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1 Introduction

Graphs can be represented in many different ways: by lists of edges, by
incidence relations, by adjacency matrices, and by other similar structures.
These representations are well suited to computer algorithms. Historically,
however, graphs are geometric objects. The vertices are points in space and
the edges are line segments joining select pairs of these points. For example,
the points may be the vertices and edges of a polyhedron. Or they may be the
intersections and traffic routes of a map. More recently, they can represent
computer processors and communication channels. These pictures of graphs
are visually appealing and can convey structural information easily. They
reflect graph theory’s childhood in “the slums of topology.”

Topological graph theory deals with ways to represent the geometric real-
ization of graphs. Typically, this involves starting with a graph and depicting
it on various types of drawing boards: 3-space, the plane, surfaces, books,
etc. The field uses topology to study graphs. For example, planar graphs
have many special properties. The field also uses graphs to study topology.
For example, the graph theoretic proofs of the Jordan Curve Theorem, or
the theory of voltage graphs depicting branched coverings of surfaces, pro-
vide an intuitively appealing and easily checked combinatorial interpretation
of subtle topological concepts.

In this paper we give a survey of the topics and results in topological
graph theory. We offer neither breadth, as there are numerous areas left
unexamined, nor depth, as no area is completely explored. Nevertheless, we
do offer some of the favorite topics of the author and attempt to place them



in context.

We begin with some background material in Section 2. Section 3 covers
map colorings, and Section 4 contains other classical results. Section 5 exam-
ines several variations on the basic theme, including different drawing boards
and restrictions. Section 6 looks at locally planar embeddings on surfaces.
Chapter 7 gives a brief introduction to graph minors, Chapter 8 to random
topological graph theory, and Chapter 9 to symmetrical maps. Chapter 10
contains some open problems, and Chapter 11 is the conclusion.

2 Background Material

In this section we introduce some of the basic terms and concepts of topolog-
ical graph theory. The reader seeking additional graph-theoretic definitions
should consult the book by Bondy and Murty [44]. A more detailed treat-
ment of embeddings is in the book by Gross and Tucker [103]. We examine
in turn the basic terms, surfaces, Fuler’s formula and its consequences, the
maximum and minimum genus, combinatorial descriptions of embeddings,
and partial orders.

2.1 Basic Terms

A graph G is a finite collection of vertices and edges. Fach edge has two
vertices as ends. An edge with both endpoints the same is called a loop.
Two edges with the same pair of endpoints are parallel. In some applications
it is common to require that graphs are simple, that is, have no loops or
parallel edges. In topological graph theory it is common to allow both.
Each graph G corresponds to a topological space called the geometric
realization. In this space the vertices are distinct points and the edges are
subspaces homeomorphic to [0, 1] joining their ends. Two edges meet only at
their common endpoints. An embedding of G into some topological space X
is a homeomorphism between the geometric realization of (G and a subspace
of X. For convenience, we freely confuse a vertex in the graph, the point in
its geometric realization, and the corresponding point when embedded in X.
Where should we embed a graph? Perhaps the most natural space to
consider is the real plane R%. A graph embedded in the plane, G C R?, is
called a plane graph; a graph admitting such an embedding is planar. In a



connected plane graph each component of R€ — G is homeomorphic to an
open 2-cell. However, as shown by an embedding of the graph with a single
vertex and two loops in the plane, it may be that the closure of this open
2-cell is not a closed disk. Instead, there may be repeated points along the
boundary.

2.2 Surfaces

As we will show, not every graph embeds in the plane. How then can we
picture it? Keeping the space locally planar, we can try to embed graphs
in surfaces; that is, compact Hausdort topological spaces which are locally
homeomorphic to R?. There are two ways to construct such surfaces: take
a sphere and attach n handles, or take a sphere and attach m crosscaps. We
denote these surfaces by S, and S,, respectively. By a theorem of Brahana
[59] any surface falls in one of these two infinite classes (see [103] for details).
In particular, the surface obtained by adding in n handles and m crosscaps
(m > 1) is homeomorphic to §2n+m- A surface S, is orientable, that is, it is
possible to assign a local sense of clockwise and anticlockwise so that along
any path between any two points in the surface the local sense is consistent.
However, S,, is nonorientable, a consistent assignment of sense is impossible.

It is easily shown that any graph embeds in some surface: draw it in
the plane with crossings and use a handle to “jump over” each crossing.
We wish the graph to carry a reasonable amount of information about the
surface in which it’s embedded. In particular, if the surface has a handle or
crosscap, then we want the graph to use that feature. For example, a single
loop embedded in a small local neighborhood of a point in a torus does not
use the handle. An embedding is cellular if each component of X — G (i.e.,
each face) is homeomorphic to an open 2-cell. In a cellular embedding any
curve in the surface is homotopic to a walk in the graph. Note that only
connected graphs have cellular embeddings. Henceforth we declare that all
graphs are connected and all embeddings are cellular. If an embedding has
the additional property that the closure of each face is homeomorphic to a
closed disk, then the embedding is circular or closed 2-cell (CTC).

Given an embedded primal graph there is a natural way to form an em-
bedded geometric dual graph. We place a vertex of the dual in the interior of
each face of the primal embedding. Whenever two faces of the primal share a
common edge, add an edge of the dual from the middle of one face, through



the middle of the common edge, to the middle of the other face. This dual is
embedded in the surface in a natural manner. The duality operator swaps the
0-dimensional points with the 2-dimensional faces, leaving the 1-dimensional
edges fixed. Observe that the dual of the dual is the (embedded) primal
graph.

A cycle C' in a surface S may be contractible, that is, homotopic to a
point. A noncontractible cycle is called essential. An essential cycle may
still be separating, that is, S — C' may be disconnected. Noncontractible
separating cycles are homologically but not homotopically null.

2.3 The Euler Characteristic

Let G be a graph (cellularly) embedded in a surface S. Suppose that #V is
the number of vertices of G, #F is the number of edges, and # F' is the num-
ber of faces in the embedding. The Fuler Characteristic of the embedding is
X(G) = #V —#E+#F. It is well known [150] that the Euler Characteristic
of the embedding depends only on the surface and not on the embedding.
It the surface is the sphere with n handles attached, then the Euler Char-
acteristic is 2 — 2n, and if it is the sphere with m crosscaps, then the Euler
Characteristic is 2—m. We call the quantity v = 2— y the Fuler genus of the
surface. This parameter has also been called the generalized genus and the
complexity of the surface. Each handle contributes two to the Euler genus
and each crosscap contributes one.

Euler’s formula can be used in combination with other inequalities to
derive some interesting bounds. We begin with the observation that an
embedding of a connected graph which is not a tree has the length of each
face bounded below by the girth ¢g. Since the sum of the face lengths is 2# F,
this gives g# F < 2#F. In combination with Euler’s formula this gives:

#E < (#V+7-2)g/(9 —2).

Roughly speaking, for girth ¢ = 3 and fixed #V/, each crosscap (increasing
7 by one) can carry up to three edges and each handle (increasing ¥ by two)
can carry six edges. When ¢ = 4 these numbers drop to two edges and four
edges respectively.

Inequalities of this type are used to show the nonexistence of embeddings.
For example, suppose by way of contradiction that K5 has a planar embed-
ding. Using Euler genus ¥ = 0 for the sphere, and girth ¢ = 3, #V = 5,
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and #FE = 10 for K5, we violate the preceding inequality. This contradiction
shows no such planar embedding exists. A similar argument works for K ;.

2.4 The Maximum and Minimum Genus

A graph can have many possible embeddings on many different surfaces.
Naturally, the extremal embeddings are of interest. Define the (minimal
orientable) genus of G, (), to be the smallest n such that G embeds
on the sphere with n handles. Likewise define the nonorientable genus,
(@), as the smallest m such that G embeds on the sphere with m cross-
caps. We consider a planar graph to be of nonorientable genus zero, al-
though some authors say it is of nonorientable genus one. The Fuler genus
Y(G) = min{2v(G),3(G)}. Define the mazimum genus, yap(G), the maxi-
mum nonorientable genus, Y (G), and the mazimum Fuler genus, yp(G),
in a similar manner.

The maximum and minimum genus completely determine the orientable
surfaces on which a connected graph cellularly embeds. This follows from
the interpolation theorem of Duke [79], which states that if a graph embeds
on a sphere with n handles and on one with m handles, then it embeds on
all intermediate surfaces. The proof uses the concept of rotations (defined in
the following section) and the observation that moving a single edge end to a
different location in a rotation changes the genus of the resulting embedding
by at most one. A similar interpolation theorem for nonorientable surfaces
is due to Stahl [214].

Bounds on these maximum and minimum orientable and nonorientable
genus are given in the following lemma.

Lemma 2.1 Let G be a graph with #V wvertices, #FE edges, and girth g.
Then:

(9 =2)#E/(29) = #V/2+1 <A(G) < yu(G) < (FE - #V +1)/2,

(g —2)#E/g—#V +2 <H(G) < Au(G) = #E —#V +1, and
V(G)<27(G)‘|‘1

The two lower bounds are proved using Euler’s formula with an upper
bound on the number of faces, similar to the argument that K5 is nonplanar.



The two upper bounds are also proved using Euler’s formula and a lower
bound of one face. Note that in the orientable case the number of faces is
determined by the graph up to parity, so that the lower bound is either one
or two faces. Finally, note that in the nonorientable case there is always an
embedding with just a single face (I usually cite [214], but I have also heard
the result credited to Edmonds). We examine the maximum genus parameter
more closely in Section 4.2.

The third inequality shows that the nonorientable genus cannot be too
large compared to the orientable genus. However, conversely, there are graphs
of nonorientable genus one and orientable genus n [22], so there is no such
bound in the other direction.

Graphs in which equality holds in the third equation are called orientably
simple. For example, K7 embeds in the torus but not in Klein’s bottle and
so is orientably simple. To the author’s knowledge, there is no detailed study
of orientably simple graphs.

2.5 Combinatorial Descriptions of Embeddings

We need a convenient combinatorial way to describe an embedding. It is
easiest to begin with an orientable surface. The following was implicit in the
work of Heffter [112] with Edmonds [80] and Youngs [264] usually credited
with being the first to (respectively) dualize and formalize the process.

Fix a consistent orientation at each point on the surface, say anticlock-
wise. By looking at the a neighborhood of a point, this orientation determines
a cyclic permutation of the edges with ends at a vertex v, or more precisely in
the case of loops, of the edge ends at v. We call such a cyclic permutation a
local rotation at v. A rotation on a graph (G is a collection of local rotations,
one at each vertex. (Some authors prefer the term rotation scheme.) As we
have shown, an oriented embedding determines a rotation.

