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Finite-Dimensional Cones1

1 Basic Definitions.

Definition 1. A set A ⊆ RN is a cone iff it is not empty and for any a ∈ A and
any γ ≥ 0, γa ∈ A.

Definition 2. A cone is degenerate iff it equals the origin.

Definition 3. A cone A ⊆ RN is pointed iff it is non-degenerate and a ∈ A, a 6= 0,
implies −a 6∈ A.

Example 1. The set R2
+ is a closed, convex, pointed cone. The half plane {x ∈ R2 :

x2 ≥ 0} is a closed, convex cone that is not pointed. The union of the open half
plane {x ∈ R2 : x2 > 0} and 0 is a somewhat pathological example of a convex cone
that is pointed but not closed. �

Remark 1. There are several different definitions of “cone” in the mathematics.
Some, for example, require the cone to be convex but allow the cone to omit the ori-
gin. The definition used here is sometimes referred to as the linear algebra definition.
�

2 Finitely Generated Cones.

A cone A ⊆ RN is finitely generated iff there is a finite set of vectors Z = {z1, . . . , zK}
such that a ∈ A iff there are numbers λk ≥ 0, such that

a =

K∑
k=1

λkz
k.

I will also say that Z positively spans A. Obviously, all of the zk are elements of A.

Theorem 1. If A is finitely generated then it is convex and closed.

Proof. Convex is trivial. As for closed, the claim holds vacuously if A is degenerate.
Therefore, assume A is non-degenerate.

1cbna. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 License.

1



I first claim that if a ∈ A, a 6= 0, then it is possible to generate a from a linearly
independent subset of Z, the finite subset of RN that generates A.2 To see this,
suppose λk > 0 for all k but Z is not linearly independent. If Z is not linearly
independent, there are γk, not all zero, such that

0 =
K∑
k=1

γkz
k.

Without loss of generality, one can assume that at least one γk > 0 (if all are non-
positive, just multiply them all by −1). For ease of notation, relabel indices so that
γk > 0 iff k ≥ J , where J is some index (J = 1 is possible), and

λJ
γJ
≥ · · · ≥ λK

γK
.

In particular, γK > 0. Then

zK =
K−1∑
k=1

− γk
γK

zk

and

a = λKz
K +

K−1∑
k=1

λkb
k

=
K−1∑
k=1

(
λk −

γk
γK

λK

)
zk.

Because of the labeling,

λk −
γk
γK

λK ≥ 0

for every k ∈ {1, . . . ,K−1}. Hence a can be generated by just K−1 of the vectors in
Z. The same argument applies to any subset of Z that is not linearly independent:
if a 6= 0 is generated by a subset of Z that is not linearly independent, then a is also
generated by a strictly smaller subset of Z. This establishes the claim.

To complete the proof that A is closed, consider the cone generated by any
linearly independent subset of Z. Possibly relabeling indices for ease of notation,
if the vectors in the subset are {z1, . . . , zL}, L ≤ N , and if V ⊆ RN is the L-
dimensional vector space spanned by these vectors, then the linear function f :

2Note the order of quantifiers. I allow the linearly independent subset of Z to depend on a. I
am not claiming that all of A is generated by a single linearly independent set of vectors. In general
that won’t be true. For example, consider a cone in R3 that is pyramid-shaped with a square cross
section. Four vectors are needed to generate such a cone, but any independent set contains at most
three vectors.
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V → RL given by f(x) = (λ1, . . . , λL) iff

x =

L∑
k=1

λkz
k,

is well defined since {z1, . . . , zL} is independent.
Note that the image under f of the cone in RN generated by {z1, . . . , zL} is the

weakly positive orthant in RL. Since the weakly positive orthant in RL is closed and
since f is continuous (it is a finite-dimensional linear function), the preimage under
f of the weakly positive orthant in RL is closed. But this preimage is the cone in
RN generated by {z1, . . . , zL}. Since A is the union of such cones, for all possible
combinations of linearly independent vectors in Z, and since there are only finitely
many such combinations, A is closed. �

Example 2. A closed convex cone that is not finitely generated is the cone generated
by the origin and the unit disk: explicitly, take the cone to be the set of all a in
R3 such that a = γx for γ ≥ 0 and x = (x1, x2, 1) with x21 + x22 ≤ 1. Note that if
I instead require that x21 + x22 < 1 then this cone, while still convex, is not closed:
cones that are not finitely generated need not be closed. �

3 A Separating Hyperplane Theorem for Cones.

Theorem 2 (A Separating Hyperplane Theorem For Cones). Let A be a closed,
convex cone in RN and let B be a compact, convex subset of RN . If A∩B = ∅ then
there is a vector v ∈ RN such that for all a ∈ A, b ∈ B,

v · a ≤ 0 < v · b.

