �rst graph among the

graphs having at least

n

2

isolated nodes in V . Then

C

R

(P ) = 


�

d

max;V

(G)

d

average;V

(G)

jV j

�

:

Proof. (Sketch) We assume familiarity with the proof of Yao's method [Y2, Lemma

5]. In that proof we chose the node of maximal degree from V and some other points of

degree at most twice the average degree. Now we do the same but we carefully leave

n

2

isolated nodes out of the consideration. The crucial point of the proof is that we construct

many graphs none of which has property P . This is shown by the fact that these graphs

don't have any subgraph from min(P ). This is still true for the new collection: For graphs

having

n

2

isolated nodes this follows from the fact that G was the V -lexicographically �rst.

For the other graphs it is true because they have less than

n

2

isolated nodes in V .

None of these methods works for every graph property, but for any property one of

them gives a good lower bound. Combining di�erent methods one might get a superlinear

lower bound. Unfortunately Yao's method doesn't seem to work on general graph proper-

ties. This is the reason that the known lower bounds handle the bipartite properties �rst,

then they give a reduction of the general problem to the bipartite case.

Finally we mention V. King's method, that led to her improved bound. Our proof

won't use this technique.



Theorem 2.5. (King's Method [K]).

(i) Let P 2 P

n

and G 2 min(P ) be any minimal graph for P . Then

C

R

(P ) = 


�

jV (G

0

)j

2

d

average

(G

0

)d

max

(G)

�

;

where G

0

is the subgraph of G induced by the non-isolated nodes.

(ii) Let P 2 P

n;m

and G 2 min(P ) be any minimal graph for P . Then

C

R

(P ) = 


�

jV

0

j

2

d

average;V

0

(G)d

max;W

(G)

�

;

where V

0

is the subset of V of nodes with positive degree.

3. Using duality.

Yao's original lower bound technique had a problem with graphs from min(P ) with small

number of edges. He solved this problem considering the dual property P

�

. min(P ) and

min(P

�

) determine each other. This dependence gives a possibility to get information

about one of the lists knowing something about the other. This kind of information is very

useful because it gives guidance in choosing the right list to work with. The very basic

fact about these two lists is the following.

De�nition 3.1. (a) Let G;H 2 G

n

. Let us assume that G has the vertex set V and H

has the vertex set V

0

. A packing is an identi�cation between V and V

0

such that no edges

of G is identi�ed with any edges of H.

(b) Let G;H 2 G

n;n

. Let us assume that G has color classes V [W and H has color classes

V

0

[W

0

. A bipartite packing is two identi�cations, one is between V and V

0

and another

between W and W

0

such that no edge of G is identi�ed with any edge of H.

Lemma 3.2. (Fact [Y2]).

(i) If P 2 P

n

, G 2 min(P ) and H 2 min(P

�

) then G and H can't be packed.

(ii) If P 2 P

n;m

, G 2 min(P ) and H 2 min(P

�

) then G and H can't be packed as a

bipartite graphs.

Packing graphs is a heavily studied subject in graph theory. A good survey of this

research can be found in [B]. For us the following theorem is specially important.

Theorem 3.3. (Conditions on the maximal degree [SS],[C]).

(i) If G;H 2 G

n

and d

max

(G)d

max

(H) <

n

2

then G and H can be packed.

(ii) If A;B 2 G

n;m

and d

max;V

(A)d

max;W

(B) + d

max;W

(A)d

max;V

(B) < n, then A and B

can be packed as bipartite graphs.



>From the packing property one can get the following useful information for the bi-

partite case: at least one of min(P ) and min(P

�

) contains a graph where the class V has

at least

n

2

nodes of positive degree.

The packing property doesn't give all the dependence between the two critical lists.

Actually min(P

�

) is the set of minimal graphs which can't be packed with any element of

min(P ). The maximality gives us further information about the lists.

Lemma 3.4. Let P 2 P

n;m

. Then min(P ) or min(P

�

) has a graph G such that it has at

least

n

2

isolated nodes in V .

Proof. G = K

n

2

;m

+ E

n

2

2 G

n;m

is a graph with

n

2

isolated nodes in V and with all

the possible edges. If G 2 P then the statement is clearly true. Otherwise

�

G = G 2 P

�

and again the statement is clearly true.

4. Surgery on the maximal degree.

From now on for simplicity we restrict ourselves to the bipartite universe where the

two color classes have the same cardinality. So now we can use the following notation.

d

average

(G) = d

average;V

(G) = d

average;W

(G).