Conversely, suppose that we are given a rotation. We will show how
to construct an embedding into an orientable surtface which determines this
particular rotation. First use the rotation to trace out the facial walks. An
arc is defined by fixing one of the two possible directions on an edge in a
graph. Begin by walking along an arc in a graph with a rotation. Upon
reaching the other end of the arc at the vertex v, the local rotation at v
leads us to another edge end. Continue the walk along the arc on that edge
rooted at v. Proceeding in this manner trace out a walk in the graph. This
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Figure 1: A rotation embedding K5 in the torus

walk traverses each directed edge at most once and is independent of the
starting arc. Doing this for each possible arc, determine a set F' of walks
which traverse each arc exactly once. Next, for each f € F' of length n, take
a convex n-gon together with its interior in the plane and label the sides
as in the walk of length n. This will serve as one face in the embedding.
Finally, glue the # F' polygons together using the labeling determined by the
graph. The result is a surface, since each edge lies in two walks, and around a
vertex the polygons line up in the cyclic ordering given by the local rotation.
Moreover, this surface is orientable, and so is homeomorphic to some 9.

We illustrate this with an example. Let K5 be the complete graph on
the vertex set the integers modulo five. Around vertex 0 we label the edges
1,2,3,4 depending on their other endpoint. The local rotation at vertex 0 is
(2,4,3,1). The local rotations at vertices 1,2,3, and 4 are given in Figure
1. Tracing the faces of this embedding yields five quadrilaterals (the cyclic
symmetry helps simplify the calculation). These fit together to form a torus
as shown in Figure 1. In this figure the top of the rectangle is identified with
the bottom and the left with the right to recover the torus.

There are two possible ways to consistently orient a surface: clockwise
and anticlockwise. Each graph embedded on the surface will lead to exactly
two different rotations depending on the sense of the local rotations. That
is, the rotations are in 1-1 correspondence with embeddings of the graph into



oriented surfaces, and in 2-1 correspondence with embeddings into orientable
surfaces. There are exactly ey (dege(v)—1)! rotations, so this is the number
of different cellular embeddings of G into oriented surfaces.

How do we describe a nonorientable embedding? We use a combinatorial
structure called a signed rotation. This consists of a rotation and a signature,
an assignment of a plus or minus on each edge.

We first describe how to get a signed rotation from an embedded graph.
Let G be embedded on a (possibly nonorientable) surface. Fix a local ori-
entation at each vertex. If the surface is nonorientable this cannot be done
consistently. As before, this local orientation determines a local rotation at
each vertex. To get the signature label an edge with a plus if the two ori-
entations at the ends agree, and label it with a minus if they disagree. This
gives a signed rotation.

Conversely, we can take a signed rotation and construct an embedding.
As before, we use the signed rotation to first trace out the facial walks. This
time we keep track of the current state of a walk, either plus or minus. We
start out at one end of an edge in a plus state. We walk along that edge. If
the edge is plus, we keep the current state; if it is minus, we toggle the current
state. When we reach the other end, if our current state is plus we use the
local rotation; if our current state is minus we use the inverse of the local
rotation. We continue this way until we return to the same edge-end in the
same state. This algorithm traces out walks which contain every edge exactly
twice. The toggling between states when we traverse along a negative edge
corresponds to the fact that the local rotations disagree at the ends. Instead
of using the local sense we last used, we must use the opposite sense. Once
we have traced the facial walks we identify them with the edge of n-gons as
before and use the labelings to reconstruct the surface.

We illustrate this procedure with an example embedding K4 in the pro-
jective plane. We take as the vertices of K4 the integers modulo 4, again
identifying the edges incident with a vertex by their other endpoint. The
local rotation at 0 is (1,2, 3); the other local rotations are given in Figure 2.
The edges signed minus are 02 and 13. The resulting embedding is depicted
in Figure 2. There the projective plane is recovered by identifying each point
x on the boundary circle with its antipodal point —zx.

Two different signed rotations may lead to the same embedding. For
example, we can switch the local rotation p, to the inverse p;!' while si-
multaneously toggling the sign on each edge incident with v. The resulting
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Figure 2: A signed rotation embedding K, in the projective plane

signed rotation is different, but the embedding described is the same. We
call this a local switch of sense. Any two signed rotations leading to the
same nonorientable embedding are related by a sequence of local switches
of sense. Hence, any embedding can be described by 2#V different signed
rotations. Counting the number of signed rotations, it follows that there are
2#FE=#VIL v (deg(v) — 1)! different cellular embeddings of (& into surfaces.

Knowing the total number of embeddings and the number of orientable
embeddings, we can calculate the number of nonorientable embeddings. These
counts reveal that “most” embeddings are in nonorientable surfaces. An em-
bedding described by a signed rotation is in an orientable surface if and only
if it is equivalent under a sequence of local switches to a signed embedding in
which each edge is positive. As this is unlikely, it confirms that the number
of nonorientable embeddings exceed orientable ones.

2.6 Partial Orders on Graphs and Embeddings

In many cases it is convenient to place a partial order on the set of graphs
or embedded graphs. We mention four such orders in particular.

The first is the subgraph ordering H C G. Observe that if G embeds
in a surface the H does as well, although the latter embedding may not be
cellular.

The second ordering is the topological ordering. A graph H is an ele-
mentary subdivision of GG if it is formed from G by deleting an edge uv and



replacing it with a path wwv where w is not a vertex of . In this case we say
that G is formed from H by supressing the degree two vertex w. Two graphs
H and G are homeomorphic if they are related by a sequence of elementary
subdivisions and supressing degree two vertices. The name arises because G
and H are homeomorphic as graphs if and only if they are homeomorphic
as topological spaces. It follows that embedding properties are determined
by the homeomorphism class of a graph. The topological order is defined by
H < G it and only if H is homeomorphic to a subgraph of G. Again, it G
embeds in a surface then so does any H < (&, but the latter embedding may
not be cellular.

The third order is the minor order. The elementary operations defining
H < G are of three types. The first is the deletion of isolated vertices in (.
The second is the deletion of edges, H = G \ e. The third is the contraction
of an edge ¢, H = (G/e, defined by first deleting e and then identifying its
endpoints. If H can be formed from G by a sequence of these operations,
then H is a minor of . The edge deletion and edge contraction (of a non-
loop) can be done in a host surface (where by convention contracting an
essential loop is equivalent to deleting it), so that if GG embeds in a surface,
then so does any minor H. Note that for embedded graphs edge contraction
and edge deletion are dual operations, that is, contracting an edge in the
primal graph corresponds to deleting the corresponding edge in the dual
graph. Equivalently, deleting a primal edge corresponds to contracting the
dual edge.

The fourth ordering includes the three minor operations and the YA op-
eration. In this operation a degree 3 vertex w adjacent in G with vertices
x,y,z is deleted and edges zy,yz, zx are added. As with the minor opera-
tions, the YA operation can be done to a graph embedded in the surface.
Hence it ¢ embeds on a surface and H < G, then H also embeds on that
surface.

We close by mentioning that occasionally one considers the AY operation
(the inverse to YA) and the class of graphs equivalent under YA and AY
operations. Finally, a slight extension of the last partial order involves first
subdividing an edge joining two degree 3 vertices, then performing a YA
operation on each of the vertices. (The resulting subgraph looks like a “bow-

tie” [(5 — 04)
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3 Map Colorings

In 1852 Francis Guthrie was coloring a map of England. Each region was
to get a color and when two regions shared a boundary line they were to
be colored differently. In a flash of insight he asked what was the fewest
number of colors needed, not just for this map, but for any map [156]. He
conjectured that four colors suffice, but a (correct) proof of this four-color
conjecture was many years coming. In this section we examine such map
colorings and related problems.

A map is an embedded graph. A coloring of the map is an assignment
of colors to the faces. The coloring is proper if whenever two faces share a
common edge they receive different colors. Colorings herein will be proper
unless otherwise stated. A map has a proper coloring if and only if each edge
lies on the boundary of two distinct faces. A coloring of a map is equivalent
to a vertex coloring of its dual, that is, assigning a color to each vertex so
that adjacent vertices receive distinct colors.

3.1 Planar Graphs

Kainen and Saaty [203] write “One of the many surprising aspects of the
four-color-conjecture is that a number of the most important contributions
to the subject were originally made with the belief that they were solutions.”
One of the first of these was by Kempe [130] who introduced the recoloring
methods now known as Kempe chains. Heawood [110] pointed out the error
in Kempe’s argument, but was able to modify it to give a correct proof that
every planar graph was 5-colorable. Tait [227] introduced the relation with
edge-coloring cubic plane graphs. He too thought he had solved the 4-color
problem; his mistake was believing that every cubic graph was Hamiltonian.
Petersen [172] clarified the relation with edge-colorings and introduced his
famous graph (see [113]).

The Four-Color Theorem was proved by Appel and Haken [3, 4] in 1977.
The proof was at first controversial, in part because of the reliance on long
computer calculations. However, the result has been proven several times
independently, most recently by Robertson, Sanders, Seymour, and Thomas
[189]. All proofs to date rely on the same basic technique of finding an
unavoidable set of reducible configurations. We refer the reader to [203] for
a description of these methods.
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We explore the relation between face and edge colorings of plane graphs
first introduced by Tait [227]. A cubic graph is one which every vertex is
incident with exactly three edges. A Tait coloring of a cubic graph is a 3-
coloring of the edges such that at each vertex each color appears exactly
once.

It a planar graph is face 4-colored, then it can be edge 3-colored. This
can be seen by using the elements of the Klein 4-group Z, x Z; as face colors;
the edge coloring then assigns each edge the sum of the colors on either side.
The converse is also true: if a planar cubic graph can be Tait colored, then
it can be face-4-colored. So the claim that every (bridgeless) planar cubic
graph can be Tait colored is equivalent to the claim that every (loopless)
planar graph can be 4-colored.

The relationship with the four-color conjecture led to a search for cubic
graphs which could not be Tait colored. Since the graphs are bridgeless and
exactly three edges meet at each vertex, there do not exist four pairwise
adjacent edges. That is, there is no immediate obstacle to Tait colorings.
However, there are several other “trivial” reasons a graph cannot be Tait
colored. For example, a graph with a loop has no proper edge colorings.
Likewise, any graph with a cut-edge cannot be Tait colored. (To see this,
observe that the union of any two color classes in a Tait coloring forms a
subgraph which is regular of degree two. Hence every edge is in a cycle, and
the graph must be 2-edge-connected.)

In 1973 Martin Gardner [91] called nontrivial non Tait colorable graphs
snarks, after the mythical creature from a poem by Lewis Carroll [63]. By
nontrivial he meant that a snark must be cyclically 4-edge-connected and of
girth at least 5. The idea was to avoid graphs which were not Tait colorable
but which contained easy reductions to smaller non Tait colorable graphs.
We refer the reader to Swart [64] and to Issacs [118] for interesting discussions
about what constitutes a trivial (or petty) snark and should be exiled.

The most famous snark is the Petersen graph [172], discovered in 1891.
It was over fifty years later before another example was found. In 1946
Danilo Blanusa found [40] a non Tait colorable graph on 18 vertices (the
same techniques lead to a second such graph of the same order). In 1948
Blanche Descartes found [78] an example on 210 vertices. It was not until
1973 that a fourth example was found by Szekeres [226]. At this time several
powerful construction techniques were developed by Issacs [118], yielding two
infinite classes of snarks. One of these classes, the flower snarks, had been
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discovered independently three years earlier by Grinberg in some unpublished
work. Recently, Brinkman (personal communication) has found all snarks on
28 or fewer vertices. For other recent results see [14, 62].

