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Reminder

Definition (matching polytope)

MP(G ) = conv{χM : M is a matching in G}.

Edmonds Polytope Theorem)

MP(G ) consists exactly of the vectors (xe)e∈E ∈ RE(G) that
satisfy the following three types of inequalities:

(Ee) : xe ≥ 0 ∀e ∈ E (G )

(Ev ) :
∑
e:vIe

xe ≤ 1 ∀v ∈ V (G )

(ES) :
∑
e⊆S

xe ≤
|S | − 1

2
∀S ∈ O
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The Problems

The description of MP(G) in the Edmonds theorem contains
|V (G )|+ |E (G )|+ 2|V (G)|−1 inequalities. That is exponentially
many inequalities needed.

Some of these may be redundant (we saw that for bipartite G this
can lead to significant simplification), but the polytope is generally
complicated (the number of required inequalities is exponential in
the number of vertices and edges of the graph).
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The Basic Question

Can we test quickly whether a given x ∈ RE(G) is an element of
MP(G)? Let’s complicate things a bit:

The Basic Question

Find an efficient algorithm that, given a x ∈ QE(G), outputs either
the true information that x is an element of MP(G), or a defining
inequality violated by the x vector.

By efficient we mean polynomial time in the size of G . So the
naive algorithm (substitute x coordinates into every inequality and
after checks announce the result) won’t do.
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The Obvious Part

The algorithm for testing whether x falls into the Edmonds
polytope is, of course, straightforwardly started:

The Start

Check inequalities (Ev ) and (Ee).

Two possibilities arise:

• We get an inequality violated by x ,

• All (Ev ) and (Ee) inequalities are satisfied by x .

In the first case, we’re done, as we now know that x /∈MP(G )
and have found a violated inequality.

So for the rest, we can assume that the (Ev ) and (Ee) inequalities
hold for the vector x to be tested.
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Edge Weighted Graphs

We switch to a new notation and perspective.

x ∈ RE means that x is a vector, its coordinates correspond to the
edges. xe is the component of x corresponding to edge e. xe can
also be interpreted as the weight of edge e. We’ll use this
perspective henceforth.

So (xe)e∈E ∈ RE(G) is an edge-weighted graph.

We assumed the weights to be non-negative. At every vertex, the
sum of weights of incident edges is at most 1.
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Vector vs Function Perspective

Edge weighting can also be naturally thought of as a function
x : E (G )→ R+ (we know that x satisfies the (Ee) inequalities).
So x(e) = xe will denote the weight of edge e.

For a subset F ⊂ E (G ), we use the notation

x(F ) =
∑
e:e∈F

xe =
∑
e:e∈F

x(e)

If R ⊂ V (G ), then

x(R) =
∑

e:e=xy∈E(G),x ,y∈R

xe =
∑

e:e=xy∈E(G),x ,y∈R

x(e)

notation is also used.

At first glance, these conventions may be confusing. The meaning
of x(·) depends on whether the parentheses contain an edge, an
edge set, or a vertex set. Let’s take the time and effort to get used
to it.
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Observation

Observation

2|V | inequalities

x(R) :=
∑
e⊆R

xe ≤
|R|
2

∀R ∈ P(V )

each is implied by the (Ev ) and (Ee) inequalities.

Summarizing, the (ES) conditions only mean that the above
estimate (which holds for every vertex set) can be sharpened by
1/2 for subsets with odd cardinality.
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Proof of Observation

Sum up the inequalities ∑
e∈E :vIe

xe ≤ 1, v ∈ R

The result is ∑
e=uv∈E :u∈R,v 6∈R

xe + 2 · x(R) ≤ |R|.

In the following,

∂R := {e = uv ∈ E : u ∈ R, v 6∈ R}, x(∂R) :=
∑

e=uv∈E :u∈R,v 6∈R
xe

notations are used.

Since the components of x are non-negative, for any vertex set R

2 · x(R) ≤ x(∂R) + 2 · x(R) ≤ |R|, thus x(R) ≤ |R|
2
.
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The First Goal

The testing of the (ES) conditions needs to be performed on any
edge-weighted graph (G , x) for which the (Ev ) and (Ee) conditions
are satisfied.

1st Goal

We show that if this problem is solved for non-negative vectors
where all (Ev ) conditions are satisfied with equality, then the
general problem can be solved.

Given a non-negative edge weighting, assuming that for every
vertex the sum of weights of incident edges is at most 1.

From a (G , x) construct a G̃ , x̃ pair, which already satisfies the
(Ev ) inequalities with equality (the sum of weights of incident
edges at each vertex is exactly 1).
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The Reduction

• Take the graph G and a copy of it, G ′.