The basic idea of this chapter is the following. Let us �x a bipartite property P . Let

us consider min(P ). If we have a graph of high average degree in min(P ) then we get a

good lower bound by our basic method. If we take a graph to which we can apply Yao's

method, the average degree is low and the maximal degree in the corresponding color class

is high then Yao's technique gives us a good bound. In some sense we can interpret these

statements as if we can't get a good lower bound on C(P ) then we have an upper bound

on the maximal degree of a special graph from min(P ) in one of the color classes. Let us

assume that the second case occurs (so we could not get a good lower bound in the way

we described).If we do the same thing for min(P

�

) then we are left with two graphs. We

have bounds on the maximal degree in some color classes. That gives us the possibility to

force a contradiction using packing theorems. The �rst step in this program is to choose

graphs to which we can apply Yao's method.

De�nition 4.1. Let P 2 P

n;n

.

(a) Remember that the two color classes in this universe are V and W . We assume

that min(P ) has some graphs with at least

n

2

isolated nodes in V . Let G be the V -

lexicographically �rst among them.

(b) For clarity we denote the two color classes of H by V

0

and W

0

. Let H be the W

0

-

lexicographically �rst element of min(P

�

).

Our previous remark suggests that we can handle G and H as we have an upper bound

on the maximal degrees in their color classes. In order to apply for example Catlin's packing

theorem, Theorem 3.3.(ii) we need bounds on the maximal degree in all other color classes.

We proceeds as follows. We start to build a packing between G and H. This partial packing

leaves us with some leftover, unpacked nodes. These de�ne a new packing problem which,

in some sense, is independent from the original one. The same time we will have a more

complete knowledge about the maximal degrees in the color classes.



De�nition 4.2. (Prepacking)

We are going to de�ne sets V

0

� V , W

0

� W , V

0

0

� V

0

and W

0

0

� W

0

(jV

0

j = jV

0

0

j; jW

0

j =

jW

0

0

j) and a packing between the corresponding induced subgraphs of G and H.

(a) Let V

0

be the set of

n

2

isolated nodes in G.

(b) Let W

0

0

be the set of minf

n

8d

average

(H)

;

n

2

g nodes of lowest degree in H.

(c) Let V

0

0

be the neighborhood of W

0

0

and plus as many of the highest degree nodes from

V

0

as needed in order to get a set of size

n

2

. (We will see that the size of the neighborhood

V

0

is at most

n

4

.)

(d) Let W

0

be the set of minf

n

8d

average

(H)

;

n

2

g nodes in W of highest degree in G.

Let G

0

and H

0

be the subgraphs of G and H induced by the sets de�ned above. Note that

G

0

is empty. Let V

1

, W

1

, V

0

1

and W

0

1

the leftover parts of the corresponding vertex sets.

Let G

1

and H

1

be the subgraphs induced by these leftover sets.

Any pair of identi�cations between V

0

and V

0

0

plus between W

0

and W

0

0

gives a packing

between G

0

and H

0

. Choose arbitrary one of these, and call it prepacking.

Lemma 4.3. (i) If G

1

and H

1

can be packed then the packing and the prepacking together

yield a total packing.

(ii) d

max;V

1

(G

1

) � d

max;V

(G).

(iii) d

max;W

0

1

(H

1

) � d

max;W

0

(H).

(iv) d

max;V

0

1

(H

1

) � 4d

average

(H):

(v) d

max;W

1

(G

1

) � 8d

average

(G)d

average

(H):

Proof (i) We don't have any edges in G between V

0

and W

1

and in H between W

0

0

and V

0

1

. Thus we won't have any con
ict putting together the two packings.

(ii) and (iii) are obvious because G

1

is a subgraph of G and H

1

is a subgraph of H.

(iv) V

0

1

= V

0

� V

0

0

. We are going to show that the neighborhood of W

0

0

has at most

n

4

nodes. This implies that V

0

0

has the

n

4

highest degrees in V

0

. The claim about the

size of the neighborhood of W

0

0

is clear because all degrees in W

0

0

are not greater then

2d

average

(H).

(v) If the statement were not true then the contribution of the edges having an end-

point in W

0

to the total number of edges in G would be greater than jW jd

average

(G).

Theorem 4.4. The randomized decision tree complexity of any non-trivial monotone

bipartite graph property P 2 P

n;n

is 
(n

5

4

), i.e.,

C

R

(n; n) = 
(n

5

4

):

Proof Let us �x an arbitrary P 2 P

n;n

. Let G 2 min(P ) and H 2 min(P

�

) be the

two graphs de�ned in De�nition 4.1.

Case 1. d

average

(G) or d

average

(H) is at least

1

10

n

1

4

.