Four colors suffice to vertex color any planar graph, but only if they are
the same four colors available at each vertex! Suppose that we have a list of
colors available at each vertex, but the lists may be different. A list coloring
assigns each vertex one of the colors in its list; as usual, adjacent vertices
receive different colors. At first glance this should be easier than standard
colorings where all of the lists are the same. After all, if the lists on the ends
of an edge are different, then it is more likely that the colors on the ends are
distinct. Define the list chromatic number of G, x;(G) as the smallest & such
that every assignment of lists of size k to the vertices has a list coloring. The
list chromatic number of the plane is the maximum y;(G) over all planar G.

Theorem 3.1 The list chromatic number of the plane is five.

Thomassen [236] shows sufficiency with an elegant proof that every planar
graph is list 5-colorable. Voigt [251] gives an example of a planar graph and
a list assignment of four colors which can not be list colored.

Four colors suffice for planar graphs. When do three? We mention two
famous 3-color theorems. In 1898 Heawood [111] proved that a plane trian-
gulation is vertex 3-colorable if and only if every vertex was of even degree.
Grotzsch [104] proved that every triangle-free planar graph was vertex 3-
colorable. (My favorite proof of this theorem is due to Thomassen [237].)
Thomassen [241] gives a list version of Grotzsch’s Theorem. Krdl [139, 140]
noted that a plane graph is 3-colorable if and only if it is a subgraph of
an Fulerian triangulation. It would be interesting to find either a common
extension of or relationship between Heawood and Grotzsch’s theorems. No
good characterization is to be expected, since Garey, Johnson and Stock-
meyer [93] showed that in general the problem is NP-complete. We refer the
reader to Steinberg [222, 223] for a recent survey of this three color problem.

The 2-color problem is easy. A plane graph is 2-colorable if and only
if every face is bounded by a walk of even length [133, 134]. The 1-color
problem is not quite pointless, but it is edgeless.

Coloring the faces of a plane graph is equivalent to coloring the vertices
of the dual. What if we try to color the vertices and faces simultaneously?
Specifically, a coupled coloring of an embedded (i is a coloring of the vertices
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and faces so that adjacent or incident elements receive distinct colors. Ringel
[180] conjectured that every plane graph has a coupled 6-coloring. The the-
orem was first shown for cubic graphs [180] and then for triangle-free graphs
[7]. Borodin [46, 47, 48] proved the even stronger result that every graph
which embeds in the plane so that each edge crosses at most one other has
chromatic number at most six.

A total coloring of a graph colors vertices and edges so that adjacent
or incident elements receive distinct colors. The total chromatic number
X"(G) is the minimum number of colors needed. It is bounded below by
A + 1 where A is the maximum degree. Independently Behzad and Vizing
[39, 248] conjectured that for simple graphs it is bounded above by A 4 2.
This conjecture is known to be true for several classes of graphs. Various
general upper bounds are also known. We refer the reader to [123] for a
discussion of the known results. The conjecture is true for plane graphs
except for the cases A = 6,7. The low degree cases are due to Rosenfeld
[202] (A = 3) and Kostochka [136, 137, 138] (A = 4,5). These cases do not
use planarity. The high degree cases are due to Borodin [56] (A > 9) and
Andersen [2] (A = 8) and do use planarity.

An entire coloring of a plane graph colors the vertices, faces, and edges
simultaneously so that adjacent or incident elements receive distinct colors.
Kronk and Mitchem [141, 142] conjectured that the entire chromatic number
of a graph was equal to A +4, where A is the maximum degree. This is true
for plane cubic graphs (by M. Neuberger, as reported by Izbicki [119]), and
for plane graphs with A sufficiently large by Borodin [49, 50, 51, 52]. The
conjecture is still open for A = 4,5,6.

Along these lines we also mention Vizing’s Conjecture [249, 250] that
every planar graph with A > 6 can be properly edge-colored in A colors.
This conjecture is known to be true for A > 8. It is false if extended to
A < 5.

What if you color the faces of an embedded graph so that faces that
share a vertex or edge receive different colors? In the dual form this requires
a vertex coloring so that around each face no color is repeated. These are
called cyclic colorings by Ore and Plummer [170]. The bound depends on the
size of the largest face, A*. They showed that the cyclic chromatic number
was at most 2A*. This was improved to [9A*/5] by Borodin, Sanders, and
Zhao [57]. Plummer and Toft [173] proved that for 3-connected graphs the
cyclic chromatic number is at most A* 4 9. They also give a lower bound of
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|3A* /2| for the general problem.

Finally, we mention the problem of coloring the faces of a plane cubic map
so that around each edge each four (or fewer) faces receive distinct colors.
Bouchet, Fouquet, Jolivet, and Riviere [58] showed that this can always be
done in 12 colors. Borodin [53] improved the bound to 11; Sanders and Zhao
[205] further improved this to 10. The conjectured correct answer is 9 colors.

3.2 Maps on Other Surfaces

We turn our attention to coloring maps on surfaces. Define the chromatic
number of a surface as the maximum chromatic number of all graphs that
embed on that surface. The dual question is to ask for the minimum number
of colors needed to properly color the faces of every map on that surface. For
example, the plane has chromatic number four. The following Map Color
Theorem settled this question for all surfaces other than the plane.

Theorem 3.2 The chromatic number of Sy is (7 + /1 +48g)/2| for all
g > 1. The chromatic number of Sy, is [(7T+ 1+ 24h)/2] for all h # 0,2.

The chromatic number of Klein’s bottle is 6.

Surprisingly, this was proved before the 4-color theorem. Also surpris-
ingly, the easy part of the 4-color theorem is hard in the map color theorem,
but the hard part of the 4-color theorem is easy in the map color theorem.
We elaborate on these two halves of the proof in turn.

It is easy to show that 4 colors are needed for some planar maps; you only
need to draw K in the plane. In the map color theorem the required number
of colors is the largest n such that K, embeds on the surface. However,
the difficult part was to show that K, (or some other n-chromatic graph)
did in fact embed on the smallest surface allowed by Euler’s formula (with
the exception of K, in Klein’s bottle). That task, broken into 24 cases by
the residue of n modulo 12 and the orientablility or nonorientability of the
surface, was completed by Ringel and Youngs [186] in 1968 (see esp. [265] for
the nonorientable case). A nice account of the proof is given in Ringel [181].

Conversely, it is hard in the plane to prove that four colors suffice for all
maps. However, on other surfaces (except the projective plane) it is easy to
show that the conjectured number of colors n is sufficient. One need merely
use an FEuler characteristic argument to show that every graph on the surface
has a vertex of degree at most n — 1 and use induction.
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There are variations of coloring graphs in surfaces similar to those men-
tioned for the plane. These include improper colorings [74] (where the num-
ber of adjacent vertices of the same color is bounded), generalizations of
Grotzch’s theorem [237, 86] (coloring triangle-free graphs), simultaneously
coloring vertices and faces [182, 135], and acyclic colorings [54, 55] (where
any two color classes induce a forest).

We define the list chromatic number of a surface analogously to the list
chromatic number of the plane. Archdeacon and Siran (unpublished work)
have shown that for any surface other than the plane, the list chromatic
number is equal to the chromatic number.

The relationship between edge colorings and face colorings is not as clear
in other surfaces as in the plane. Nevertheless, we mention an intriguing
conjecture due to Griinbaum [105]. This conjecture states that every simple
graph that triangulates an orientable surface has an edge coloring such that
each color appears (necessarily exactly once) around each triangle. In the
dual form, this states that if a cubic graph (the dual of triangulation) is
embedded on an orientable surface such that any two faces share at most a
single edge (the dual of simple), then the graph can be Tait colored. This
conjecture is strictly stronger than the 4-color theorem, because any planar
graph can be placed in a single face of a triangulation of a surface, and the
coloring of that triangulation induces a coloring of the planar part as well.
It is equivalent to asserting that any orientable embedding of a non-Tait
colorable graph must have two faces sharing more than one edge. Note that
the orientable condition is necessary as evidenced by Kg on the projective
plane. This embedded graph has dual the Petersen graph which is not Tait
colorable, hence K¢ does not have the desired coloring.

Although maps on other surfaces may have large chromatic number, it is
the case that if the embedding is locally planar for large neighborhoods of a
vertex, then the chromatic number can be bounded. We investigate this in
Section 6.

We close with the wonderful quote from Tutte [245], “The Four-Colour
Theorem is the tip of the iceberg, the thin end of the wedge and the first
cuckoo of spring.”
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4 Classical Results

In this section we state some of the classical results of topological graph
theory. As noted previously, the most natural space for depicting graphs
is the plane. In Section 4.1 we state some theorems characterizing planar
graphs. Section 4.2 gives theorems relating to the maximum and minimum
genus of graphs. Section 4.3 studies graphs which embed on a fixed surface.

4.1 Characterizing Planar Graphs

An important early question is to characterize those graphs which embed
on the plane. One such characterization was given by Kuratowski [145] in
1930. The same theorem was proven independently and roughly concurrently
by Frink and Smith [87], who never published their paper after hearing of
Kuratowski’s proof. This theorem is very important, and is the most cited
research paper in graph theory [37].

Theorem 4.1 A graph is planar if and only if it does not contain a subgraph
homeomorphic to K5 or to Ks3.

We earlier proved that the two graphs in question were not planar, from
which it follows that any graph containing a topological copy of these graphs
is nonplanar. The beauty of the theorem lies in the proof that these are the
only two topologically minimal nonplanar graphs.

The theorem can be rephrased slightly using the minor ordering, where
it was first stated by Wagner [253].

Theorem 4.2 A graph is planar if and only if it does not contain Ky or
K33 as a minor.

To state the next theorem we need some algebraic terminology. In this
context a cycle in a graph is a set of edges which are incident with each
vertex an even number of times. Equivalently, it is a subgraph in which each
component is Eulerian. A cocycle is a minimal edge-cut in the graph. Note
that each cycle intersects each cocycle in an even number of edges. Consider
subsets of edges as vectors over the integers modulo two where addition is
defined as the symmetric difference of sets. Then the collection of cycles is
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a subspace Z((), as is the collection of cocycles B((7). These subspaces are
orthogonal.

A graph G* is an algebraic dual of a graph G if there is a function ¢ :
E(G) — E(G™) such that C is a cycle of G if and only if ¢(C) is a cocycle
of G*. The following is due to Whitney [258, 259].

Theorem 4.3 A graph is planar if and only if it has an algebraic dual.

In fact, if G and G™ are algebraic duals, then there exists an plane em-
bedding of G so that G* is the geometric dual.

Let GG be a 2-connected plane graph with face set F'. Each face boundary
is a simple closed walk whose edges form a cycle. The collection of any #F —1
of these cycles forms a basis for the cycle space. Moreover, no edge appears
in more than two members of this collection. MacLanes Theorem [152] gives
the converse.

