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Abstract

The semi-random method was introduced in the early eighties. In its first form
of the method lower bounds were given for the size of the largest independent
set in hypergraphs with certain uncrowdedness properties. The first geometrical
application was a major achievement in the history of Heilbronn’s triangle problem.
It proved that the original conjecture of Heilbronn was false. The semi-random
method was extended and applied to other problems. In this paper we give two
further geometrical applications of it.

First, we give a slight improvement on Payne and Wood’s upper bounds on a
Ramsey-type parameter, introduced by Gowers. We prove that any planar point

set of size Ω( n2
logn

log logn
) contains n points on a line or n independent points.

Second, we give a slight improvement on Schmidt’s bound on Heilbronn’s quad-
rangle problem. We prove that there exists a point set of size n in the unit square
that doesn’t contain four points with convex hull of area O(n−3/2(logn)1/2).

1. Introduction

The semi-random method was introduced for graphs in [1]. Later it was extended
to 3-uniform hypergraphs in [8]. The method was further extended in [2] and [4].

A hypergraph H on the vertex set V is a subset of P(V ), the power set of V .
I.e. H is a collection of certain subsets of V , called edges. If the edges have a
common size, say k, then we say that H is k-uniform. In a hypergraph H a vertex
set I ⊂ V is called an independent set iff it doesn’t contain any edge as a subset. The
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maximum size of the independent sets of H is denoted by α(H). There are several
results concerning independent sets in 3-uniform uncrowded hypergraphs. From
hypergraph theory we recall that the degree of a vertex x (deg(x)) is the number
of edges, containing x. Also a k-cycle (k ≥ 2) in H is a sequence of k different
vertices: x1, . . . , xk−1, xk = x0 and a sequence of k different edges: E1, . . . ,Ek such
that xi−1, xi ∈ Ei for i = 1,2 . . . , k. The cycle, above is called a simple cycle iff Ei ∩(∪j∶j/iEj) = {xi−1, xi} for i = 1,2 . . . , k. We quote the earliest result on hypergraphs
using the semi-random method.

Theorem 1 ([8], Lemma 1). Let H be a 3-uniform hypergraph on v vertices. Let d
denote the average degree of H. Assume that d ≤ t2 and 1≪ t≪ v1/10.

If H doesn’t contain simple cycles of length at most 4, then

α(H) = Ω(v
t

√
log t) .

In our applications we might have many simple cycles of length 3 and 4. We
need the following strengthening of the basic bound:

Theorem 2 ([4], Theorem 2). Let H be a k-uniform hypergraph on v vertices. Let
∆ be the maximum degree of H. Assume that ∆ ≤ tk−1 and 1 ≪ t. If H doesn’t
contain a 2-cycle (two edges with at least two common vertices), then

α(H) = Ω(v
t
(log t) 1

k−1 ) .
We give two new geometrical applications of the above bound.

In the first application we consider a question asked by Gowers [5]. Given a
planar point set P , what is the minimal size of P that guarantees that one can
find n points on a line or n independent points (no three on a line) in it? He
noted that the grid shows that Ω(n2) many points are necessary, and in the case
of 2n3 many points without n points on a line a simple greedy algorithm finds n

independent points. Payne and Wood [9] improved the upper bound to O(n2 logn).
They also considered an arbitrary point set with much fewer points than n3 and
without n points on a line. But instead of the greedy algorithm they used Spencer’s
lemma, which is based on a simple probabilistic sparsification. They also used
the Szemerédi–Trotter theorem in order to bound the number of edges of their
hypergraph.

We improve the previous upper bound methods. We also start with a random
sparsification. After some additional preparation (we get rid of 2-cycles) we are
able to use a semi-random method (see [4]) to find a large independent set.

Theorem 3. Let P be an arbitrary planar point set of size Ω( n2
logn

log logn
). Then we

can find n points in P, that are incident to a line or independent.

Our second application is closely related to Heilbronn’s triangle problem [10],
[15], [11], [12], [13], [14], [7]. Take a “nice” unit area domain D (usually a square,
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disc or a regular triangle). Place n points into D and find the smallest area among
the triangles determined by the chosen points. Let H△(n) denote the maximum of
this parameter over all possible choices of n points.

Instead of triangles we can take k-tuples of our point set and consider the area of
the convex hull of the k chosen points. We denote the corresponding parameter by
Hk(n) (so H3(n) =H△(n)). The best lower bound on H△(n) [8], and some trivial
observations are summarized in the next line:

Ω(
√
logn

n2
) =H△(n) ≤H4(n) ≤H5(n) ≤ . . . = O( 1

n
) .