In this case our basic method gives the lower bound.

Case 2. d

max;V

(G) or d

max;W

0

(H) is at least

1

10

n

1

2

and case 1 doesn't hold.



Without loss of generality we can assume that d

max;V

(G) is at least

1

10

n

1

4

. Because

of the choice of G we can apply Yao's method and we get the lower bound


(

d

max;V

(G)

d

average

(G)

n):

We know that d

average

(G) is at most

1

10

n

1

4

. Thus we get the desired lower bound.

Case 3. None of the previous cases holds.

Let G

1

and H

1

be the graphs de�ned in De�nition 4.2. It is easy to check that the

condition of Theorem 3.3.(ii) is satis�ed. So G

1

and H

1

can be packed. Using Lemma

4.3.(i) we get that G and H can also be packed, which is a contradiction.

5. The improved packing theorem for bipartite graphs.

In the previous section we heavily used Catlin's packing theorem for bipartite graphs.

The proof of that theorem is very simple. In this section we improve his result and in

this way we get an improved lower bound on our problem too. We summarize Catlin's

idea. Given G;H 2 G

n;n

with color classes V;W; V

0

and W

0

. We want to �nd a su�cient

condition for existence a packing. We take an arbitrary identi�cation of V and V

0

. De�ne

a bipartite graph between W and W

0

based on whether two nodes can be identi�ed or not.

Now the problem is simply �nding a matching in this auxiliary graph.

De�nition 5.1. Let G;H 2 G

n;n

. Let be V;W; V

0

andW

0

the corresponding color classes.

Given f , an identi�cation of V and V

0

. B

f

is a bipartite graph between W andW

0

. x 2W

and y 2 W

0

are adjacent i� x and y can be identi�ed, i.e., the neighborhoods of x and y

are disjoint in the identi�ed V and V

0

.

Now it is easy to show that if G and H satisfy the condition of Theorem 3.3.(ii)

then B

f

satis�es the condition of K�onig's theorem [see L]. Our improvement comes from

the idea that we don't pick an arbitrary f but rather choose a random one. Then with

positive probability B

f

has the property that all vertices in it have degree at least

n

2

. We

need a probabilistic lemma. For that we use a well-known inequality for Bernoulli random

variable.

Theorem 5.2. Let X

1

; X

2

; :::; X

N

be independent 0-1 random variables such that

Prob(X

i

= 1) = p.

(i) (Cherno�'s inequality [Ch])

If m � Np is an integer then

Prob(

X

N

i=1

X

i

� m) �

�

Np

m

�

m

exp(m�Np):

(ii) [AV,Ch]

For every 0 < � < 1,

Prob(

X

N

i=1

X

i

� b(1� �)Npc) � exp

�

�

�

2

Np

2

�

:



Lemma 5.3. Let 0 � d

1

; d

2

; :::; d

n

� L =

n

10 log n

integers and let us de�ne d

average

by

P

n

i=1

d

i

= d

average

n. Let X

1

; X

2

; :::; X

n

be independent 0� 1 random variables such that

Prob(X

i

= 1) = p =

1

1000d

average

. Then Prob(

P

n

i=1

X

i

d

i

>

n

10

) �

1

n

2

.

Proof. Let X

i;j

= X

i

for 1 � i � j � d

i

. Using this notation

X

n

i=1

X

i

d

i

=

X

n

i=1

X

d

i

j=1

X

i;j

Let X be the set of random variables de�ned above. The size of X is

P

n

i=1

d

i

= nd

average

.

The elements of X are arranged in a matrix such a way that each column consists of

independent random variables. It is easy to see that X can be partitioned into L subsets

(X = X

1

[ ::: [ X

L

) such a way that each X

i

has independent random variables in it and

their sizes are the same ( for all i,j

�

�

�

jX

i

� X

j

j

�

�

�

� 1 ).

Let E be the event that

X

n

i=1

X

i

d

i

=

X

X

i;j

2X

X

i;j

>

n

10

;

and E

k

be the event that

X

X

i;j

2X

k

X

i;j

> jX

k

j

1

10d

average

= 100pjX

k

j:

Then

E � [

L

k=1

E

k

:

Using Cherno�'s inequality we get

Prob(E

k

)�

�

pjX

k

j

100pjX

k

j

�

100pjX

k

j

exp(100pjX

k

j � pjX

k

j)

�

�

e

100

�

log n

�

1

n

3

:

Thus

Prob(E) �

d

average

n

L

Prob(E) �

1

n

2

:

We need the same probabilistic lemma but in a di�erent probabilistic model.