Proof. By the Separating Hyperplane Theorem in the notes on Convex Sets, there
is a vector v ∈ RN and a number r ∈ R such that for all a ∈ A, b ∈ B,

v · a < r < v · b.

Since 0 ∈ A, this implies r > 0, hence v · b > 0. Moreover, for any a ∈ A and any
γ > 0, since A is a cone, v · (γa) < r, hence v · a < r/γ, which implies v · a ≤ 0. �

In separate notes, titled A Basic Separation Theorem for Cones, I prove a ver-
sion of Theorem 2 that takes B to be a singleton, B = {b}. This weaker version
is sufficient for many applications (including both the proof of the Karush-Kuhn-
Tucker Theorem and Theorem 3 below) and admits a somewhat more elementary,
self-contained proof.
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4 Farkas’s Lemma.

For the case in which B is a singleton, B = {b}, Theorem 2 implies the following
result, called Farkas’s Lemma, which reinterprets Theorem 2 as a statement about
matrices.

Theorem 3 (Farkas’s Lemma). Let M be an N ×K matrix. Then for any b ∈ RN ,
either

1. Mx = b has a solution x ∈ RK or

2. there is a v ∈ RK such that v′M ≤ 0 and v · b > 0.

Proof. Let A be the cone positively spanned by the columns of M . By Theorem
1, A is closed. Farkas’s Lemma then follows by Theorem 2. In particular, Mx = b
has a solution iff b ∈ A. v′M ≤ 0 iff v · a ≤ 0 for every a that is a column of M . �

5 Support for Pointed Cones.

Theorem 4 (A Supporting Hyperplane Theorem for Pointed Cones). Let A ⊆ RN
be a non-degenerate closed, convex, pointed cone. Then it is strictly supported at the
origin: there is a v ∈ RN such that if a ∈ A and a 6= 0 then v · a > 0.

Proof. Let A be a subset of a vector space, call it V . V is a vector subspace of some
RN . The proof is by induction on the dimension of V . Since A is non-degenerate,
this dimension is at least 1.

If the dimension of V is 1, then A is a half line containing the origin. Take
v to be any non-zero point in A and the result follows. Suppose, then, that the
theorem holds for any closed, convex, pointed cone contained in any vector space of
dimension K or less.

Suppose that V has dimension K + 1. Because A is pointed, the origin is not
interior to A. Therefore, by the standard Supporting Hyperplane Theorem restricted
to V , there is a v∗ ∈ V , v∗ 6= 0, such that v∗ ·a ≥ v∗ ·0 = 0 for all a ∈ A. If v∗ ·a > 0
for all a ∈ A, a 6= 0, then I am done.

Otherwise, the set A1 = {a ∈ A : v∗ ·a = 0} contains some a 6= 0. A1 is a closed,
convex, pointed cone since it is the intersection of A and the set V1 = {x ∈ V :
v∗ · x = 0}, which is a vector space and hence is a closed, convex cone. Since V has
dimension K + 1, V1 has dimension K. By the induction hypothesis, since A1 ⊆ V1,
there is a v1 ∈ V1 such that if a ∈ A1 and a 6= 0 then v1 · a > 0.

For t ∈ {1, 2, . . . }, let

vt = (1/t)v1 + (1− 1/t)v∗.
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I claim that there is a t such that, if a ∈ A and a 6= 0 then vt ·a > 0, which proves the
result. Equivalently, I claim that if there is a sequence (at) in A, at 6= 0, such that
vt ·at ≤ 0 for all t, then A is not closed, and the proof then follows by contraposition.

For any at ∈ A such that vt · at ≤ 0, and for any γ > 0, γat ∈ A (since A is
a cone) and vt · (γat) ≤ 0. Therefore, since at 6= 0 for all t, it is without loss of
generality to take at ∈ A ∩ S where S = {x ∈ RN : ‖x‖ = 1} is the unit sphere.

It remains to show that if there is a sequence (at) in A ∩ S such that vt · at ≤ 0
for all t then A is not closed. Since S is compact, (at) has a convergent subsequence
(atk) converging to, say, x∗ ∈ S. The proof follows if x∗ /∈ A.

I claim that v∗ · x∗ = 0. To see this, note the following.

• Since vt ·at ≤ 0 for all t, and vt → v∗, continuity of inner product implies that
v∗ · x∗ ≤ 0.