We mention two major open problems: Is it true that H△(n) = O(1/n2−o(1)) and
H4(n) = o(1/n)?

Our interest is in the lower bound on H4(n). Schmidt [15] proved that H4(n) =
Ω(n−3/2). The proof is a construction of a point set by a simple greedy algorithm.
In [3] the authors provide a new proof, and extensions of this result. They also
proposed an open question, which they have not yet been able to resolve: that is
whether Schmidt’s bound can be improved by a logarithmic factor. With the help
of the semi-random method we are able to improve Schmidt’s bound and settle the
problem of [3].

Theorem 4. There exists a point set of size n in the unit square that doesn’t contain
four points with convex hull of area O(n−3/2(logn)1/2).

In some cases we closely follow the preceding papers. Since it is hard to refer
technical details we repeat the necessary arguments. This way our paper is self-
contained. Throughout the paper we will use log to denote the logarithm of base
2, we omit all floor and ceiling signs, whenever these are not essential, and assume
that n is large enough.

2. The proof of Theorem 3

Let P be a planar point set of size N = n2
logn

log logn
, not containing n points on a line.

We must show that it contains a large independent set. The collinear triples ofP form a 3-uniform hypergraph H3. Independent subsets of the point set are the
independent sets of the hypergraph. The collinear quadruples of P form a 4-uniformH4 hypergraph. Edges correspond to K

(3)
4 ’s (four vertices with all four triples as

edges) in H3.

First we consider the size ofH3, and H4. A line with i incident points determines(i
3
) many edges of H3 and (i

4
) many edges of H4. Let ti denote the number of lines

that contain exactly i points of P . Our assumption gives that 0 = tn = tn+1 = . . ..
Similarly let t≥i denote the number of lines that contain at least i points of P
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(t≥i = ti + ti+1 + . . . + tn−1). Then
∣H3∣ = n−1∑

i=2

(i
3
)ti ≤ n−1∑

i=2

⎛
⎝i2

n−1∑
j=i

tj
⎞
⎠ =

n−1∑
i=2

i2t≥i.

The Szemerédi–Trotter theorem [16] says that t≥i = O(∣P∣2/i3 + ∣P∣/i) = O(N2/i3)
(in our case N2/i3 ≫ N/i). For a suitable constant see [6] (Theorem 18.6 and
Theorem 18.7): t≥i ≤ 1000N

2/i3. Thus,
∣H3∣ ≤ n−1∑

i=2

i2t≥i ≤
n−1∑
i=2

i21000
N2

i3
= 1000N2

n−1∑
i=2

1

i
≤ 2000N2 logn = 2000

n4(logn)3
(log logn)2 .

Similarly

∣H4∣ ≤ n−1∑
i=2

i3t≥i ≤
n−1∑
i=2

i31000
N2

i3
= 1000N2

n−1∑
i=2

1 ≤ 1000N2n = 1000
n5(logn)2
(log logn)2 .

Consider a random subset of P , that we obtain keeping each point with proba-
bility p, and throwing away with probability 1 − p (and doing this independently).

Let

p =
1

100
( 1

n1/3N1/3
) = (log logn)1/3

100n(logn)1/3 .
After the random sparsification let P, H3, and H4 be the set of the surviving

points, collinear triples, and collinear quadruples (these are random sets, throughout
the paper we use bold face to denote random variables). It is obvious that

E (∣P ∣) = pN = n(logn)2/3
100(log logn)2/3 ,

E (∣H3∣) = p3∣H3∣ ≤ 2n(logn)2
1000 log logn

,

E (∣H4∣) = p4∣H4∣ ≤ n(logn)2/3
100000(log logn)2/3 .

We have chosen the probability so that the number of the surviving edges of H4

will be negligible compared to the number of surviving vertices.

Using elementary probability theory the following events will hold at the same
time with high probability:

n(logn)2/3
1000(log logn)2/3 < ∣P ∣ <

n(logn)2/3
10(log logn)2/3 ,

∣H4∣ ≤ n(logn)2/3
10000(log logn)2/3 ,
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∣H3∣ < n(logn)2
100 log logn

.

Hence d(H3) < 30(logn)4/3

(log logn)1/3
, where d denotes the average degree.

Now choose one of the good outcomes of the above probabilistic process such that

all the above events hold. Let H(0)3 , and H(0)4 the corresponding 3- and 4-uniform
hypergraphs.

Consider H(0)3 , and throw away all points of surviving quadruples of H(0)4 , and

throw away each point that has degree higher than 100(logn)4/3

(log logn)1/3
. Let L denote the

“leftover” points with the “leftover” triples.