Lemma 5.4. Let 0 � d

1

; d

2

; :::; d

n

�

n

10 log n

integer numbers such that

P

n

i=1

d

i

=

d

average

n. Choose D such thatDd

average

�

n

3000

. Let � be a random subset of f 1; 2; :::; n g

of size D. Then Prob(

P

i2�

d

i

�

n

2

) <

2

n

2

.

Proof. Let �

i

be a random subset of f 1; 2; :::; n g of size i, all i-subsets of f 1; 2; :::; n g

being equally likely. Let P

i

= Prob(

P

j2�

i

d

j

>

n

2

). Then P

0

� P

1

� ::: � P

n

.



Let X

1

; X

2

; :::; X

n

be independent 0-1 random variables such that Prob(X

i

= 1) =

p =

1

1000d

average

. Then

Prob(

X

n

i=0

X

i

d

i

>

n

2

) =

X

n

k=1

�

n

k

�

p

k

(1� p)

n�k

P

k

�P

b

1

2

npc

X

b

1

2

npc�k�b

3

2

npc

�

n

k

�

p

k

(1� p)

n�k

�

1

2

P

b

1

2

npc

�

1

2

P

D

:

Using our bound from Lemma 5.3 we get the desired inequality.

As sketched above this lemma leads to an improved packing theorem.

Theorem 5.5. Let G;H 2 G

n;n

. Assume that

(a) d

average

(G)d

max;W

0

(H) �

n

3000

,

(b) d

average

(H)d

max;W

(G) �

n

3000

,

(c) d

max;V

(G); d

max;V

0

(H) �

n

10 logn

.

Then G and H can be packed.

Proof For the sake of clarity let us assume that the color classes of G and H are V ,

W , V

0

and W

0

. Let f : V ! V

0

be a random 1 � 1 map, all maps being equally likely.

Then B

f

is a random bipartite graph between the sets W and W

0

.

We are interested in the event

E = Each node of B

f

has degree at least

n

2

:

One elementary bad event is

E

x

= x has degree in B

f

less then

n

2

(for x 2W [W

0

):

Using this notation

E = 
� [

x2W[W

0

E

x

:

Thus

Prob(E) � 1�

X

x2W[W

0

Prob(E

x

):

For x 2 W , E

x

is exactly the event that the image f(N(x)) of N(x) (f(N(x)) � V

0

)

has a neighborhood in W

0

of size more than

n

2

. The event that the sum of the degrees in

f(N(x)) is at least

n

2

is a superset of E

x

. f(N(x)) is a random set of size jN(x)j and its

size is at most d

max;W

(G). Applying Lemma 5.4 we get that Prob(E

x

) <

1

2n

. So Prob(E)

is positive. This proves that there exists an f such that for the corresponding B

f

each

node has degree at least

n

2

. Thus there is a perfect matching in B

f

. This perfect matching

is an identi�cation of W and W

0

, which together with f gives us a packing.



We are going to use this improved packing theorem in order to get the following

improved lower bound.

Corollary 5.6. The randomized decision tree complexity of any non-trivial monotone

bipartite graph property P 2 P

n;n

is 
(n

4

3

), i.e.,

C

R

(n; n) = 
(n

4

3

):

Proof. Let P 2 P

n;n

be an arbitrary graph property. Let G and H be the graphs

de�ned in De�nition 4.1. We are going to consider three cases.

Case 1. d

average

(G) or d

average

(H) is at least

1

100

n

1

3

.

Applying Lemma 2.1. we get the lower bound.

Case 2. d

max;V

(G) or d

max;W

0

(H) is at least

1

100

n

2

3

and case 1 does not hold.

Because of the choice of G we can apply Yao's method and we get the lower bound


(

d

max;V

(G)

d

average

(G)

n): In this case we know that d

average

(G) is at most

1

100

n

1

3

. These imply the

lower bound.

Case 3. None of the previous cases holds.

Let us consider G

1

and H

1

, the graphs de�ned in De�nition 4.2. It is easy to check

that the conditions of the new packing theorem, Theorem 5.5. are satis�ed. So G

1

and

H

1

can be packed. This leads to a contradiction that proves our theorem.

6. The improved reduction.

Given a graph property P one can construct other graph properties, that are useful

for proving lower bounds on the complexity of P .

De�nition 6.1. Let P 2 P

n

. Let us assume that K

n

2

+ E

n

2

=2 P and K

n

�K

n

2

2 P . Let

~

P 2 P

n

2

;

n

2

be the following property. G 2

~

P i� adding all the possible edges between the

nodes of V to G gives us a graph having property P .