• Since S is compact and inner product is continuous, v1 · x attains a minimum
value on S; call this minimum value M . Then, since v∗ · at ≥ 0,

vt · at ≥ (1/t)M,

which implies, by continuity, that v∗ · x∗ ≥ 0.

Combining the above inequalities, v∗ · x∗ = 0.
Therefore, if x∗ ∈ A then x∗ ∈ A1. It remains, therefore, to show that x∗ /∈ A1.

For any a ∈ A1, a 6= 0, and for any t, vt · a > 0 (since, for a ∈ A1, a 6= 0, v1 · a > 0
and v∗ · a = 0). Therefore, for all t, since vt · at ≤ 0 and at 6= 0, at /∈ A1. Since
at 6= 0, this implies v∗ · at > 0. Since vt · at ≤ 0, it follows that v1 · at < 0. But then,
by continuity, v1·x∗ ≤ 0, which implies, since x∗ 6= 0, that x∗ /∈ A1, and I am done. �

Remark 2. As in the proof of Theorem 4, let V be a vector space containing A. By
the Supporting Hyperplane Theorem, there is a v ∈ V such that v · a ≥ 0 for all
a ∈ A. Let A∗ be the set of all such v. A∗ is called the dual cone of A. It is easy to
verify that the interior of A∗ (relative to V ) is exactly the set of v ∈ A∗ for which
v · a > 0 for all a ∈ A, a 6= 0. Theorem 4 is thus equivalent to showing that if A is
a closed, convex, pointed cone then A∗ has a non-empty (relative) interior. �

Remark 3. A partial converse to Theorem 4 is that if A is a non-degenerate cone
that is strictly supported at 0 then A is pointed. The argument is by contraposition.
Suppose A is not pointed. Then there is an a ∈ A, a 6= 0, such that −a ∈ A. Let
v be any vector that supports A at the origin. Then v · a ≥ 0 and v · (−a) ≥ 0,
implying v · a = 0: v does not strictly support A at the origin. �

Remark 4. If A is not closed then things become complicated. I give two examples.
Let A ⊆ R2 be the union of the open upper half plane {x ∈ R2 : x2 > 0} and

the closed half line {x ∈ R2 : x1 ≥ 0 and x2 = 0} (i.e., the non-negative x1 axis).
This is a convex, pointed cone that is not closed. The only vectors that support A
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at 0 are v = (0, 1) or any vector collinear with v. But v does not strictly support
A. For example, (1, 0) ∈ A but (0, 1) · (1, 0) = 0.

On the other hand, let Â ⊆ R2 be the union of the open half plane {x ∈ R2 :
x2 > 0} and the point {0}. Then this convex, pointed cone is strictly supported at
the origin, even though it is not closed. �

6 Separation for Pointed Cones.

Theorem 4 implies the following useful separation result.

Theorem 5 (A Separating Hyperplane Theorem for Pointed Cones). Let A be a
closed, convex, pointed cone and let B be a non-empty convex, compact set that is
disjoint from A. Then there is a v ∈ RN such that v · a < 0 for all a ∈ A, a 6= 0,
and v · b > 0 for all b ∈ B.

Proof. By the Separating Hyperplane Theorem, there is a v∗ ∈ RN and an r ∈ R
such that for all a ∈ A, b ∈ B,

v∗ · a < r < v∗ · b.

As in the proof of Theorem 2, this implies r > 0 and

v∗ · a ≤ 0 < v∗ · b.

This is close to, but somewhat weaker than, what I need.
By Theorem 4, A is strictly supported at the origin. Therefore, by taking the

negative of the supporting vector, there is a vA ∈ RN such that vA · a < 0 for any
a ∈ A, a 6= 0.

If vA · b > 0 for every b ∈ B then set v = vA and I am done. It is possible,
however, that vA · b ≤ 0 for some b ∈ B. Since B is compact and inner product
is continuous, there is a b∗ ∈ B that minimizes vA · b. Assume, therefore, that
vA · b∗ ≤ 0.

For θ ∈ (0, 1), let
vθ = θvA + (1− θ)v∗.

For any θ > 0, and any a ∈ A, a 6= 0, vθ · a < 0 (since v∗ · a ≤ 0 and vA · a < 0). If
vA · b∗ = 0 then, since v∗ · b > 0, v = vθ will satisfy the theorem for any θ ∈ (0, 1).
Otherwise, suppose vA · b∗ < 0. Then v = vθ will satisfy the theorem for any
θ ∈ (0, r/(r − vA · b∗)), since then

vθ · b = θ(vA · b) + (1− θ)(v∗ · b) > θ(vA · b∗) + (1− θ)r > 0.

�
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