• Consider a complete matching between the twin vertices. The x̃
weighting in G and G ′ is the same as x , and the crossing edges’
weight in x̃ is

x̃vv ′ = 1−
∑

e∈E(G),vIe

xe , ∀v ∈ V .

• This quantity is non-negative due to the (Ev ) condition, so the
sign conditions hold for the G̃ , w̃ pair, and moreover, the (Ev )
inequalities are satisfied with equality.

Claim supporting the 1st Goal

For (G , x), then all (ES) conditions hold if and only if they hold for
(G̃ , x̃).
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Odd Vertex Sets in G̃

One direction of the claim is obvious:

If for (G , x) any (ES) condition is false, then the same S set
(which is also a subset of V (G̃ )) will violate the conditions in G̃ .

We only need to prove that if for (G , x) all (ES) conditions are
true, then these also hold for G̃ .

To do this, take an odd cardinality set S from V (G̃ ).

Notation

Let S ⊂ V (G̃ ) be arbitrary. R = S ∩ V (G ) and T ′ = S ∩ V (G ′)
are the two parts of set S . Think of T ′ as a twin of a vertex set
T ⊂ V (G ).

If S has an odd cardinality, then one of S and T is odd, and the
other has an even cardinality.
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Case 1

Case 1: R ∩ T = ∅.
R

T

G G
,

,

The red edges are edges inside a set with an odd number of elements, the
blue edges are edges inside a set with an even number of elements.

This is a straightforward case. Then the set of edges E (R) inside R
and the set of edges E (T ′) inside T ′ together give the set of edges
E (S) inside S . Specifically, x(S) = x(R) + x(T ′) = x(R) + x(T ).

We can estimate x(R) and x(T ) by |R|/2 and |T |/2, respectively,
and even the upper bound sharpened by 1/2 for the set with an
odd cardinality.
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Case 2

Case 2: M := R ∩ T 6= ∅.

M M

G G
,

,

K=T-M

D=R-M

, ,

R

T
,

,

The red edges are edges inside a set with an odd number of elements, the
blue edges are edges inside a set with an even number of elements. The
green edges are the edges E (R −M,M) and E (R ′ −M ′,M ′), part of the
boundary ∂(M ∪M ′ ∪ K ′). This boundary is included in an inequality
derived from (Ev ) and (Ee) inequalities earlier.

We can assume that D ⊂ V (G ) is a set with an odd number of
elements:

x(D) ≤ |D| − 1

2
.
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Case 2 (continued)

We will be more cautious when estimating x(M ∪M ′ ∪ K ′).

x(M ∪M ′∪K ′) +
1

2
(x(∂G (M) +∂G ′(M

′∪K ′)) ≤ |M|+ |M
′|+ |K ′|

2

inequality is used, which we derived from the (Ev ) and (Ee)
inequalities.

Regarding the previously neglected, halved term, it is obvious that

x(E (D,M)) ≤ 1

2
(x(∂G (M) + ∂G ′(M

′ ∪ K ′)),

where E (D,M) is the number of edges crossing between D and M.

Combining these two inequalities yields the desired result
straightforwardly.

We have thus obtained that testing the (ES) inequalities is
equivalent for (G , x) and (G̃ , x̃).
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Break
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Cuts

• In what follows, we only deal with edge-weighted (G , x) graphs
where the (Ev ) inequalities hold with equality, that is, for every
v ∈ V (G ) vertex ∑

e∈E :vIe

xe = 1,

and the vertex set has an even cardinality.

• Our previous derivation can be repeated (now with equalities):

2
∑

e=xy∈E :x ,y ,∈S
xe +

∑
e∈∂S

xe = |S |.

• We change the language slightly: ∂S is the boundary of set S .
However, this can be regarded as the edge set E (V) of the cut
V = (S ,S). Let x(V) = x(E (V)). The V cut is odd if both its
sides are sets with an odd cardinality (we already assume G has an
even number of vertices).
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Reformulation

• We obtained that for every odd V cut

x(V) = |S | − 2x(S) = 2

(
|S | − 1

2
− x(S)

)
+ 1.

That is
|S | − 1

2
− x(S) =

x(V)− 1

2
.

• Accordingly, all (ES) inequalities hold if and only if the weight of
every edge set of an odd cut V is at least 1.

Goal 2

Given an edge-weighted, non-negative, and even-sized graph
(G , x). Determine efficiently the minimum weight odd cut.

• If Goal 2 is achievable, then it implies solving the Edmonds’
polytope testing problem.
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Related Cut Problems

• If we seek min
V cut

x(V), this can be easily done using flow theory.