We are still left with at least one third of the points. Hence the leftover hyper-

graph has at least n(logn)2/3

3000(log logn)2/3
many vertices. By throwing away the high degree

vertices the maximal degree of L at most is 100(logn)4/3

(log logn)1/3
. Furthermore L is very

“uncrowded”: we cannot have 2-cycles in L. Indeed, two edges along the same pair
of vertices would give a quadruple that is an edges in H4. Our process eliminated
all of them, hence there are no 2-cycles in L. The conditions in Theorem 2 are

satisfied with v = Θ( n(logn)2/3

(log logn)2/3
), t = 10(logn)2/3

(log logn)1/6
, and log t = Θ(log logn).

The rest of the proof is the application of the Theorem 2 and simple arithmetic:

α(H3) ≥ α(L) ≥ cv
t

√
log t ≥ c′n,

where c is the constant in Theorem 2 and c′ can be determined from c based on our
previuos calculation.

Theorem 3 can be easily deduced from this: Let ν = min{n, c′n}. Our point set

contains Θ( ν2
logν

log logν
) points and our argument guarantees that it contains ν points

on a line or ν independent points. The proof is complete.

3. The proof of Theorem 4

Let S ∶= {(x, y) ∈ R2 ∶ ∣x∣, ∣y∣ ≤ 1/2} be a unit square on the plane. Choose N

(a parameter that will be chosen later) random points (independently with uni-
form distribution) from (1/2)S = {(x/2, y/2); (x, y) ∈ S}. Let P be the point set{P1, P2, . . . , PN} we obtain this way. P is a random point set. The reason we place
our points into (1/2)S is technical. This way we know that any connecting line
of two points from P has an intersection with S of length Θ(1), furthermore any
distance determined by points of P is smaller than 0.9.

Consider the following 4-uniform hypergraph Q on the vertex set P: A point set
of size 4, {P,Q,R,S} forms an edge iff Area(PQRS) < τ , where Area(PQRS) is
the area of the convex hull of {P,Q,R,S}, and τ is a threshold, to be determined
later. (Similarly Area(PQR) is the area of the PQR triangle.) Q is a random
4-uniform hypergraph.
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The major part of the proof is bounding the expected values of combinatorial
parameters of Q.

Let A,B ∈ P be two different points and

deg(A,B) = ∣{{C,D} ∶ {A,B,C,D} ∈Q}∣ ≤ ∣{(C,D) ∶ {A,B,C,D} ∈Q}∣ (1)

i.e. denotes the number of edges of Q, that contains both A and B. The upper
bound counts ordered pairs (hence it is an overcounting by a factor of 2). Our goal
is to give an upper bound for this parameter. We will count how many ordered
pairs of points C, D are considered when deg(A,B) is determined.

Let strip(AB,w) denote the set of points from S, that are in the strip of width
w with midline AB (see Figure 1). I.e. strip(AB,w) contains those points of S that
have distance at most w/2 from the line AB.

S

1/2S

A

B

w

Figure 1: The shaded region is strip(AB,w). Its area is Θ(w).

Fix A and B, and let d = dist(A,B)(< 1). deg(A,B) counts certain C,D pairs
of points, see (1). We distinguish cases according to the position of C, an arbi-
trary point from P − {A,B} and we bound the possible positions of the D’s that
contributes to deg(A,B) with the current C.
Case 1: C /∈ strip(AB,4τ/d).

In this case the area of ABC△ is at least τ , hence this C doesn’t contributes to
deg(A,B).
Case 2: C ∈ strip(AB,4τ/√d). Note that strip(AB,4τ/√d) has area Θ(τ/√d).
We distinguish two subcases:

Case 2a: D /∈ strip(AB,4τ/d). Similarly to Case 1 no D contributes to deg(A,B).
Case 2b: D ∈ strip(AB,4τ/d). Note that this strip has area Θ(τ/d).
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Case 3: C ∈ strip(AB,4τ/d)−strip(AB,4τ/√d) (note that d <√d < 1). strip(AB,4τ/d)−
strip(AB,4τ/√d) has area Θ(τ/d).

The contributingD’s must come from strip(AB,4τ/d)∩strip(AC,4τ/dist(A,C)).

S

1/2S

C
B

A

4

4

4

Figure 2: The shaded region is the space for those C’s where Case 3 applies. The
green region contains those D’s, that can form an edge of Q with A, B and C.

Elementary geometry gives that the above region has area Θ(τ2/Area(ABC△))
(see the green parallelogram on Figure 2), bounding the possible positions of con-
tributing D’s. Since we are in Case 3 we have Area(ABC△) = Ω(d ⋅ τ/√d) =
Ω(τ√d), hence the parallelogram has area O(τ/√d).

