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Finite-Dimensional Cones:
1 Basic Definitions.

Definition 1. A set A C RY is a cone iff it is not empty and for any a € A and
any v > 0, ya € A.

Definition 2. A cone is degenerate iff it equals the origin.

Definition 3. A cone A C RY is pointed iff it is non-degenerate and a € A, a # 0,
implies —a & A.

Example 1. The set Ri is a closed, convex, pointed cone. The half plane {z € R? :
xg > 0} is a closed, convex cone that is not pointed. The union of the open half
plane {z € R? : 25 > 0} and 0 is a somewhat pathological example of a convex cone
that is pointed but not closed. [J

Remark 1. There are several different definitions of “cone” in the mathematics.
Some, for example, require the cone to be convex but allow the cone to omit the ori-
gin. The definition used here is sometimes referred to as the linear algebra definition.
O

2 Finitely Generated Cones.

A cone A C RY is finitely generatediff there is a finite set of vectors Z = {z!,..., 25}
such that a € A iff there are numbers A\ > 0, such that

K
a= Z e 2",
k=1

I will also say that Z positively spans A. Obviously, all of the z* are elements of A.
Theorem 1. If A is finitely generated then it is convex and closed.

Proof. Convex is trivial. As for closed, the claim holds vacuously if A is degenerate.
Therefore, assume A is non-degenerate.

'@®®®. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 License.



I first claim that if @ € A, a # 0, then it is possible to generate a from a linearly
independent subset of Z, the finite subset of RN that generates A.2 To see this,
suppose A > 0 for all £ but Z is not linearly independent. If Z is not linearly
independent, there are ¢, not all zero, such that

K
0= Z 'ykzk.
k=1

Without loss of generality, one can assume that at least one ~y; > 0 (if all are non-
positive, just multiply them all by —1). For ease of notation, relabel indices so that
v > 0 iff k > J, where J is some index (J = 1 is possible), and
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In particular, yx > 0. Then
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for every k € {1,..., K —1}. Hence a can be generated by just K —1 of the vectors in
Z. The same argument applies to any subset of Z that is not linearly independent:
if @ # 0 is generated by a subset of Z that is not linearly independent, then « is also
generated by a strictly smaller subset of Z. This establishes the claim.

To complete the proof that A is closed, consider the cone generated by any
linearly independent subset of Z. Possibly relabeling indices for ease of notation,
if the vectors in the subset are {z',...,2%}, L < N, and if V C RY is the L-
dimensional vector space spanned by these vectors, then the linear function f :

ZNote the order of quantifiers. I allow the linearly independent subset of Z to depend on a. I
am not claiming that all of A is generated by a single linearly independent set of vectors. In general
that won’t be true. For example, consider a cone in R® that is pyramid-shaped with a square cross
section. Four vectors are needed to generate such a cone, but any independent set contains at most
three vectors.



V — RE given by f(x) = (A1,...,Ap) iff

L
T = E Nez®,
k=1

is well defined since {z!,..., 2"} is independent.

Note that the image under f of the cone in RY generated by {z!,..., 2"} is the
weakly positive orthant in R”. Since the weakly positive orthant in R” is closed and
since f is continuous (it is a finite-dimensional linear function), the preimage under
f of the weakly positive orthant in R% is closed. But this preimage is the cone in
RN generated by {z!,...,2z"}. Since A is the union of such cones, for all possible
combinations of linearly independent vectors in Z, and since there are only finitely
many such combinations, A is closed. B

Example 2. A closed convex cone that is not finitely generated is the cone generated
by the origin and the unit disk: explicitly, take the cone to be the set of all a in
R3 such that a = vz for v > 0 and = = (1,22, 1) with m% + x% < 1. Note that if
I instead require that 22 + 23 < 1 then this cone, while still convex, is not closed:
cones that are not finitely generated need not be closed. [J

3 A Separating Hyperplane Theorem for Cones.

Theorem 2 (A Separating Hyperplane Theorem For Cones). Let A be a closed,
convex cone in RN and let B be a compact, convex subset of RN. If AN B = () then
there is a vector v € RN such that for alla € A, b € B,

v-a<0<ov-b.