• However, if we seek min
V=(S,T ),|S |=|T |

x(V), this is an

NP-complete problem.

• Thus, if we impose oddness on V, the complexity of our
question is not clear.

• If our vertex set has an odd cardinality, then one side of every
cut would be odd. Thus, determining the minimum weight
among odd sets would be equivalent to searching among all
subsets.
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The New Problem

So, we have reduced the fundamental problem (testing MP(G ))
to determining the minimum weight odd cut (or minimizing a
weighted boundary between odd sets):

Minimize w(V)-t

subject to V is an odd cut

• Given a graph G and a non-negative weighting w , with
n = |V (G )| even.

• We seek the minimum weight (minimize the total weight of
crossing edges) odd cut (both sides contain an odd number of
vertices).

• The initial LP formulation made the use of x natural for
weighting. However, w is the most common notation for
weight. We switch to it now.

• Solving this efficiently requires introducing a new concept.
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Gomory–Hu Tree

Consider a tree F on V (G ). Then F has n − 1 edges, and note
that deleting any edge of F separates F into two components. If e
was the deleted edge, let the vertex sets be Se and Te . Then
Ve = (Se ,Te) is a cut.

Definition

The tree F is a Gomory–Hu tree if for every e = xy ∈ E (F ) the
cut (Se ,Te) is w -optimal as an xy cut in G , meaning

min
(S,T ) xy cut

w(∂S) = w(∂Se)

The T tree is a graph on the vertex set of G . However, its edges
have nothing to do with G . It is not necessarily a subgraph.
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What’s the Use of Gomory–Hu Trees?

That is, a Gomory–Hu property of a tree F is composed of n − 1
conditions. Each edge of F imposes one condition. These n − 1
conditions are about the optimality of cuts.

Beyond explicit optimality in the definition, additional information
can be extracted from a Gomory–Hu tree.
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Actually, We Have
(
n
2

)
Optimal Cuts

Lemma

Given a Gomory–Hu tree F , then for every pair of vertices
x , y ∈ V , among the n − 1 cuts determined by F , there is a
minimum xy cut.

Let x , y ∈ V be arbitrary. There exists a unique xy path in F . Let
the edges on this path be e1, e2, . . . , e`, and the cuts associated
with these edges be V1,V2, . . . ,V`.

Observation

Each V1,V2, . . . ,V` separates x and y .

Let V be the minimum weight cut among V1,V2, . . . ,V` that is an
xy cut.

Stronger Lemma

V is an optimal xy cut.
Péter Hajnal TestingMP(G), SzTE, 2024
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Proof of the Stronger Lemma

Assume (for contradiction) that Vopt is a minimum weight xy cut,
and

w(Vopt) < w(V)

Then there exists an edge ei such that its endpoints belong to
different sides of Vopt .

But since F is a Gomory–Hu tree, Vi is an optimal cut separating
the endpoints of ei .

Thus,
w(Vopt) ≥ w(Vi ) ≥ w(V),

a contradiction.

This establishes the claim and hence the lemma.
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Further Information in a Gomory–Hu Tree

Let (G ,w) and F be given as a Gomory-Hu tree. This defines
n − 1 cuts, each pair has an optimal separator.

We assumed |V | is even: There are both even-even and odd-odd
cuts. (If |V | were odd, then all cuts would be even-odd.)

Remark

Among the n − 1 cuts determined by F , there must be an odd-odd
cut. Indeed, an edge adjacent to a leaf corresponds to a cut where
one side has 1 vertex and the other has n − 1.

Theorem

Among the n − 1 cuts implied by F , the smallest weight odd-odd
cut exists.
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Proof of the Theorem

Let O be an optimal odd set.

V (G ) = V (F ). For every e ∈ ∂FO, consider the cut Ve = (Se ,Te)
determined by F , where Se contains the endpoint of e outside O.

We use the notation S−→e where e ∈ E (F ). e determines (with F ) a
cut, S denotes the side referred to as S set by this cut. That is, an
edge of the tree F defines a cut. The orientation shows which side
is referred to as S set.
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Proof of the Stronger Theorem

∑
e∈∂FO

|S−→e | ≡
(mod 2)

∑
x∈O, e∈E(F ),
−→e points out of x

|S−→e | =

=
∑
x∈O

∑
e∈E(F )
−→e =−→xu

|S−→e | =
∑
x∈O

(|V | − 1) ≡
(mod 2)

1.

The first congruence holds because the extra terms in the sum
come in pairs (one for each e edge adjacent to O), and each pair
contributes |V |, which is even.