Theorem 4.4 A graph is planar if and only if there is a collection of cycles
which generate the cycle space together with one additional cycle such that
every edge is in exactly two of these cycles.

Other authors [13, 151] have given similar algebraic characterizations of
planar graphs.

4.2 The Genera of Important Graphs

Recall that the hard part of the Map Color theorem was establishing the min-
imum orientable and nonorientable genus of the complete graph K,,. Lower
bounds on these genera are given by Fuler’s formula. However, construct-
ing embeddings achieving these bounds can be difficult. Similarly, what
are the minimum genera of complete bipartite graphs, regular complete tri-
partite or quadripartite graphs, the cubes (),, and the general octahedra
K2y = Ky, — nK,? The answers are given in the following table.
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Graph ol ol Comments
K, [(n—=3)n—4)/12] [(n—=3)(n—4)/6] n>3,3(K;)=3
Kom [(n=2)m—=2)/4] [(n—=2)(m—2)/2] n,m>2

Kinn (n—1)(n—2)/2 77
Qn (n—4)2" % +1 (n —4)2""% 42 n>6
K2 (n—=3)(n—1)/2 77 n#2 (mod 3)

The results for K, form the Map Color Theorem [186, 181, 264]. The
orientable and nonorientable genus of complete bipartite graphs were found
by Ringel [183, 184]. The orientable genus of complete regular tripartite
graphs was found by Ringel and Youngs [187] and by White [256]; for a
particularly nice proof see Stahl and White [221]. The orientable genus of
regular quadripartite graphs is due to Garmen [94] and Jungerman [125] (the
special case Ky is due to White [255]). The orientable genus of the cube has
been found by several authors [185, 33, 100]. The nonorientable genus is due
to Jungerman [126]. For low dimensional cubes we note that the formula
for the orientable genus holds for n > 2 while %(Q4) = 3 and (Qs) =
11. The genus of the octahedron is found in [95, 99, 127]. Three of these
table entries are question marks. To the author’s knowledge these values
are unknown, although my literature search may have been incomplete. The
genera undoubtedly equal the lower bound given by Euler’s formula except
possible for some small values of n.

It a graph breaks into pieces along a small set of vertices, then it might
be possible to relate the genus of the graph with the genus of the pieces. The
first theorem along these lines is due to Battle, Harary, Kodama and Youngs

[31].
Theorem 4.5 The genus of a graph is the sum of the genus of its blocks.

The Euler genus is also additive over the blocks of the graph. The nonori-
entable genus is not additive; counterexamples are the one-point union of
two orientably simple graphs. Stahl and Beineke [220] show that the nonori-
entable genus of the one-point union of two graphs differs from the sum of
their nonorientable genera by at most one.

The orientable, nonorientable, and Euler genus are all nearly additive
over 2-point unions [76, 8], that is, the genus of a 2-point union differs from
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the sum of the genera of the components by at most a constant. However,
these parameters behave quite differently when amalgamating over three or
more vertices. Archdeacon has shown [8] that the nonorientable and Euler
genus are both almost additive over k-point unions (the constant depends on
k), but there exist [9] graphs G, and G/, and a 3-point union G,, U ¢/, such
that 1(Gy U G) — 1(Gr) — 4(Gh) = n.

The maximum genus of a graph turn out to be an easier parameter to
calculate than the minimum genus. We begin with the maximum orientable
genus. A large genus surface has a small number of faces. A graph is upper
embeddable if it has an embedding with 1 or 2 faces (the parity is deter-
mined by the graph’s Betti number). This embedding necessarily achieves
the maximal genus. Xuong [262] gave a remarkable theorem determining the
maximum genus of a graph. To state the theorem, let C,(H) denote the
number of components of H with an odd number of edges.

Theorem 4.6 Let T be the set of all spanning trees of a graph G'. Then
w(G) = maxper|(#FE —#V +1-C,(G=T))/2].

The constructive portion of Xuong’s Theorem is especially nice. A V is
a pair of edges with a common endpoint. Xuong shows that if G —V has an
embedding with either one or two faces, then so does G. The construction
of the desired maximal embedding proceeds by first embedding a spanning
T" achieving the above maximum with a single face, then successively adding
as many V’s as possible creating a upper embedded subgraph, and finally
adding in the remaining C,(G — T') edges each increasing #F' by one.

Xuong’s theorem implies that if a graph has two disjoint spanning trees,
then it is upper embeddable. By a result of Kundu [144], any 4-edge-
connected graph has two disjoint spanning trees. Hence any 4-edge-connected
graph is upper embeddable. These include the complete multipartite graphs
and cubes listed in the table for minimum genus.

Xuong’s theorem gives an easily applied certificate to verify that a large
genus embedding exists. The following theorem of Nebesky’s [165] gives
an easily applied certificate to verify that no embedding exists in a higher
surface. These two theorems are very powerful used in concert. Let ¢(H)
denote the number of components of a graph H and let o(H) denote the
number of components with odd Betti number.

20



Theorem 4.7 The minimum number of faces in an embedding of G is

Argl&)((;){c(G —A)+o(G—A)—#A}.

The maximum nonorientable genus is very easy to calculate. Every graph
has an embedding into a nonorientable surface with just a single face! This
theorem was first noted by Edmonds [81]. Stahl [214] gave a proof which
includes the nonorientable version of Duke’s interpolation theorem. Geomet-
rically, begin with a minimum genus embedding of G with two or more faces.
Find an edge e lying on two distinct faces. Sew a crosscap in the surface in
the middle of this edge. Then the resulting embedding has one fewer face.
Continue in this way until only one face remains.

The maximum orientable genus is not additive over k-connected com-
ponents, but it is nearly additive. The maximum nonorientable genus is
additive over all unions.

One topic of interest is to find the smallest possible value for the maximum
genus of graphs in a certain class. For example, the maximum genus of G is
at least 3((G)/4 for simplicial graphs [70] and this bound is tight. Chen has
shown that 5((G)/3 is a tight lower bound for 3-connected graphs [66] and
for simplicial 2-connected graphs [129]. Chen, Archdeacon, and Gross give
tight lower bounds for k-connected and for k-edge-connected graphs [67].

We close our discussion on the minimum and maximum genus of a graph
with the computational aspects.

Theorem 4.8 Determining the minimum orientable genus of a graph is NP-
complete (Thomassen [230]). There is a polynomial-time algorithm to find
the mazimum orientable genus of a graph (Furst, Gross and McGeoch [88]).

The techniques of [230] extend easily to show that determining the mini-
mum nonorientable genus is also NP-complete. Since every graph embeds in
a nonorientable surface with a single face, determining the maximum nonori-
entable genus is trivial. Similarly, the determining the minimum Euler genus
is NP-complete while the maximum is trivial.

4.3 Graphs on a Fixed Surface

To date we have focused on the graph used in the embedding; namely, given
a graph, what surfaces does that graph embed in? We now ask a similar
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question focusing on the surface: given a surface, what graphs embed on
that surface? The first such characterization of this type was Kuratowski’s
Theorem (and the closely related Wagner’s theorem). These characterize
planarity by excluding topological subgraphs (or minors). Various sources
cite Konig and Erdos for the origin of the conjecture that there are similar
theorems for other surfaces. Specifically, that for each surface S there exists
a finite set I(.5) whose topological (or minor) exclusion characterizes embed-
ding in S. Graphs in [(5) are called irreducible since they do not embed in
the surface but any proper subgraph (or minor) does embed.

The first result for a surface other than the plane is due to Archdeacon

[5, 6].

Theorem 4.9 There are exactly 103 graphs topological irreducible graphs for
the projective plane.

The graphs were originally found by Glover, Huneke, and Wang [77] (Neil
Robertson found the 103"¢ graph). Archdeacon proved that the list was com-
plete. Vollmerhaus [252] independently verified this completeness, unaware
of Archdeacon’s work. These 103 topological graphs correspond to a set of
35 excluded minors. This is implicit in [5] and first stated explicitly in [153].

The projective plane is the only other surface for which a complete list
of irreducible graphs is known. The author has performed calculations giv-
ing hope that a complete list for the torus may be assembled using suitable
computer programs. Phil Huneke estimates that there may be 10,000 topo-
logically irreducible graphs.

The Erdos-Konig finiteness conjecture has been solved in the affirmative
for all other surfaces.

Theorem 4.10 For each surface there is a finite list of excluded topological
subgraphs which characterize embeddability on that surface. Similarly, there
is a finite list of excluded minors.

Several teams of researchers worked independently to establish this result.
Archdeacon and Huneke [18] proved the result for nonorientable surfaces.
They also proved a similar result for graphs which are minimal with respect
to Fuler genus. Their proof was constructive, providing a method in theory
at least for finding the graphs. Bodendiek and Wagner gave a similar result
for orientable surfaces. Their proof was assembled in [42].
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Robertson and Seymour approached the problem entirely differently, ex-
amining a conjecture by Wagner that any infinite set of graphs contains one
which is a minor of another. This much stronger conjecture implies the
Erdos-Konig conjecture since no two irreducible graphs are comparable. In
[194] they gave a proof of this for graphs of bounded genus, which implies
both the orientable and nonorientable cases. They have since given a proof of
Wagner’s conjecture in general [196]. Their proofs are nonconstructive, but
apply in much broader scope and have many other important applications.
We briefly survey their results in Section 7.

We close by noting the plausible conjecture by Glover and independently
by Vollmerhaus (personal communications) that any graph which is irre-
ducible for a surface has every edge in a topological K5 or K3 3. This conjec-
ture was disproved by Brunet, Richter, and Sirai [61] with a clever toroidal
example. It is true however, for nonorientable surtaces and for 3-connected
graphs.

5 Variations on the Theme

In this section we examine some variations on the classical theories mentioned
above. We begin with restricting our attention to the plane, but allowing
edges to cross one another. We then examine other planarity restrictions.
Next we describe ways of embedding graphs in which some of the information,
either parts of the local rotation or the signature, have been pre-ordained.
Finally, we consider pseudosurfaces.

5.1 Drawings in the Plane

Suppose that we want to depict K5 in the plane. We cannot do it without
edge crossings, but we can do it if we allow edges to cross. A drawing is like
an embedding of the geometric graph in the surface, except that we do not
require the function to be 1-1. We put the following restrictions on crossings
in our drawings. First, all of the vertices must be distinct points. Second,
the interior of an edge may not pass through any vertex point. Third, any
two edges share at most a finite number of points in common.

With these restrictions we can depict any graph in the plane (for example,
place the vertices of K,, on the vertices of a convex n-gon and connect them

23



P N ED)

Figure 3: Modifying drawings to reduce crossings

in pairs with straight line segments). However, we have the “cost” of having
edge crossings. A frugal mathematician will try to find a drawing of a graph G
with the minimal number of crossings. This parameter is called the crossing
number of GG, denoted er(G).