The expected value of deg(A,B) can be bounded easily. The contributing C,D’s
are covered by Case 2b and Case 3. In both cases the contributing C’s and D’s are
coming from a restricted domain with known area. Since the choice of C and D

are independent the number of contributing (C,D)’s in expectation is a product of
the two expectations, that we can bound. In each of the three cases this product isO(τ2d−3/2N2). Hence

E (deg(A,B)) = O(τ2(dist(A,B))− 3

2N2).
With a similar argument we obtain bound on the number of 2-cycles through

A,B ∈P. In a 4-uniform hypergraph there are two types of 2-cycles: (I): {A,B,C,D},{A,B,C′,D′} and (II): {A,B,C,D}, {A,B,C,D′} (now different symbols denote
different points). Let CI(A,B), resp. CII(A,B) denote the number of 2-cyles of
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type (I), resp. type (II) for given points, A and B. Bounding the expected value of
CI(A,B) is easy, based on the previous calculation

E (CI(A,B)) = O(τ4(dist(A,B))−3N4).
Bounding the expected value of CII(A,B) is a little bit more technical. We distin-
guish the contribution of C’s that satisfy Case 2 and those that satisfy Case 3:

E (CII(A,B)) =O((Nτ/√d)(Nτ/d)2 + (Nτ/d)(Nτ/√d)2) = O(τ3N3d−2.5).
Now we sparsify our point set a little bit in order to have a lower bound on the

minimal distance determined by our points.

Let δ = 1
100

N−1/2. We count the number of pairs in P that are closer than
δ. Let C(P) be the set of these pairs (this is a random set). Let CA(P) = P ∩

Disc(A; δ), where Disc(A; δ) denote the disc of radius δ centered at A. It is clear
that ∣C(P)∣ = 1/2∑A∈P ∣CA(P)∣ and E (∣CA(P)∣) ≤ (N − 1)Area(Disc(A; δ)) =
1/2π ⋅ δ2N < 1/1000. Hence

E (∣C(P)∣) ≤ N/1000.
With high probability ∣C(P)∣ ≤ N/4. After deleting these pairs we obtain P0, our
new point set. P0 has size at least N/2 with high probability, and the distance of
any two points of it is at least δ.

Let Q0 be the restriction of Q to P0. From now on we will work with Q0.

Lemma 5. LetM be a set of M points from S so that the minimal distance among
them is at least δ. Let P ∈ S. Let Anni(P, δ) be the annulus

Anni(P ; δ) = {X ∈ R2 ∶ (i − 1)δ < dist(P,X) ≤ iδ}.
Ann1(P ; δ), Ann2(P ; δ), . . ., AnnO(δ−1)(P ; δ) are disjoint and cover S (hence they
cover our point set). Furthermore at most O(i) of our M points can be covered by
Anni(P, δ).

Figure 3: The annuli around P , and the elementary volume argument in the proof.
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Proof. The covering property is obvious. The bound on the number of points in the
annulus is a simple volume argument: Draw Disc(A, δ/3) for all points A ∈M ∩
Anni(P ; δ). These discs are disjoint subsets of {X ∈ R2 ∶ (i − 4/3)δ < dist(P,X) ≤(i + 1/3)δ}. The claim follows immediately.

Using Lemma 5 and the earlier estimation for deg(A,B)’s it is easy to bound the
expected number of edges, in Q0:

E (degQ0
(A)) ≤ ∑

B∈P0

E (deg(A,B)) = O(N
1/2)∑

i=1

∑
B∈Anni(A,δ)∩P0

E (deg(A,B))

≤

O(N1/2)∑
i=1

∑
B∈Anni(A,δ)∩P0

O(τ2N2(i/√N)−3/2)

≤

O(N1/2)∑
i=1

i ⋅O(τ2N2.75i−3/2) = O(τ2N2.75)O(N
1/2)∑

i=1

i ⋅ i−3/2

=O(τ2N2.75)O(N0.25) = O(τ2N3).
Hence

E (∣Q0∣) = O(τ2N4).
The bound of the expected number of 2-cycles (C = CI + CII) is similar:

E (CI) ≤ ∑
A,B∈P0

E (CI(A,B)) = ∑
A∈P0

O(N1/2)∑
i=1

∑
B∈Anni(A,δ)∩P0

E (CI(A,B))

= ∑
A∈P0

O(N1/2)∑
i=1

∑
B∈Anni(A,δ)∩P0

O(τ4 ⋅ i−3N1.5
⋅N4)

= ∑
A∈P0

O(N1/2)∑
i=1

O(τ4 ⋅ i−2 ⋅N5.5) = ∑
A∈P0

O(τ4N5.5)O(N
1/2)∑

i=1

i−2 =

= O(τ4N6.5).