De�nition 6.2. Let P 2 P

n

. Let us assume that K

n

� K

n

2

=2 P . Let

^

P 2 P

n

2

be the

following property. G 2

^

P i� adding

n

2

new nodes and all the possible edges incident to a

new node to G gives us a graph having property P .

Considering these problems helps us because of the following lemma. Basically it says

that it is enough to give a lower bound on the constructed property. In the case when

the �rst de�nition might be applied the advantage is obvious, we get a reduction to the

bipartite case.

Lemma 6.3. Let P 2 P

n

be an arbitrary non-trivial graph property. Let us assume that

~

P and

^

P are the properties de�ned in 6.1. and 6.2. Then the following are true.

(i)

~

P is a non-trivial, monotone bipartite graph property.

(ii) C

R

(P ) � C

R

(

~

P ).

(iii)

^

P is a non-trivial, monotone graph property.

(iv) C

R

(P ) � C

R

(

^

P ).



Another advantage is that we might have "nice" critical graphs for the constructed

property. This way it is easier to handle a lower bound on that property.

Lemma 6.4. Let P 2 P

n

be a graph property and

^

P be the property de�ned in 6.2. Let

G 2 min(P ). Then there is an H 2 min(

^

P ) such that the following are true.

(i) d

max

(H) � 4d

average

(G).

(ii) H has at least

n

10d

average

(G)

isolated nodes.

Proof. Let V be the vertex set of G, (jV j = n). Let us take any subset V

0

of V of size

n

2

. Then the subgraph of G induced by V

0

, G[V

0

] has the property

^

P . Thus min(

^

P ) has

an element that is a subgraph of G[V

0

]. So it is enough to show that for an appropriate

set V

0

, G[V

0

] has the properties (i) and (ii).

Choose minf

n

2

;

n

10d

average

(G)

g nodes by the following greedy algorithm. Choose the

node of minimum degree in G. Throw away that point and its neighborhood. Choose the

node of minimum degree in the remaining graph and continue this procedure. The set that

we shall get will be an independent set and its neighborhood will have size less then

n

4

.

Let us refer to this independent set as A. Let us extend N(A) to a set of size

n

2

by adding

some nodes of largest degree. Notice that we add at least

n

4

new nodes. Let B be the set

obtained after this extension of N(A). Let V

0

be the complement of B. Let us remark

that A � V

0

.

It is easy to see that V

0

de�ned above is a good set. (i) follows from the fact that B

has the set of nodes of the greatest

n

4

degrees. (ii) is true because A � V

0

.

After this we are ready to prove the improved reduction to the bipartite case.

Theorem 6.5. The randomized decision tree complexity of any non-trivial monotone

bipartite graph property P 2 P

n

is

C

R

(P ) = 


�

minfn

4

3

; C

R

(

n

2

;

n

2

) g

�

:

Proof Let P 2 P

n

be arbitrary graph property. We consider two cases.

Case 1. K

n

2

+ E

n

2

=2 P and K

n

�K

n

2

2 P .

Then C

R

(P ) � C

R

(

~

P ) = 
(C

R

(

n

2

;

n

2

)).

Case 2. Case 1. does not hold.

Without loss of generality we assume that K

n

�K

n

2

=2 P . (This must hold for P or

P

�

.)

Let us consider

^

P . For any G 2 min(P ) construct an H 2 min(

^

P ) guaranteed in

Lemma 6.4 to exist. Choose any F 2 min(

^

P

�

). We know that F and H have no packing.

Start a prepacking the following way. Pack all the nodes of the top

n

10d

average

(G)

degrees

of F into isolated nodes of H. Let the unpacked nodes span the graphs F

1

and H

1

.

It is easy to see that F

1

and H

1

can't have a packing. F

1

has maximal degree at most

10d

average

(G)d

average

(F ). From 6.4 H

1

has maximal degree at most 4d

average

(G).

We �nish the proof by considering the following two subcases.

Subcase 1. d

average

(F ) �

1

10

n

1

3

or d

average

(G) �

1

10

n

1

3

.

Then our basic methods gives us that C

R

(P ) � C

R

(

^

P ) = 
(n

4

3

).

Subcase 2. Subcase 1 is not satis�ed.

Then Catlin's theorem, Theorem 3.3.(ii) gives us a contradiction.



7. The improved lower bound.

Combining Corollary 5.6. and Theorem 6.5. we get the following improved lower

bound on general graph properties.

Theorem 7.1. The randomized decision tree complexity of any non-trivial monotone

graph property P 2 P

n

is 
(n

4

3

), i.e.,

C

R

(n) = 
(n

4

3

):
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