We make several elementary observations about crossings. First, when
two edges meet at a point they should cross instead of meeting tangentially.
When they meet tangentially, then the drawing can be modified in a local
manner to reduce the total number of crossings. Secondly, no pair of edges
with a common endpoint cross. For if this occurs, then the drawing can be
modified to remove that crossing and hence decrease the number of crossings.
Thirdly, no pair of edges can meet in more than one point. Again, if this
occurs there is a similar drawing with fewer crossings. A drawing satisfying
these restrictions is called good. The modifications transforming any drawing
into a good drawing are illustrated in Figure 3. A drawing with the minimum
number of crossings is necessarily good. Henceforth all drawings will be good
unless otherwise specified.

The minimum number of crossings in a drawing of G where all edges
are straight line segments is called the rectilinear crossing numbers cr(G).
Clearly er(G) < ¢r((G). Equality need not hold in general.

What is known about the crossing numbers of various classes of graphs?
Not much. In fact, the crossing number of the complete graph K, is unknown
in general, as is the crossing number of K, ,,. Another class of interest is
the product of cycles €, x C,,. Known values are summarized in the table

below.
Graph er(G) cr(G) Comments
Ko BT Zalk) ns3)
Kom <3515 ] 2 a(Bam) or=a?
C,, xC, < n(m—2) <nim-—2) m<n




We note that er(K,) = er(K,) only for n < 7 and n = 9. In all other
cases strict inequality holds.

Most of the bounds given are upper bounds. These are in general demon-
strated by exhibiting specific drawings with these number of crossings. Much
more difficult is the problem of demonstrating lower bounds, of stating that
every drawing must have a particular number of crossings. The bound on
er(K,) is known to be exact for n < 12 (see, e.g., [106]). The bound on
er(Kp,m) is exact for n < 6 [132] and for n = 7, m < 10 [260]. The bound
on er(Cy x Cp,) is exact for n = 3 [109, 175, 178], for n = 4 [82, 35], and for
n =5 [175, 224]. In each case the first reference (or two) gives the proof for
m = n, while the last reference uses an induction argument to extend this
for general m. Note that K is the smallest complete graph for which the
rectilinear crossing number is not known.

The problem of finding the crossing number of K, ,, is sometimes known
as Turan’s brickyard problem. The idea is that each of n kilns is connected
to each of m shipping centers by rail tracks. The carts used to transport
the bricks from kiln to shipping center are likely to derail where rails cross.
Hence it is convenient to minimize the number of crossings.

Can anything be said about the crossing number of complete or complete
bipartite graphs? In each case, the bound above is conjectured to be exact.
Perhaps some partial progress could be made by proving that the bounds
were asymptotically exact, that is, by proving e.g. limer(K,)/n* = 1/64.
In an optimal drawing of K,, each of the n induced K,_; subgraphs occurs
with at least er(K,_1) crossings. Accounting for multiplicities, this shows
that er(K,)/n* is increasing and so this limit exists. The best known bound
currently is due to Kleitman [132] who shows that the limit is at least 3/240.
For K, ,, the conjectured equality shows that lim cr(HK,,)/n* should be 1/64.
If this limit holds, then so does the one for the complete graphs.

For the rectilinear crossing number, Jensen [122] has demonstrated an
upper bound on ¢r(K,)/n* that is asymptotically 7/432. He has since (pri-
vate communication) reduced this to 1/63. It is conjectured that the correct
value is also 1/64, in particular, that limer(K,)/er(K,) = 1. Finally, we
note that it is conjectured that the rectilinear crossing number equals the
crossing number for K, ,,

We turn our attention to the maximum number of crossings in a drawing
of G, ery(G). This maximum exists since our drawings are good, so the
number of crossings is bounded above by the number of pairs of nonadjacent
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edges. The maximum crossing number is easily calculated for complete and
complete bipartite graphs. In particular, cry(K,) = (”) (each induced K4
can have at most one crossing, and choosing the vertices on a circle achieves

4
this). Likewise, cry (K m) = (”) (m) (each induced Cy can have at most one

2)\ 2
crossing, and placing the vertex parts on two parallel lines achieves this).

The maximum rectilinear number appears not to have been widely studied
except for [261]. In general, this should be much less than the maximum
crossing number.

When can a graph have a drawing so that every pair of nonadjacent edges
cross? John Conway calls a graph thrackled if there exists such a drawing.
The curious word also refers to a tangle of fishing line, which such drawings
often resemble.

Conjecture 5.1 If a connected graph can be thrackled, then #FE < #V.

A connected graph with the same number of vertices as edges necessarily
has a single cycle. Such graphs are sometimes called unicycles.

Partial results towards the thrackle conjecture are sparse. As noted above,
the graph cannot have an induced Cy. Woodall [261] showed that any cycle of
length greater than 4 can be thrackled. Likewise, any tree can be thrackled.
It a graph can be thrackled, then so can its subgraphs. With some extra
work it can be shown that the thrackle conjecture reduces to showing that
the one-point union of two even cycles cannot be thrackled. It is known [225]
that if a graph can be thrackled, then #F < 2#V — 3.

A systematic study of the maximum crossing number erp(G') is hampered
by the fact that the parameter is not known to be monotone. That is, if H
is a subgraph of G, then is erpy(H) < erpy(G)? One would expect this to be
true. However, as shown in [179], a drawing of H does not always extend to
a drawing of (G, which negates the obvious way to proceed.

Various people have investigated the crossing number of other surfaces.
Kainen [128] worked out a lower bound using Fuler’s formula. Specifically,
a graph with girth ¢ on a surface of Euler genus v has crossing number at
least #F — (#V —7)g/(g — 2). Upper bounds for a few graphs [97, 107, 128]
are given by exhibiting drawings.

We close by noting that it would be interesting to find the total number
of non-isomorphic drawings of a graph. However, aside form some results of
Harbourth on small graphs (personal communication) not much is known in
this area.
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5.2 Thickness

Not every graph is planar. What is the smallest n such that G can be
written as the union of n subgraphs? This number is called the thickness
of G, denoted §(G). Onme application of the thickness is when the graph
represents a computer circuit to be laid out on a stack of circuit boards. The
thickness represents the number of boards needed.

A planar graph has the number of edges bounded by a function of the
number of vertices. This leads to the following Lemma.

Lemma 5.1 For a simple graph G, 0(G) > [#E/(3#V —6)]. Moreover, if
G is triangle-free, then (G) > [#E/(2#V — 4)].

Can this bound be achieved? Not in general. However, it is true for
several interesting classes of graphs. The known results are summarized in
the following table.

Graph Thickness Comments
K, [(n+7)/6] n#9,10

Kum [nm/(2n +2m —4)] see exceptions below
Qn In/4] +1 see [131]

Koz) [n/3]

The thickness of K, for n 4 (mod 6) was proven by Beineke and Harary
[32]. The remaining congruence class was shown independently by Alekseev
and Gonchakon [1] and by Vasak [246]. Some small individual cases were
done by hand, including n = 16 by Mayer [157].

The thickness of K, ,, is unknown in the case n < m, both are odd, and
there is an integer k with (n +5)/4 < k < (n — 3)/2 with m = |2k(n —
2)/(n — 2k)|. The smallest such case is K1929. Beineke, Harary, and Moon
[34] did the known cases.

The thickness of the octahedral graphs follows quickly from that of the
complete graphs [32].

Several authors have investigated thickness on other surfaces, that is,
partitioning the edge-set of graphs into subgraphs of a certain genus. We
refer the reader to [257] for a survey of these results.
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5.3 Book Embeddings

Books provide another drawing board on which to depict a graph. A page is
closed half-plane. A bookis a collection of pages identified along the boundary
of the half-planes. This common boundary is called the spine. How many
pages are needed to depict a graph?

Theorem 5.1 Any graph embeds in a book with three pages.

The following proof is due to Babai: draw the graph in the plane so that
all crossings involve only two edges and these crossings all lie on a common
line. This plane forms two pages of the book. Sew the third page along this
line. The crossings can easily be removed using this extra page.

A more common form of book embeddings is to require that the vertices
lie along the spine of the book and that edges lie entirely in one page. These
restrictions are useful in the applications to VLSI layouts, where the pages
can represent circuit boards, or queues used in scheduling tasks [171].

Define the page-number of a graph pn(() as the minimum number of
pages need to draw (& in this manner.

Since two pages form R?, one might guess that every planar graph has
page-number 2. However, if this were so, then one could always add edges
along the spine so that the given graph was a spanning subgraph of a Hamil-
tonian graph. This cannot always be done (although it is true for triangle-free
graphs). The best bound is due to Yannakakis [263] who showed that any
planar graph can be embedded in a book with 4 pages, and that 4 pages were
sometimes necessary.

The page-number of K, is [n/2]. The lower bound can be easily seen
since in any ordering of the vertices along the spine there is a set of [n/2]
edges which cross pairwise and hence must lie on different pages. The upper
bound is established by example.

The page-number of the complete bipartite graph is surprisingly a much
harder question and is still unknown. The best known bound [164] is pn( K, )
(20 + m)/A].

We refer the reader to the seminal works by Chung, Leighton, and Rosen-
berg [72] and Bernhart and Kainen [38] for further discussions on the subject.
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5.4 Relative Embeddings

As noted in Section 2.5 any embedding can be represented in terms of a
rotation scheme and a signature. In this section we examine embeddings in
which a portion of the rotation has been pre-ordained. We introduce this
topic with nonorientable embeddings.

Suppose that we are given a graph GG and edges ¢ = uv,b = vw. What
can we say about embeddings in which «a is adjacent to b in the local rotation
at u? To answer this question, create a related graph G’ by adding in a new
edge vw which lies alongside ¢ and b so that vuw is a face of the embedding.
Any embedding of Y where vuw is a face corresponds to an embedding of (¢
with @ adjacent to b in the local rotation. Thus the local rotation constraint
on (7 is equivalent to the fixed-face constraint on G’.

It we are given a set of restrictions on the local rotations, then we can
iterate the above process to form a related graph encoding all of the restric-
tions. If an edge is unaffected by the restrictions, then we can replace it by a
digon which forms one of the distinguished walks. Thus we can assume that
every edge is in exactly one of the distinguished walks.

This motivates the following definition. A relative graph is a graph G’
together with a collection of walks which partition the edge set. A relative
embedding of ' is an embedding of the underlying graph such that the
distinguished walks are face boundaries. Each edge lies on two faces, exactly
one a distinguished walk. A relative graph G’ is a fat graph if each of the
fixed faces are of length two. In this case we can recover the underlying graph
(¢ by replacing each digon with a single edge. Relative embeddings of G’ are
equivalent to (the usual) embeddings of G.

In the orientable case we require the underlying relative graph to have
a fixed direction on each edge. The distinguished walks must respect these
directions. The embeddings are those in which the directed walks are faces
in the oriented surface.

