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The Circle Packing TheoremCircle Packing Theorem (Koebe 1934). For every�nite planar graph G, there is a disk packing P =(Pv : v 2 V (G)), whose tangency graph is G.That P is a packing means that the interiors of thedisks in P are disjoint. That G is the tangency graphmeans that the disks of P are in 1-1 correspondencewith the vertices of G, v $ Pv, and 8v; u 2 V (G),Pv \ Pu 6= ; i� [v; u] 2 E(G):
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Proofs and generalizations of the CPTKoebe proved his CPT by appealing to his theorem thatevery �nitely connected planar domain is conformal toa circle domain, and taking limits.Later proofs and generalizations have been given byAndreev ('70), Thurston ('85), Rivin ('86), Colin deVerdi�ere ('89), Beardon & Stephenson ('90), Schramm('90), Garrett ('92), Br�agger ('92), Hodgson ('92),Bowers ('93), Brightwell & Scheinerman ('93), He &Schramm ('95), Dubejko ('95).The methods of proof can be grouped into types:topological arguments, Perron method, optimization.Generalizations include: packings on surfaces, in�nitegraphs, circle patterns with speci�ed intersectionangles, packings of more general shapes, branchedpackings.Lacking: higher dimensional theory. Some recentprogress on this has perhaps been made by Lov�asz. 2



Convergence to conformal mapsTake a simply connected domain D � C . Inside thedomain take a �ne hexagonal circle packing P . By theCPT, there is a circle packing P 0 inside the unit disk,with the same combinatorics, and with the boundarycircles tangent to the unit circle. Thurston conjectured,and Rodin-Sullivan proved ('87) that when P 0 isappropriately normalized, the correspondence Pv ! P 0vtends to the conformal map from D to U , as the radiiof the circles of P goes to zero.
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Generalizations and extensions of theRodin-Sullivan theoremZ.-X. He showed that in fact, the �rst derivative, whenappropriately de�ned, converges as well.Doyle, He and Rodin showed that the second derivativeconverges as well, and obtained estimates for the rateof convergence.Stephenson found a probabilistic proof of convergence,based on a random walk.It has been observed that the Rodin-Sullivan proofworks for packings that are based on more generalcombinatorics, but their method is limited to boundeddegree packings.In joint work with He, we found an entirely di�erentproof of convergence, that does not use QC maps, andtherefore is not restricted to bounded degree packings.It also gives the convergence of the �rst two derivatives.It is based on the argument principle. 4



C1 convergenceTheorem (He & S). For hexagonal disk packings theconvergence in the Rodin-Sullivan Theorem is C1.To de�ne what this means, consider a triangular gridwith mesh �. Let f� be de�ned at the centers of thedisk of P , and map each center to the center of thecorresponding disk in P 0, where the disks in P havediameter �. De�ne the discrete derivative r�g of afunction g byr�g(z) = g(z + �)� g(z)� :The above theorem means that for each k,lim�!0(r�)kf� = f (k) ;locally uniformly in D, where f is the appropriatelynormalized Riemann map. 5



An application of CP: planar separatorsTheorem (Lipton & Tarjan 1979). Let G bea �nite planar graph. Then there is a V0 � V (G)with jV0j 6 CpjV (G)j, such that each connectedcomponent of G� V0 has less than jV (G)j=2 vertices,and C is an absolute constant.Example:
Miller & Thurston found a proof of this based on theCPT. It is a gem, so we will sketch it now. 6



The Miller-Thurston proofBy the CPT, there is a disk packing P = (Pv :v 2 V (G)) with tangency graph G. By taking astereographic projection, take P to be on the unitsphere S2 := fjpj = 1 : p 2 R3g. For each v 2 V (G),let pv be some point in Pv; pv 2 S2.A well known result in convexity (a consequence ofHelly's Theorem) states that given any �nite set ofpoints X � Rd, there is some point p 2 Rd so thatevery half space that contains p must contain at leastjXj=(d + 1) points of X. So there is a p 2 R3 suchthat every half space containing p contains at leastjV (G)j=4 of the points fpv : v 2 G(V )g.Note that the group of projective transformations ofR3 that take S2 onto itself acts transitively on the unitball. (This is the same as the group of isometries of H 3in the Klein model.) Elements of this group take diskson S2 to disks. Hence assume WLOG that p = 0. 7



Proof, continuedLet u 2 S2 be some unit vector, and let V0(u) be theset of v 2 V (G) such that Pv intersects u?. Theneach component of G�V0(u) has at most (3=4)jV (G)jvertices. Now, the minimum of jV0(u)j, where u 2 S2,is at most the average, which is(4�)�1 Zu2S2 jV0(u)j = (4�)�1Xv area0@ [z2Pv z?1A= (4�)�1Xv 2�diam(Pv)6  jV (G)jXv diam(Pv)2!1=26 CpjV (G)j :To get that each component of G�V0(u) has at mostjV (G)j=2 vertices, just iterate a few times. 8



And the moral of the story is...The CPT gives a \good" geometric representation ofthe graph.There are numerous applications of the CP theory toother �elds. For example, to random walks on planargraphs.
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Circle Packing ImmersionsThere are several ways to generalize beyond circlepackings. There are branched circle packings, whichare analogous to analytic maps which are not locally1-1. These have been studied by Bowers, Dubejko,Garrett, Stephenson, and others.A more restricted class is the class of circle packingimmersions. These are analogous to analytic mapsthat are locally 1-1.
A Doyle spiral 10



