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The Circle Packing Theorem

Circle Packing Theorem ( 1934). For every
finite planar graph G, there is a disk packing P =
(P, : v € V(G)), whose tangency graph is G.

That P is a packing means that the interiors of the
disks in P are disjoint. That G is the tangency graph
means that the disks of P are in 1-1 correspondence
with the vertices of G, v « P,, and Yv,u € V(G),

P,N P, # 0iff [v,u] € E(G).




Proofs and generalizations of the CPT

proved his CP T by appealing to his theorem that
every finitely connected planar domain is conformal to
a circle domain, and taking limits.

Later proofs and generalizations have been given by

('70), ('85), ('86),
('89), & (90),
(90), ('92), ('92), (92),
('93), & ('93), He &
('95), ('95).

The methods of proof can be grouped into types:
topological arguments, Perron method, optimization.

Generalizations include: packings on surfaces, infinite
graphs, circle patterns with specified intersection
angles, packings of more general shapes, branched
packings.

Lacking: higher dimensional theory. Some recent
progress on this has perhaps been made by



Convergence to conformal maps

Take a simply connected domain D C C. Inside the
domain take a fine hexagonal circle packing P. By the
CPT, there is a circle packing P’ inside the unit disk,
with the same combinatorics, and with the boundary
circles tangent to the unit circle. conjectured,
and : proved ('87) that when P’ is
appropriately normalized, the correspondence P, — P!
tends to the conformal map from D to U, as the radii
of the circles of P goes to zero.




Generalizations and extensions of the
Rodin-Sullivan theorem

showed that in fact, the first derivative, when
appropriately defined, converges as well.

, and showed that the second derivative
converges as well, and obtained estimates for the rate
of convergence.

found a probabilistic proof of convergence,
based on a random walk.

It has been observed that the Rodin-Sullivan proof
works for packings that are based on more general
combinatorics, but their method is limited to bounded
degree packings.

In joint work with He, we found an entirely different
proof of convergence, that does not use QC maps, and
therefore is not restricted to bounded degree packings.
It also gives the convergence of the first two derivatives.
It is based on the argument principle.



('°° convergence

Theorem (He & S). For hexagonal disk packings the
convergence in the Rodin-Sullivan Theorem is C°°.

To define what this means, consider a triangular grid
with mesh e. Let f. be defined at the centers of the
disk of PP, and map each center to the center of the
corresponding disk in P’, where the disks in P have
diameter €. Define the discrete derivative V.g of a
function g by

gz +) — g(2)

veg(z) —
The above theorem means that for each k,

lim (V)" f. = f%)

e—0

locally uniformly in D, where f is the appropriately
normalized Riemann map.



An application of CP: planar separators

Theorem ( & 1979). Let G be
a finite planar graph. Then there is a V; C V(G)
with [V < C+/|V(G)|, such that each connected
component of G — Vj has less than |V (G)|/2 vertices,
and C' is an absolute constant.

Example:

& found a proof of this based on the
CPT. It is a gem, so we will sketch it now.



The - proof

By the CPT, there is a disk packing P = (P, :
v € V(G)) with tangency graph G. By taking a
stereographic projection, take P to be on the unit
sphere S := {|p| = 1:p € R*}. For each v € V(G),
let p, be some point in P,; p, € S°.

A well known result in convexity (a consequence of
Helly's Theorem) states that given any finite set of
points X C R, there is some point p € R? so that
every half space that contains p must contain at least
| X|/(d + 1) points of X. So there is a p € R® such
that every half space containing p contains at least
[V (G)|/4 of the points {p, : v € G(V)}.

Note that the group of projective transformations of
R3 that take S? onto itself acts transitively on the unit
ball. (This is the same as the group of isometries of H®
in the Klein model.) Elements of this group take disks
on S? to disks. Hence assume WLOG that p = 0.



Proof, continued

Let u € S? be some unit vector, and let V(u) be the
set of v € V(@) such that P, intersects u~. Then

each component of G —V{(u) has at most (3/4)|V(G)|
vertices. Now, the minimum of |Vy(u)|, where u € S?,
is at most the average, which is

(4w)—1/652|v0(u)| = ()Y area | | 2

z€ Py

= (4m)"") 2wdiam(P,)

1/2
< <|V(G)| Zdiam(Pv)2>

To get that each component of G — V(u) has at most
[V (G)|/2 vertices, just iterate a few times. 0



And the moral of the story is...

The CPT gives a “good” geometric representation of
the graph.

There are numerous applications of the CP theory to
other fields. For example, to random walks on planar
graphs.



Circle Packing Immersions

There are several ways to generalize beyond circle
packings. There are branched circle packings, which
are analogous to analytic maps which are not locally
1-1. These have been studied by Bowers, Dubejko,
Garrett, Stephenson, and others.

A more restricted class is the class of circle packing
immersions. These are analogous to analytic maps
that are locally 1-1.

A Doyle spiral
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Other immersions?

It is not known if there are any further entire hexagonal
CP immersions, except for the regular hexagonal
packing and the Doyle spirals (which have two degrees
of freedom, up to similarities).