Relative embeddings have proven useful in studying the amalgamations
of graphs [8, 9, 215, 216], the distribution of embeddings [219], and in re-
embedding theorems [10]. Bonnington [45] has shown the relative analogue
of Xuong’s theorem, and Archdeacon, Bonnington and Siran [15] have shown
the relative version of Nebesky’s Theorem.
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5.5 Signed Embeddings

Recall that an embedding in a nonorientable surface is characterized by a
signature and a rotation. What can be said about embeddings if the signature
is pre-ordained? Define a signature on a closed walk as the product of the
signatures on its edges. In an embedding using this signature, a walk is
orientation reversing if and only if it is signed minus. So an embedding of
a signed graph can be interpreted as preordaining the orientation preserving
orientation reversing walks.

For the general theory of signed embeddings we refer the reader to the
works of Zaslavsky [268, 269, 270]. We mention three particular results of
interest to the author. Zaslavsky [266] has determined the maximum Euler
genus among all signed graphs on n vertices where every edge is signed neg-

atively. This is given by [n(n — 3)/4] 4+ 2 (where n > 6). He has also [267]
characterized by forbidden minors the projective planar signed graphs. Siran
[212] has investigated the spectrum of the signed genus and notes that no

interpolation theorem like Duke’s holds in this setting.

5.6 Embeddings in 3-space

To date our focus has been to depict graphs in topological spaces which are
for the most part locally 2-dimensional. This is due in part to the following
theorem.

Theorem 5.2 Any simplicial graph embeds in 3-space with all edges straight
lines.

We do not require arbitrary embeddings to be rectilinear, but to avoid
pathologies we do require embeddings to be piecewise linear.

The above theorem shows existence, but there is much that can be said
about embeddings in 3-space. One question is when can the graph be em-
bedded so that the cycles are all “nice”. There are various different notions
of “nice”; we give three. An embedding is linkless if no two disjoint cycles
are linked in 3-space (that is, if they can be pulled apart). An embedding is
knotless if each cycle is unknoted (that is, if the fundamental group of the
complement is free). An embedding is flat if each cycle bounds a disk disjoint
from the rest of the graph. Note that flat implies linkless and knotless.
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When does a graph have a linkless, knotless, or flat embedding? Sachs
[204] and Conway and Gordon [73] showed the following.

Theorem 5.3 Any embedding of K¢ in 3-space contains a pair of disjoint
cycles which are linked.

Robertson, Seymour, and Thomas [197, 198] proved that a graph admits
a flat embedding if and only if it admits a linkless embedding, settling a
conjecture of Béhme [43]. So while the two concepts are different for specific
embeddings, the class of graphs so embeddable are equivalent. More strongly,
they developed a theory of spatial embeddings in which they proved that if
two flat embeddings are not ambient isotopic, then they differ on a subdi-
vision of K5 or of K33. They also showed that any flat embedding can be
transformed to any other flat embedding by a series of 3-switches, similar
to Whitney 2-switches for planar graphs. Finally, they showed that a graph
admits a flat embedding if and only if it does not contain as a minor one
of the seven graphs. These seven graphs are the AY A-equivalents of the
Petersen graph.

Negami has given a type of Ramsey theorem for knots [169].

Theorem 5.4 Let N be a knot. There exists an f(N) such that any drawing
of Ky with straight line segments contains a cycle which is equivalent to

N.

Notice here that rectilinear embeddings are necessary. Otherwise, each
edge could be embedded in a very knotty fashion so that every cycle was a
very complicated knot type. A similar theorem for complete bipartite graphs
is given by Miyauchi [158].

5.7 Pseudosurfaces

A pseudosurface is a topological space formed from a (not necessarily con-
nected) 2-manifold by taking a finite number of points, partitioning these
points into parts, then topologically identifying the points within each part.
The points which are not locally R? are called pinch points. For example,
the spindle surface is formed by identifying the north and south poles on a
sphere. Equivalently, it is formed from the torus by identifying a noncon-
tractible cycle to a point. The banana surface is formed from two spheres
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by identifying their north poles to a single point and their south poles to a
second point. (The surface looks like two bananas joined at their bottoms as
well as at their tops.)

Embeddings of graphs into pseudosurfaces usually carry the restriction
that the pinch points are vertices of the embedded graph. They can be
described combinatorially using local rotations that are simply permutations
of the incident edge ends, not necessarily cyclic permutations. The number
of cycles in the permutation is the number of disks meeting at that point.

Many of the questions asked of surfaces have also been asked of pseudosur-
faces. For example, does there exist a finite set of graphs whose topological
exclusion characterizes embedding of a particular pseudosurface? Bodendiek
and Wagner [42] have shown that the answer is yes for the spindle surface.
Sirén et al. [41, 213] showed that the answer is no for the banana surface,
finding an infinite class of graphs which do not embed on the banana sur-
face but such that each proper subgraph does so embed (however there are
only 84 irreducible graphs of connectivity 2). In this context, note that em-
bedding on a pseudosurface is not hereditary under minors because of the
restriction that vertices must lie on pinch points. An edge joining two pinch
points cannot be contracted in the pseudosurface. Hence Siran’s result does
not contradict the Robertson and Seymour proof of Wagner’s conjecture.

Coloring graphs embedded on psuedosurfaces or families of pseudosur-
faces has a rich history. We first examine pseudosurfaces formed from the
sphere by identifying points (pinched spheres). An M-pire is a graph embed-
ded on a pinched sphere where each pinch point corresponds to at most M
spherical points. What is the maximum chromatic number of all M-pires?
The name arises from the dual map coloring problem where each country
(empire) may have as many as M components, all of which must receive the
same color.

Heawood [110] showed an upper bound (not surprisingly based on Euler
Characteristic) of 6M for M > 2 and gave a map with 24 regions broken
into 12 M-pires for M = 2. The upper bound is exact as shown by the
constructions of Jackson and Ringel [120]. Note that the bound is wrong for
M =1 by the 4-color-theorem.

We next examine graphs formed from two spheres by identifying pairwise
points in the first with points in the second. We express the appropriate
coloring problem in dual form. Consider two planar graphs, G’z on the
“earth” and Gjy on the “moon”, together with a bijection ¢ : F(Gg) —
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F(Ga). An earth-moon coloring assigns colors to the faces of both graphs
such that in both graphs adjacent faces receive distinct colors but f and
&(f) receive the same color. The idea is that each country on the earth has
a colony on the moon and a country and its colony should receive the same
color. What is the maximum chromatic number of all earth-moon graphs?
The problem is equivalent to the dual problem of determining the maximum
chromatic number of all graphs of thickness two. An FEuler argument shows
that 12 colors suffice; an example due to Sulanke (cf [92]) needs 9 colors. The
bound has not been tightened further.

We refer the reader to [92, 117] for expository articles on earth-moon
colorings and M -pires.

6 Locally Planar Embeddings

The class of planar graphs is one of the most important in graph theory.
Some graphs are not planar, but they are if you look closely enough. For
example, consider (oo X Cgo embedded in the torus in a natural manner.
The graph is not planar; however, if you fix a vertex and look at a local
neighborhood the embedding looks planar. In this example the subgraph
induced by all vertices of distance at most 49 from a fixed vertex is planar.
The local planarity of the surface is reflected by the fact that such large local
neighborhoods of vertices are planar. It is hoped that such locally planar
graphs share properties with planar ones.

We develop three different measures of the local planarity of a graph GG
embedded in a surface S. The edge-width of the embedding, ew(G), is the
length of the shortest walk in the graph which is non-homotopically null in the
surface. Such a walk is necessarily a simple cycle. In fact, it is the shortest
simple cycle which does not bound a disk in the surface. This parameter
was first introduced by Thomassen [231]. The dual-width, dw(G), is the
edge-width of the dual embedding. The face-width fw((G) is the minimum
n = C'NG taken over all noncontractible C'in the surface. A cycle ' achieving
this minimum can be chosen to be simple and intersecting only vertices of
the graph. The face-width of the graph is also known as the representativity
of the embedding. The idea behind representativity is that the parameter
measures how well the embedded graph represents the surface, where the idea
behind the width is that the embedded graph measures how wide the handles
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are (in terms of the graph). A third point of view is that these parameters
measure the density of the graph embedded on the surface. Finally, this
parameter measures the local planarity of the embedding. Observe that the
face-width of an embedding is equal to the face-width of the dual.

The face-width was first introduced by Robertson and Seymour [193]. The
first extensive study of this parameter was by Robertson and Vitray [200].
Several special cases have been commonly used. For example, an embedding
of a connected GG is of fw > 1 if and only if it is cellular. Likewise, embeddings
of 2-connected graphs with fw > 2 have been called circular (each face is
bounded by a simple cycle), or closed 2-cell, CTC (the closure of each face is
a closed 2-cell). Embeddings of 3-connected graphs with fw > 3 are called
polyhedral. In a polyhedral embedding the face boundaries are all induced
nonseparating cycles.

In the following subsections we discuss embedded graphs which are min-
imal with respect to these width parameters, what these parameters tell us
about other embeddings, coloring locally planar graphs, and how to find
cycles of a special homotopy type.

6.1 Minimal Embeddings

Let GG be an embedding of a graph with face-width k. This embedding is
(fw = k)-minimal if every embedded minor of G has fw < k. A (fw = k)-
minimal embedding is connected and has the property that the deletion or
contraction of any edge will lower the face-width. It follows from Robertson
and Seymour’s proof of Wagner’s Conjecture (discussed in Section 7) that
for each fixed surface S there are only finitely many (fw = k)-minimal
embeddings. Malni¢ and Mohar [154] proved this directly when & = 2. The
general case was also shown directly by Malni¢ and Nedela [155] and by Gao,
Richter, and Seymour [90].

Barnette [24] and independently Vitray [247] found the k-minimal graphs
for the projective plane. Barnette [25, 26, 27] has also discussed various
ways to generate triangulations, polyhedral, and closed 2-cell maps in simple
surfaces.

Randby (cf [200]) has shown that any (fw = k)-minimal embeddings in
the projective plane can be obtained from a certain k x k projective grid by a
sequence of Y A-transformations. Schrijver [206] has shown that for the torus
there are exactly (k® 4+ 5k)/6 (k odd) classes of k — minimal embeddings up
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to YA and AY transformations. The corresponding number for k even is
(k® + 8k)/6.

Hutchinson [114, 115] has shown that any triangulation with face-width
k of the surface with genus ¢ has at least ck®g/log? g vertices. Przytycka
and Przytycki [174] gave such constructions with ck?¢/log g vertices (the
constants are different).

Schrijver examined the following refinement of face-width. A kernel is
an embedded graph such that any edge deletion or contraction decreases the
face-width in some homotopy class, that is, the global face-width may not be
decreased but for some curve ' the minimum G'NC’ over all C’ homotopic to
(' decreases. The name comes from doing deletions and contractions which
change the width of no homotopic class until arriving at a “core” minor where
no further such operations are possible. Schrijver [207] observed that taking
the dual and doing AY and YA transformations do not change the width in
any homotopy classes. Conversely, he showed [207] that any two embedded
kernels with the same width in each homotopy class were equivalent up to
duality, AY and YA transformations.