E (CII) ≤ ∑
A,B∈P0

E (CII(A,B)) = ∑
A∈P0

O(N1/2)∑
i=1

∑
B∈Anni(A,δ)∩P0

E (CII(A,B))

= ∑
A∈P0

O(N1/2)∑
i=1

∑
B∈Anni(A,δ)∩P0

O(τ3 ⋅ i−2.5N1.25
⋅N3)

= ∑
A∈P0

O(N1/2)∑
i=1

O(τ3 ⋅ i−1.5 ⋅N4.25) = ∑
A∈P0

O(τ3N4.25)O(N
1/2)∑

i=1

i−1.5 =

= O(τ3N5.25).
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E (C) = E (CI + CII) = O(τ4N6.5) +O(τ3N5.25).
Now choose one of the good outcomes of the above probabilistic process so that

P0 and Q0 satisfies the following properties:: the number of points is N/2, the
number of quadruples isO(τ2N4), the number of 2-cycles isO(τ4N6.5)+O(τ3N5.25)
(the two terms correspond to the two types of 2-cycles: the first term to cycles on
six points, the second term to cycles on five points). Let Q1 be the 4-uniform
hypergraph we obtained this way.

In order to get rid of the 2-cycles we need a random sparsification (as in the
previous section): with probability p keep a point and with probability 1 − p throw
it away, and do this independently for all points. Let Q1 be the random 4-uniform
hypergraph we obtain this way. Its parameters can easily be bounded:

E (∣V (Q1)∣) = Θ(pN),
E (∣Q1∣) = O(p4τ2N4),

E (C) = O(p6τ4N6.5) +O(p5τ3N5.25).
The end of the proof is straightforward: We choose p so that

C ≪ ∣V (Q1)∣. (2)

Choose one of the good outcomes of the above probabilistic process such that we
obtain a 4-uniform hypergraph with the property that after deleting the points of the
2-cycles we obtain a leftover hypergraph with Θ(pN) points, and O(p4τ2N4) edges,
and without 2-cycles. Let d denote the average degree. Throw away the points with
degree at least 10d. The leftover hypergraph (without 2-cycles) is denoted by L and
its parameters are: ∣V (L)∣ = Θ(pN),

∣L∣ = O(p4τ2N4),
∆(L) = O(p3τ2N3).

Now we can apply Theorem 2. We choose N,τ such that α(L) ≥ n will hold.
The n points forming an independent set will prove Theorem 4.

Set the parameters as follows:

p ∶= n−0.001, N ∶= n1.01, τ ∶= n−3/2
√
logn.

Now we are going to check that with this choice of parameters (2) is satisfied:

E (C) =O(p6τ4N6.5) +O(p5τ3N5.25)
=O(n0.006(n−6 log2 n) ⋅ n6.565) +O(n0.005(n−4.5 log n)n5.3025) = o(n),

and at the same time

E (∣V (Q1)∣) = Θ(pN) = Θ(n1.009).
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Hence getting rid of 2-cycles is easy.

In order to apply Theorem 2 we introduce a parameter t, such that ∆(L) ≤ t3.
Based on our previous estimate ∆(L) = O(p3τ2N3), the right choice for t is

t = Θ(pτ2/3N) = Θ(n0.001(n−1 log1/3 n)n1.01) = Θ(n0.009 log1/3 n).
Hence Theorem 2 is applicable and it provides the following bound:

α(L) ≥ Ω(pN)
t

log1/3 t = Ω(n).
Thus, α(L) ≥ cn for certain constant c, and the theorem is proven by the same
scaling argument as Theorem 3.
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[1] M. Ajtai, J. Komlós, E. Szemerédi, A dense infinite Sidon sequence, European
J. Combin 2 no.1 (1981), 1–11.

[2] M. Ajtai, J. Komlós, J. Pintz, J. Spencer, E. Szemerédi, Extremal uncrowded
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[4] R. Duke, H. Lefmann, V. Rödl, On uncrowded hypergraphs, Random Struc-
tures Algorithms 6(1995), no. 2-3, 209–212.

[5] T. Gowers, A Geometric Ramsey Problem, http://mathoverflow.net/
questions/50928/a-geometric-ramsey-problem, accessed May 2016.

[6] S. Jukna, Extremal combinatorics, With applications in computer science,
second edition, Texts in Theoretical Computer Science, Springer, Heidelberg,
2011.
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