However, there are more entire CP immersions based
on the combinatorics of the square grid.
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SG immersions

9§ g g
9§ g g g
9§ g g g
0

B0 OO B0
g g e e

0§ g

(g g g

The regular SG pattern and

>

exagonal pattern

The SG theory is analogous to the theory of the
hexagonal circle packings. However, there are distinct
advantages to the SG theory. One hint that the SG
theory is better is that for each circle in an SG pattern
you see one Mobius invariant, the cross ratio. Also, in
the hexagonal theory there are interstices; which play
a different role.

One big question is whether many of the results on the
SG patterns carry over to the hexagonal setting.
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SG Doyle Spirals

An SG Doyle spiral and the exponential map
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The erf function

2 A
erf(z) = —/ exp(—w?)dw .
7
This is an entire analytic locally univalent function. In
a way, the simplest one beside the exponentials and

the similarities.
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The erf SG pattern

An v/iSG erf
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What is the advantage with the SG
pattern?

The equations are simpler. The necessary and sufficient
equation for the radius of a circle and the four
surrounding it is

ORI R R e NS
2 "1 2 3 4
T = r1Traorsry.
T + T + Ts + T4

Note that this is symmetric about permutations of
r1,T2,73,T4.

The radius function for the erf SG-pattern is just

r(x +1iy) = exp(zy) .

No other entire planar SG patterns are known, except
for exp, erf, the regular pattern, and their compositions
with similarities.
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SG Polynomials

Due to the simplicity of the SG-rad equation, in joint
work with - we have been able to find exact
formula for some SG-polynomials.

SG 22 and z°
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Getting SG Polynomials

This is based on the fact that if r(z) is a solution,
then 1/r(z) is also a solution. Moreover, if we have
an SG-pattern, then we can invert it to get another
SG-pattern. Let's call the first operation J, and the
second I. What do I and J correspond to in the world
of meromorphic functions?

Well, clearly I(f) = 1/f. Moreover, |J(f)| =
1/|f'|. So J(f) = 1/f'. Set pi(z) = zF. Then
(J o I(pr))(z) = 22 (ignoring constants), except for

k = 0. That's how you can get from p to pipis. On
the other hand, (I o J(p2))(2) = log z.
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SG 2?2
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Getting the SG 2°

The SG z? is only conjectured to work. That is, there
Is a recursive formula for the radii, but we cannot prove
that it stays nonnegative.

It is obtained as follows. For the z? SG pattern, we
guess

r(z)=]zl,  when |Re()| = [Im(2)].

and set

r(l) =2/x.
The rest is determined by requiring the obvious
symmetry r(iz) = r(z) and using the rad-SG equation.
The value 2/7 for (1) is the only one that makes the
values on the sub-diagonal Im(z) = Re(z)—1 to behave
reasonably.
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SG log

The SG log can be obtained from the conjectured SG

z% by using the relation (I o J(p2))(2)
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Immersions in the sphere

As we mentioned, except for mild variations, the
only entire SG immersions known are the regular
pattern, the Doyle spirals (exponentials) and the SG-
erf. However, one can show

Theorem (S). The space of entire SG immersions on
the sphere is infinite dimensional

For the study of immersions on the sphere, the radius
function 7(z) is inappropriate, and one uses Mobius-
invariants, rather than isometry-invariants.
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The 0 and 7 invariants

7(z), o(w), are two M&bius invariants of SG-patterns.
Here, z is a vertex of the square grid, and w is a
vertex of the dual grid. They are defined in terms of
cross ratios of intersection points of the circles. See
Duke97 for the precise definition. They turn out to
be analogous to the real and imaginary part of the
Schwarzian derivative.

7 and o together satisfy a nonlinear discrete system
of equations that is analogous to the Cauchy-Riemann
equations. ¢ can be eliminated from these equations,
giving the following nonlinear discrete analogue of the
aplace equation:

(r(z+ 1)+ 1)(7(z—1)+1)
(t(z+49) 1+ 1)(r(z—9)"1+1)

7(2)* =

This equation permits guessing explicit solutions,
analogous to some known meromorphic functions.
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Some explicit immersions
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About the proof of C°° convergence

It turns out that similar Mobius invariants where
instrumental in the proof of (C'°° convergence of
hexagonal circle packings. In the hexagonal setting,
the Mobius invariants are denoted si(v). Here, v is
a vertex in the triangular grid, and k£ € {0,1,...,5}.
These numbers correspond to tangencies in the circle
pattern.
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s(la, d]) is defined as the aspect ratio of this rectangle
divided by v/3.

The basic equation satisfied by these invariants is:

Sk + Sk42 + Skta = 3SkSkt1S5k+2 -
In the - setup with mesh ¢, set

h, = 6_2(Sk — 1) :
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Theorem ( and S).

lim h; = éRe(W2k8(f)) )

e—0

where f is the Riemann map, S is the Schwarzian

derivative, and w = (—1)'/3. In fact, the convergence
iIs C'°°.

The proof of C"*° convergence runs as follows. To show
that Az are uniformly bounded on compacts as € — 0,
one uses 's "bad area” estimate. Playing
around with the equation for the sj, one finds that
Ahy, is a polynomial in the h;'s and their translates.
Then one needs to make a discrete analogue of the

compactness principle for elliptic equations.
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Summary

It is often worthwhile to look at the Mobius invariants.
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