6.2 Re-embedding Theorems

A 3-connected graph has at most one planar embedding. Are embeddings
which are locally planar necessarily unique? Are they necessarily minimum
genus?

In one sense the answer to the two questions above is yes. Robertson and
Vitray [200] proved that a 3-connected graph embedded in a surface of genus
g with face-width greater than 2¢g + 2 is necessarily a unique minimal genus
embedding. Seymour and Thomas (personal communication) have improved
this to O(log ¢), and then [211] to 1001log ¢/ loglog g. Mohar [159] has similar
results.

In another sense the answer to the two questions above is no. The bounds
above depend on the surface. Robertson and Vitray [200] conjectured that a
constant bound sufficed for all surfaces, in particular, 3. However, Thomassen
[231] and independently Barnette and Riskin [30] found simple counterexam-
ples involving toroidal graphs with nontoroidal embeddings of face-width 4.
(E.g., in a toroidal Cy x C,, take 2n nonadjacent faces and n homotopic dis-
joint essential 4-cycles as the 3n face boundaries in a face-width 4 nontoroidal
embedding.) Robertson and Vitray then raised the conjectured bound to
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10'°. However, Archdeacon [10] constructed n-connected graphs G, with
two different embeddings of face-width n. The surfaces involved can either
be the same (violating uniqueness) or different (violating genus).

Robertson and Vitray [200] and independently Thomassen [231] observed
that any nonplanar embedding of a planar graph has face-width at most
two. Mohar, Robertson and Vitray [163] characterized embeddings of planar
graphs in the projective plane. This was extend to other surfaces in [162].
Mohar [160] showed that apex graphs (graphs G with ¢ — v planar for some
v) have no nonorientable face-width three embeddings, but they do have
orientable ones.

Various authors [146, 147, 166, 167, 168, 188, 28] have examined the
uniqueness of embeddings on the projective plane, Klein bottle, and torus.
In particular, we note that Lawrenchenko and Negami [148] have found all
graphs which triangulate both the torus and the Klein bottle.

The following amazing theorem of Fiedler, Huneke, Richter, and Robert-
son [84] gives the orientable genus of all projective planar graphs.

Theorem 6.1 Let GG be a projective planar graph embedded with face-width
n > 2. Then the orientable genus of G is |n/2]

In particular, note that any two embeddings of a projective planar graph
must have face-width that differs by at most one. Robertson and Thomas
[199] have a similar result giving the orientable genus of graphs on the Klein
bottle.

Thomassen [231] has examined large-edge-width, or LEW-embeddings.
These are ones in which the edge-width exceeds the length of the longest
face. He has shown that these embeddings are genus embeddings, are unique
if the graph is 3-connected, have only Whitney-type switches if the graph is
2-connected, and gives a polynomial-time algorithm for finding such embed-
dings if they exist.

6.3 Coloring Locally Planar Graphs

Planar graphs can be 4-colored. Can locally planar graphs be 4-colored? No,
Fisk [85] constructed graphs of arbitrarily large face-width with chromatic
number five. But four is close, as shown by Thomassen [235].
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Theorem 6.2 A graph embedded on the orientable surface of genus g with
edge-width at least 214976 is 5-colorable.

The proof involves cutting along a set of cycles to reduce to a planar
graph, then invoking a special version of the 5-color theorem. In a similar
manner Hutchinson [116] has shown that a graph embedded with large face-
width and all faces of even length is 3-colorable.

6.4 Finding Cycles in Embedded Graphs

One use of large face-width embeddings is to guarantee cycles of a certain
homotopy type. We examine some results of this type.

When does an embedded graph contain a noncontractible separating cy-
cle? Clearly, the surface involved must be of genus at least two. Barnette
conjectured that any simple triangulation has such a cycle. Independently
and more generally, Zha conjectured that face-width 3 suffices. The best
known result is due to Zha and Zhao [271], who showed that face-width 6
suffices (see also Richter and Vitray [176] and Brunet, Mohar, and Richter
60)).

Brunet, Mohar and Richter [60] have shown that an embedded graph with
face width w contains at least |(w—1)/2] disjoint noncontractible homotopic
cycles. Schrijver [208] improved this to [3w/4] for the torus.

Thomassen [235] showed that any graph embedded on the surface of genus
g with face-width at least 16(29 — 1) has a set of ¢ disjoint cycles which can
be cut along to form a planar graph. Graaf and Schrijver [96] proved that
every face-width w > 5 toroidal graph contained a C|2,/3) % C|2.,/3] minor.

We mention the following on cycles in graphs unrelated to homotopy.
Whitney proved that every 4-connected plane triangulation is Hamiltonian.
A number of authors [17, 29, 83, 229, 240, 243, 244, 228] have investigated
generalizations of this concept, relaxing the connectivity, replacing planarity
with locally planar on other surfaces, and replacing Hamiltonian with various
types of walks. We refer the reader to the survey by Ellingham in this volume.

7 Graph Minors

Recall that a graph H formed from (' by a sequence of deleting isolated ver-
tices and deleting or contracting edges is called a minor. The theory of graph
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minors has recently played a central role in topological graph theory. The
prominence is due in most part to the recent proot of Wagner’s Conjecture
by Robertson and Seymour [196].

Theorem 7.1 In any infinite set of graphs one is a minor of another.

The theoretical and algorithmic implications of this result are enormous.
We illustrate this by rephrasing the Robertson-Seymour theorem in terms of
graph properties.

A property is hereditary with respect to an order < if whenever G has
the property, then any H < (& has that property. For example, the property
of embedding on a fixed surface is hereditary under the minor or topological
orderings. In an order without infinite descending chains, any graph G not
possessing a hereditary property contains an H < (G which is minimal with-
out that property, i.e., H does not have the property but every K < H does
have the property. For example, we can talk about graphs that are minor
minimal with respect to not embedding on a fixed surface. The set of these
minimal elements are pairwise noncomparable. Hence Robertson-Seymour’s
Theorem implies the following.

Theorem 7.2 For any hereditary property P there is a set M(P) such that
G has property P if and only if it has no minor in M(P).

As a corollary we obtain the powerful generalization of Kuratowski’s The-
orem mention in Section 4.3.

Corollary 7.1 For each surface S, a graph G embeds in S if and only if it
has no subgraph homeomorphic to one in a finite collection M(S).

The Robertson-Seymour theorem is sometimes stated in terms of orders.
A partial order < is a well-quasi-order if for any sequence G, G, ... there
is an ¢ < j such that G; < G;. A well-quasi-order has no infinite strictly
decreasing sequence. If a partial order has no strictly decreasing sequence,
then being well-quasi-ordered is equivalent to having no infinite set of non-
comparable elements. Since graphs under the minor order have no infinite
decreasing chains, the Robertson-Seymour Theorem asserts that this is a
well-quasi-ordering.

Trees and tree-like graphs play an important role in the theory of minors.
The algorithmic implications of the Robertson-Seymour Theorem are very
important. We examine these two aspects in the following subsections.
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Figure 4: A graph of tree-width three

7.1 Trees and Tree-Width

Kruskal [143] proved in 1960 that rooted finite trees were well-quasi-ordered
under the topological containment order. It follows that there are also no
infinite antichains in this collection under the minor order. Wagner [253]
pointed out that the collection of all graphs does contain an infinite antichain
in the topological order. Namely, for each n > 3 let C? be the graph obtained
from the n cycle by replacing each edge with two edges in parallel. No C'? is
topologically contained in another, so these are an antichain. This collection
does not violate the Robertson-Seymour Theorem since C?2, is a minor of C?
whenever m < n.

If trees are well-quasi-ordered, maybe so are tree-like graphs. We use the
following measure of how closely a graph resembles a tree. A graph G is a
K, -cockade if there is a sequence of subgraphs Gy, ..., G, such that each G
is a complete graph on n vertices and G; N (G1 U ... U Gj_1) is contained in
some (; for ¢ < j. In other words, a K,-cockade is formed by repeatedly
adding in copies of a fixed complete graph on n vertices by identifying some
of the vertices in the 71" copy with those in an earlier i** copy. The tree-width
of a graph H, tw(H), is the smallest n such that H is a subgraph of some
K, y1-cockade. Note that a graph is a tree if and only if it is of tree-width 1.
If H is a minor of G, then tw(H) < tw(G).

The n-grid is the planar graph P, x P,. For every planar graph G there
is an n = n(G) such that GG is a minor of the n-grid. The assumption of
planarity is necessary, since every minor of a planar graph is planar. The
proof of this result is easy conceptually: imagine the graph drawn in the
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plane with disks for the vertices. Place a very fine grid on the paper. Deform
the line segments until they follow horizontal and vertical lines on the grid.
A subdivision of the graph is now a minor of the grid after contracting all
edges within the vertex disks.

The n-grid is related to the width of the graph. The n-grid has large
tree-width [191]. Hence any graph which contains the n-grid as a minor also
has large tree-width. The Tree-Width Theorem asserts the converse.

Theorem 7.3 [190] There exists a function f such that a graph G has
tw(G) > f(k) if and only if it has a k-grid minor.

As a partial result toward’s Wagner’s minor conjecture, Robertson and
Seymour [192] were able to show that the class of graphs of bounded tree-
width were well-quasi-ordered under minors. Using that result and a struc-
ture theorem they were able to prove the general case [196].

7.2 Algorithmic Implications

The graph minors project has produced some fascinating results on structural
properties of graphs and proofs of some far-reaching fundamental theoreti-
cal results. At the same time it has important algorithmic implications in
theoretical computer science. We briefly discuss these implications in this
section.

A fundamental quest in computer science is to find efficient algorithms
for problems. Many problems are thought to be hard in the sense that there
are no algorithms to solve the problem which run in a time bounded by a
polynomial in the size of the input. In fact, the existence of polynomial-time
algorithms for a large class of problems is known to be equivalent—these
problems are called NP-complete. Since the general belief (not proven) is
that these algorithms are hard in general, it is interesting to find classes of
graphs which do have such polynomial-time algorithms.

A number of problems which are NP-complete in general are polynomial
for graphs of bounded tree-width. Here the algorithm is able to exploit
the “tree-like” structure of the graph. For example Arnborg [21] has found
polynomial time algorithms for k-coloring and Hamiltonicity of graphs of
bounded tree width.

A fundamental result due to Robertson and Seymour [195] is the following
solution to the k-path problem.
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Theorem 7.4 For cach fized k there exvists a polynomial time algorithm for
deciding if a graph G with vertices x1,y1,..., Tk, yp has k disjoint paths P,
each joining x; to y;.

As a corollary to the above is the existence of a polynomial-time algorithm
for testing if a fixed graph H is a minor of an input graph GG. A modification
of the algorithm also tells if H is a topological subgraph of G in polynomial
time.

A combination of the k-path algorithm and the solution of Wagner’s con-
jecture leads to a very powerful result. There are a finite number of minor-
minimal graphs whose exclusion determines when a graph has a hereditary
property. Testing for each of these H as a minor of G can be done in poly-
nomial time. Hence we get the following result.