Proof. By the Separating Hyperplane Theorem in the notes on Convex Sets, there
is a vector v € RN and a number r € R such that for all a € A4, b € B,

v-a<r<ouv-b.

Since 0 € A, this implies r» > 0, hence v - b > 0. Moreover, for any a € A and any
v > 0, since A is a cone, v - (ya) < r, hence v - a < r/7, which implies v-a < 0. B

In separate notes, titled A Basic Separation Theorem for Cones, I prove a ver-
sion of Theorem 2 that takes B to be a singleton, B = {b}. This weaker version
is sufficient for many applications (including both the proof of the Karush-Kuhn-
Tucker Theorem and Theorem 3 below) and admits a somewhat more elementary,
self-contained proof.



4 Farkas’s Lemma.

For the case in which B is a singleton, B = {b}, Theorem 2 implies the following
result, called Farkas’s Lemma, which reinterprets Theorem 2 as a statement about
matrices.

Theorem 3 (Farkas’s Lemma). Let M be an N x K matriz. Then for any b € RV,
either

1. Mx =0b has a solution x € REX or
2. there is a v € REX such that M <0 and v-b > 0.

Proof. Let A be the cone positively spanned by the columns of M. By Theorem
1, A is closed. Farkas’s Lemma then follows by Theorem 2. In particular, Mz = b
has a solution iff b € A. v'M < 0 iff v-a < 0 for every a that is a column of M. B

5 Support for Pointed Cones.

Theorem 4 (A Supporting Hyperplane Theorem for Pointed Cones). Let A C RN
be a non-degenerate closed, convex, pointed cone. Then it is strictly supported at the
origin: there is a v € RY such that ifa € A and a # 0 then v-a > 0.

Proof. Let A be a subset of a vector space, call it V. V is a vector subspace of some
RY. The proof is by induction on the dimension of V. Since A is non-degenerate,
this dimension is at least 1.

If the dimension of V' is 1, then A is a half line containing the origin. Take
v to be any non-zero point in A and the result follows. Suppose, then, that the
theorem holds for any closed, convex, pointed cone contained in any vector space of
dimension K or less.

Suppose that V has dimension K + 1. Because A is pointed, the origin is not
interior to A. Therefore, by the standard Supporting Hyperplane Theorem restricted
to V, there is a v* € V, v* #£ 0, such that v*-a > v*-0=0foralla € A. If v*-a >0
for all a € A, a # 0, then I am done.

Otherwise, the set A1 = {a € A : v*-a = 0} contains some a # 0. A; is a closed,
convex, pointed cone since it is the intersection of A and the set V3 = {& € V :
v* - x = 0}, which is a vector space and hence is a closed, convex cone. Since V has
dimension K + 1, V; has dimension K. By the induction hypothesis, since A; C V7,
there is a v1 € V4 such that if a € A1 and a # 0 then v1 - a > 0.

For t € {1,2,...}, let

v = (1/t)vy + (1 — 1/t)v*.



I claim that there is a ¢ such that, if a € A and a # 0 then v4-a > 0, which proves the
result. Equivalently, I claim that if there is a sequence (a;) in A, a; # 0, such that
ve-ap < 0 for all £, then A is not closed, and the proof then follows by contraposition.

For any a; € A such that v; - a; < 0, and for any v > 0, ya; € A (since A is
a cone) and v - (ya;) < 0. Therefore, since a; # 0 for all ¢, it is without loss of
generality to take a; € AN S where S = {z € R : ||| = 1} is the unit sphere.

It remains to show that if there is a sequence (a;) in A NS such that v - a; <0
for all ¢ then A is not closed. Since S is compact, (a;) has a convergent subsequence
(at,) converging to, say, * € S. The proof follows if z* ¢ A.

I claim that v* - * = 0. To see this, note the following.

e Since vy -a; < 0 for all £, and vy — v*, continuity of inner product implies that
v* - x* <O0.

e Since S is compact and inner product is continuous, v1 - x attains a minimum
value on S; call this minimum value M. Then, since v* - a; > 0,

(R Z (1/t)M,
which implies, by continuity, that v* - z* > 0.