Other immersions?It is not known if there are any further entire hexagonalCP immersions, except for the regular hexagonalpacking and the Doyle spirals (which have two degreesof freedom, up to similarities).However, there are more entire CP immersions basedon the combinatorics of the square grid.
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SG immersions
The regular SG pattern and hexagonal patternThe SG theory is analogous to the theory of thehexagonal circle packings. However, there are distinctadvantages to the SG theory. One hint that the SGtheory is better is that for each circle in an SG patternyou see one M�obius invariant, the cross ratio. Also, inthe hexagonal theory there are interstices; which playa di�erent role.One big question is whether many of the results on theSG patterns carry over to the hexagonal setting. 12



SG Doyle Spirals

An SG Doyle spiral and the exponential map
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The erf function
erf(z) = 2� Z z exp(�w2)dw :This is an entire analytic locally univalent function. Ina way, the simplest one beside the exponentials andthe similarities.
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The erf SG pattern
The erf-image of the square grid, erf(piSG)

An piSG erf 15



What is the advantage with the SGpattern?The equations are simpler. The necessary and su�cientequation for the radius of a circle and the foursurrounding it isr2 = r�11 + r�12 + r�13 + r�14r1 + r2 + r3 + r4 r1r2r3r4:Note that this is symmetric about permutations ofr1; r2; r3; r4.The radius function for the erf SG-pattern is justr(x+ iy) = exp(xy) :No other entire planar SG patterns are known, exceptfor exp, erf, the regular pattern, and their compositionswith similarities. 16



SG PolynomialsDue to the simplicity of the SG-rad equation, in jointwork with R. Kenyon, we have been able to �nd exactformula for some SG-polynomials.
SG z3 and z3
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Getting SG PolynomialsThis is based on the fact that if r(z) is a solution,then 1=r(z) is also a solution. Moreover, if we havean SG-pattern, then we can invert it to get anotherSG-pattern. Let's call the �rst operation J , and thesecond I. What do I and J correspond to in the worldof meromorphic functions?Well, clearly I(f) = 1=f . Moreover, jJ(f)0j =1=jf 0j. So J(f)0 = 1=f 0. Set pk(z) = zk. Then(J � I(pk))(z) = zk+2 (ignoring constants), except fork = 0. That's how you can get from pk to pk+2. Onthe other hand, (I � J(p2))(z) = log z.
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SG z2

SG z2 and z2
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Getting the SG z2The SG z2 is only conjectured to work. That is, thereis a recursive formula for the radii, but we cannot provethat it stays nonnegative.It is obtained as follows. For the z2 SG pattern, weguess r(z) = jzj; when jRe(z)j = jIm(z)j ;and set r(1) = 2=� :The rest is determined by requiring the obvioussymmetry r(iz) = r(z) and using the rad-SG equation.The value 2=� for r(1) is the only one that makes thevalues on the sub-diagonal Im(z) = Re(z)�1 to behavereasonably.
20



The radii for z2
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SG logThe SG log can be obtained from the conjectured SGz2 by using the relation (I � J(p2))(z) = log z.

SG log and log
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Immersions in the sphereAs we mentioned, except for mild variations, theonly entire SG immersions known are the regularpattern, the Doyle spirals (exponentials) and the SG-erf. However, one can showTheorem (S). The space of entire SG immersions onthe sphere is in�nite dimensionalFor the study of immersions on the sphere, the radiusfunction r(z) is inappropriate, and one uses M�obius-invariants, rather than isometry-invariants.
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The � and � invariants� (z), �(w), are two M�obius invariants of SG-patterns.Here, z is a vertex of the square grid, and w is avertex of the dual grid. They are de�ned in terms ofcross ratios of intersection points of the circles. SeeDuke97 for the precise de�nition. They turn out tobe analogous to the real and imaginary part of theSchwarzian derivative.� and � together satisfy a nonlinear discrete systemof equations that is analogous to the Cauchy-Riemannequations. � can be eliminated from these equations,giving the following nonlinear discrete analogue of theLaplace equation:� (z)2 = (� (z + 1) + 1)(� (z � 1) + 1)(� (z + i)�1 + 1)(� (z � i)�1 + 1) :This equation permits guessing explicit solutions,analogous to some known meromorphic functions. 24



Some explicit immersions
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About the proof of C1 convergenceIt turns out that similar M�obius invariants whereinstrumental in the proof of C1 convergence ofhexagonal circle packings. In the hexagonal setting,the M�obius invariants are denoted sk(v). Here, v isa vertex in the triangular grid, and k 2 f0; 1; : : : ; 5g.These numbers correspond to tangencies in the circlepattern.
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ab cd
b
ca d

s([a; d]) is de�ned as the aspect ratio of this rectangledivided by p3.The basic equation satis�ed by these invariants is:sk + sk+2 + sk+4 = 3sksk+1sk+2 :In the Rodin-Sullivan setup with mesh �, sethk = ��2(sk � 1) : 27



Theorem (Z.-X. He and S).lim�!0hk = 16Re(!2kS(f)) ;where f is the Riemann map, S is the Schwarzianderivative, and ! = (�1)1=3. In fact, the convergenceis C1.The proof of C1 convergence runs as follows. To showthat hk are uniformly bounded on compacts as �! 0,one uses Z.-X. He's \bad area" estimate. Playingaround with the equation for the sk, one �nds that�hk is a polynomial in the hj's and their translates.Then one needs to make a discrete analogue of thecompactness principle for elliptic equations.
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SummaryIt is often worthwhile to look at the M�obius invariants.
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