Theorem 7.5 For any property hereditary under the minor order there is a
polynomial-time algorithm to test if a graph has this property.

This implies, among other things, a (fixed degree) polynomial-time algo-
rithm for testing embeddability into a fixed surface and a polynomial-time
algorithm for testing if the tree-width of a graph is less than a fixed constant.

8 Random Topological Graph Theory

To date much attention has been focused on the minimum and maximum
genus of a graph. But what does a typical embedding look like? Because we
describe our embeddings combinatorially in terms of rotations and signatures,
it is possible to pick an embedding at random. What should we expect the
drawing to look like?

White [254] has described five models for random topological graph the-
ory. In the first model you fix the graph G and select a rotation uniformly
at random (here the embeddings are all orientable). One goal is to study the
distribution over all embeddings of the genus of the surface. This embedding
distribution was first introduced by Gross and Furst [101]. The complete
embedding distribution is known only for a few small graphs and for a few
infinite classes. The latter include bouquets [102] (see also [177, 217]), closed
ended ladders [89], and cobblestone paths [89].
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It is interesting to note that all known embedding distributions are uni-
modal, in fact, strongly unimodal. It is conjectured that this is always the
case [102].

Short of calculating the entire embedding distribution, the next parameter
of interest would be the expected value of the genus, also known as the
average genus. Stahl [218] has given upper bounds on the expected number
of regions. These translate to lower bounds on the average genus. Using
this Lee [149] has shown that if the number of edges is asymptotic to cn'**
(where n is the number of vertices), then the average genus is asymptotic to
the maximum. In particular, this holds for many classes such as complete
and complete bipartite graphs. Stahl [219] does some calculations which
show that the average genus is roughly linear for “linear families” of graphs.
These are graphs made up of a chain of components arranged in a path-like
manner where each component shares only a few vertices with its neighbors.
Both Lee and Stahl’s results indicate that the average genus is linear in the
number of edges. This was shown for simplicial graphs by Chen and Gross
[68, 69]. Their work also shows that the set of values of the average genus for
3-connected or for 2-connected simplicial graphs has no limit points. This
work leads to a linear-time algorithm for testing isomorphism of graphs from
a class with bounded average genus [65].

A second model includes nonorientable embeddings. Here we fix the graph
and select a rotation and a signature at random. White [254] shows that in
this model the probability that an embedding is orientable is 27%(%) . In other
words, for most families of graphs including complete and complete bipartite
graphs almost all embeddings are nonorientable.

A different approach would be to consider the sample space of all labelled
graphs on n vertices with edges occurring independently with probability
p(n). The first goal here is to find the expected value of the minimum genus
of the graph. This was first done by Archdeacon and Grable [16] who showed
that for sufficiently large p(n) (including constant probabilities) the minimum
genus was roughly pn®/12, the bound given by Euler’s formula for triangular
embeddings. This was also proven by Rédl and Thomas [201] who refined
the bounds on the edge-probability.

We close by noting that Bender, Gao, and Richmond [36] have shown
that for each fixed surface almost all rooted embeddings of graphs with m

edges have face-width O(log m).
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9 Symmetrical Maps

In the study of mathematics highly symmetric objects are widely studied.
Indeed, their symmetries are considered beautiful. The same is true in topo-
logical graph theory. Let GG be a connected graph embedded on an oriented
surface, or an oriented map for short. An automorphism of the map G is
a function from vertices to vertices and edges to edges that preserves inci-
dence and respects the rotation. That is, it is an automorphism of the graph
which extends to an (orientation-preserving) automorphism of the surface.
Equivalently, it is a function which preserves oriented region boundaries.

How many automorphisms can an oriented map have? We claim that it
can have as many as 2#F. In particular, fix a directed edge (x,y). Suppose
that arc is carried to the edge (u,v). This target (u,v) determines the whole
automorphism. The idea behind the proof is that preserving the local ro-
tation determines where each edge adjacent to (x,y) maps, and this is then
extended to the whole graph by connectivity. A oriented map is called regu-
lar if the order of it’s automorphism group is 2# F, since acting on arcs the
group has order equal to the degree.

A reflection of an oriented map is an isomorphism between that oriented
map and it’s mirror image (the embedded graph with the opposite orienta-
tion on the surface). The extended automorphism group allows reflections as
well as orientation-preserving automorphisms. It is known that the automor-
phism group of the map is a subgroup of index one or two in the extended
automorphism group. It follows that if a regular map admits a reflection,
then its extended automorphism group is of order 4# FE. Maps achieving this
bound are called reflexible.

In the nonorientable case a map is regular if and only if its automorphism
group is of order 4# F. There are two automorphisms fixing a directed edge,
the identity and a second swapping the faces on either side of that edge.
There is some confusion in terminology in the literature regarding when a
map is regular. Some authors, especially those working with both orientable
and nonorientable surfaces, prefer to call an orientable map regular only if
the extended automorphism group is as large as possible, reserving the words
rotary or orientably regular for what I've called here regular non-reflexible
maps. The terminology here is the same as that of Coxeter and Moser [75]
and Jones and Singerman [124].

There are three main ways to approach regular maps, 1) fix the graph
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involved, 2) fix the automorphism group involved, or 3) fix the surface in-
volved.

Construction techniques for the first two frequently involve Cayley graphs.
In a Cayley graph the vertex set is the set of elements in some group I' and
the edges are (g,gh) for g € T and h € A* = AU A~ for some set A. This
Ais a generating set if it generates the group, or equivalently, if the resulting
Cayley graph is connected. In a Cayley graph the group acts transitively on
the vertices. An embedding of a Cayley graph commonly uses a fixed cyclic
permutation on A* to define the local rotation. Depending on properties of
the group, generating set, and the cyclic rotation, the embedding may be
regular.

We do not examine Cayley graphs further in this section, but instead
refer the reader to White’s survey in this volume. We do, however, mention
that James and Jones [121] have completely classified the orientable maps
based on complete graphs. We also mention that several papers [108, 20]
have examined lifting automorphisms from an embedded voltage graph to
its derived covering map leading to some nice constructions. This technique
involves some but not all of the algebraic power of Cayley graphs.

We turn our attention to regular maps on a fixed surface. Hurwitz exam-
ined finite sets of homeomorphisms of a surface with itself. He showed the
following.

Theorem 9.1 Fvery finite homeomorphism group of S, (g > 2) with itself
has order at most 168(g — 1).

Tucker [242] related the general problem of finite homeomorphism groups
to graphs with the following theorem.

Theorem 9.2 For any finite group H of homeomorphisms of S,, there ex-
ists a Cayley graph G on the vertex set H embedded on S, such thatl each
isomorphism of G extends to a homeomorphism of S,.

The preceding two theorems do not imply that there are only finitely
many Cayley graphs of each genus ¢ > 2. Instead, Wormald (see [103])
constructs infinitely many Cayley graphs of genus 2, despite the fact that
this surface has only finitely many homeomorphisms groups.
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Babai [23], and independently Thomassen [233] have shown that this
behavior is an anomaly of S;. In particular, they showed that there are only
finitely many vertex-transitive graphs of given genus g > 3.

Yet another kind of symmetry for an embedded graph is self-duality, that
is, the embedded map is isomorphic to the dual map. A slightly weaker
version is to require that ¢ and G* be isomorphic as graphs, but allows
their embeddings to be different. Some interesting results on self-dual pla-
nar graphs are given by Archdeacon and Richter [19] and by Servatius and
Servatius [209, 210]. We refer the reader to the survey by Archdeacon [11].

Combining these types of symmetry, Archdeacon, Siran, and Skoviera
[20] have constructed classes of self-dual regular maps. Payley maps (cf
[255]) have the remarkable property of being regular, self-dual, and self-
complementary! They also give rise to self-dual partially balanced incomplete

block designs.

10 Ten Problems

Despite the plethora of results presented, there remain many interesting ques-
tions. We offer the following unsolved problems.

Problem 10.1 Find an easy (i.e., noncomputer) proof of the 4-Color-Theorem.

Problem 10.2 Show that every 2-edge-connected graph has a set of simple
cycles which together contain every edge exactly twice.

Problem 10.3 Show that every 2-edge-connected cubic graph has a set of
six perfect matchings which together cover every edge evactly twice.

Problem 10.4 Show that every simple triangulation of an orientable surface
can be edge-3-colored so that each color appears on each face.

Problem 10.5 Find the earth-moon coloring number.
Problem 10.6 [ind the crossing number of I, ,,.
Problem 10.7 Find the crossing number of K, .

Problem 10.8 Find the genus of K, , .
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Problem 10.9 Show that a graph has a planar cover if and only if it embeds
in the projective plane.

Problem 10.10 Find a regular map for each nonorientable surface.

Problem 10.2 is called the Cycle Double Cover Conjecture. 1t was inde-
pendently posed by Seymour and by Tutte. It is equivalent to claiming that
every graph has an embedding such that the dual is loopless. Problem 10.3,
Fulkerson’s Conjecture, is a type of dual to Problem 2.

David Craft has found many of the embeddings needed for Problem 10.8.
Note that it p > g > r, then the number of triangles is at most 2¢r. Assuming
all other faces are quadrilaterals gives the conjectured bound through Euler’s
formula.

Regarding Problem 10.9, a graph G' covers H if there is a graph map
from G to H which is an isomorphism on the neighborhood of each vertex.
A graph embedding in the projective plane has a 2-fold planar cover. Since
having a planar cover is preserved under minors, it suffices to show that the
35 minor-minimal non-projective-planar graphs do not have planar covers.
There are two remaining cases, K7 — 3K and K44 — K3 whose proof would
complete the general result.

11 Conclusion

I must express my regret at the vast areas of topological theory which I was
not able to cover in this survey. Several areas in particular are worthy of
inclusion in any survey.

I direct the reader to Carsten Thomassen’s wonderful work using graph
theory to prove results in topology. Among his results are graph theoretic
proofs of the Jordon Curve Theorem [234], a deeper understanding of the
relationship between the Jordon Curve Theorem and Kuratowski’s Theorem
[232], and a nice proof that every surface admits a triangulation [234].

Another area not included is the dual theories of current and voltage
graphs. This techniques uses quotient structures under group actions to
describe embeddings. This allows an economical description of embeddings.
It proved essential to the proof of the Map Color Theorem. The reader is
referred to the seminal articles by Gross and Alpert [98, 99, 100] (see also
[12]). A more leisurely introduction is the book by Gross and Tucker [103].
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Other surveys on topological graph theory are presented by White and
Beineke [257] and Carsten Thomassen [238, 239]. The reader is referred to
[71, 62] for additional results on snarks. Joan Hutchinson [117] gives a nice
exposition on map colorings, empires, and the earth-moon problem. In [161],
Mohar gives a survey of results on local planarity. Robertson, Seymour and
Thomas survey linkless embeddings in [197].

The book by Jensen and Toft [123] on graph colorings cannot be recom-
mended highly enough.

I learned a lot writing this paper. I hope that the reader has also found
it informative.
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