Combining the above inequalities, v* - z* = 0.

Therefore, if * € A then z* € A;. It remains, therefore, to show that z* ¢ A;.
For any a € Ay, a # 0, and for any ¢, vy - a > 0 (since, for a € A1, a # 0, v1-a >0
and v*-a = 0). Therefore, for all ¢, since vy - a; < 0 and a; # 0, a; ¢ A;. Since
a; # 0, this implies v* - a; > 0. Since v, - a; < 0, it follows that v1 - a; < 0. But then,
by continuity, v1-z* < 0, which implies, since z* # 0, that z* ¢ Ay, and I am done. B

Remark 2. As in the proof of Theorem 4, let V' be a vector space containing A. By
the Supporting Hyperplane Theorem, there is a v € V such that v-a > 0 for all
a € A. Let A* be the set of all such v. A* is called the dual cone of A. It is easy to
verify that the interior of A* (relative to V') is exactly the set of v € A* for which
v-a >0 forall a € A, a # 0. Theorem 4 is thus equivalent to showing that if A is
a closed, convex, pointed cone then A* has a non-empty (relative) interior. [J

Remark 3. A partial converse to Theorem 4 is that if A is a non-degenerate cone
that is strictly supported at 0 then A is pointed. The argument is by contraposition.
Suppose A is not pointed. Then there is an a € A, a # 0, such that —a € A. Let
v be any vector that supports A at the origin. Then v-a > 0 and v - (—a) > 0,
implying v - a = 0: v does not strictly support A at the origin. [

Remark 4. If A is not closed then things become complicated. 1 give two examples.

Let A C R? be the union of the open upper half plane {z € R? : 25 > 0} and
the closed half line {x € R? : 21 > 0 and x5 = 0} (i.e., the non-negative z; axis).
This is a convex, pointed cone that is not closed. The only vectors that support A



at 0 are v = (0,1) or any vector collinear with v. But v does not strictly support
A. For example, (1,0) € A but (0,1) - (1,0) = 0.

On the other hand, let A C R? be the union of the open half plane {x e R?:
x9 > 0} and the point {0}. Then this convex, pointed cone is strictly supported at
the origin, even though it is not closed. [

6 Separation for Pointed Cones.

Theorem 4 implies the following useful separation result.

Theorem 5 (A Separating Hyperplane Theorem for Pointed Cones). Let A be a
closed, convex, pointed cone and let B be a non-empty convex, compact set that is
disjoint from A. Then there is a v € RN such that v-a < 0 for alla € A, a # 0,
and v-b >0 for allb e B.

Proof. By the Separating Hyperplane Theorem, there is a v* € RY and an r € R
such that for all a € A, b € B,

v ea <r<ovt-b
As in the proof of Theorem 2, this implies r > 0 and
v -a<0<v*b.

This is close to, but somewhat weaker than, what I need.

By Theorem 4, A is strictly supported at the origin. Therefore, by taking the
negative of the supporting vector, there is a v4 € R such that v4 - a < 0 for any
a€ A, a#0.

If vg-b > 0 for every b € B then set v = v4 and I am done. It is possible,
however, that v4 - b < 0 for some b € B. Since B is compact and inner product
is continuous, there is a b* € B that minimizes vy - b. Assume, therefore, that
vy - b* <0.

For 0 € (0,1), let

vg = 0va + (1 —0)v".

For any 6 > 0, and any a € A, a # 0, vp - a < 0 (since v*-a <0 and v4 -a < 0). If
v4 - b* = 0 then, since v* - b > 0, v = vy will satisfy the theorem for any 6 € (0, 1).
Otherwise, suppose v4 - b* < 0. Then v = vy will satisfy the theorem for any
0 € (0,7/(r —va-b*)), since then

vg-b="0(va-b)+(1—0)(v*-b) >0(vyg-b*)+(1—0)r>0.
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