The second congruence holds because an odd number of odd
numbers is being summed up.
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Where Are We?

• Introduced the concept of Gomory–Hu trees.

• If we have a Gomory–Hu tree in a graph with an even number of
vertices, then it’s easy to extract an optimal odd cut.

• This allows us to test whether a nonnegative weighting belongs
to MP(G ), provided each vertex has a weight sum of 1.

• Thus, every vector in RE(G) can be efficiently tested.

3rd Goal ≡ Gomory–Hu Theorem

For every G , w , there exists a Gomory–Hu tree F , and one can be
computed in polynomial time.

Consequence

Given a graph G and w ∈ QE(G), there exists a polynomial-time
algorithm to decide whether w is an element of MP(G ); if not, it
provides an Edmonds condition violated by w .
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Break Time
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Introductory Lemma

Lemma

The mapping f = w ◦ ∂ : P(V )→ R+

(i) is symmetric, i.e., f (S) = f (S) ∀S ⊆ V ,

(ii) is submodular, i.e.,
f (S) + f (T ) ≥ f (S ∩ T ) + f (S ∪ T ) ∀S ,T ⊆ V ,

(iii) is posimodular, i.e.,
f (S) + f (T ) ≥ f (S \ T ) + f (T \ S) ∀S ,T ⊆ V .
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Proof

(i): Symmetry is clear since ∂S = ∂S .

(ii): Submodularity holds: Summing weights on both sides. In the
left expression, each edge is counted at least as many times as in
the right expression (by case analysis). Since weights are
nonnegative, the inequality holds.

(iii): Posimodularity follows from the previous two properties:

f (S)+f (T ) = f (S)+f (T ) ≥ f (S∩T )+f (S∪T ) = f (S\T )+f (T \ S) =

= f (S \ T ) + f (T \ S).
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The Main Lemma

Main Lemma

Let V be an xy optimal cut and x ′, y ′ vertices. Then there exists a
V ′ x ′y ′ cut, which is x ′y ′ optimal, and V and V ′ are non-crossing
cuts.

Definition

The cuts (S ,T ) and (S ′,T ′) are crossing cuts if
S ∩ S ′, S ∩ T ′,T ∩ S ′,T ∩ T ′ 6= ∅.

This is equivalent to saying that cuts (S ,T ) and (S ′,T ′) are
non-crossing cuts if S ⊆ S ′ or S ′ ⊆ S or S ∩ S ′ = ∅.
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Proof of the Main Lemma

Let V ′ be any x ′y ′ optimal cut. Suppose V and V ′ are crossing
cuts. Two cases arise.

Case 1: x ′, y ′ are on the same side of V (suppose this is the x
side). Let x ′ and y ′ be renamed such that x ′ falls on the same side
of x as x ′.

Case 2: x ′, y ′ are on different sides of V (suppose x ′ falls on the
side of x).

Péter Hajnal TestingMP(G), SzTE, 2024
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Proof of the Main Lemma: Case 1

Two more subcases are possible here (diagrams above) depending
on whether V ′ cuts x and y or not.

Among the cuts marked in red on the figure, one is an xy cut (let
this be V∗), and the other is an x ′y ′ cut (let this be V∗∗).
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Proof of the Main Lemma: Case 1 (Continued)

Then by submodularity, or posimodularity (depending on which
case we are in and how we label the S sides), we have

f (V) + f (V ′) ≥ f (V∗) + f (V∗∗)

However, equality must hold, since V and V ′ were optimal/minimal
cuts and “performing their task” V∗ and V∗∗ also do. So,

f (V ′) = f (V∗∗)

and V∗∗ does not cross V, thus V∗∗ fulfills the desired property.
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Proof of the Main Lemma: Case 2

If V ′ separates x and y , then V ′ can be chosen as V, and we are
done (a cut does not cross itself).

If V ′ does not separate x and y , then similarly as in the Case 1,
another x ′y ′ optimal cut can be found that does not cross V:

Figure
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Start of Our Algorithm: Bisection

Let’s arbitrarily choose two vertices, let them be x and y .
Determine the optimal xy cut. Let this be (S ,T ) such that x ∈ S
and y ∈ T .

We bisect G : Let G/T be the graph whose vertices are the vertices
in S plus one meta-vertex mT , representing T , and edges are the
edges within S plus the edges incident to ∂S , where each edge
from ∂S is connected to mT instead of its original endpoint in T .

The definition of G/S is similar, except here mS is the new
meta-vertex.
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Bisection on a picture

Figure: The initial bisection
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The Algorithm: Recursive Bisection

Finally, we connect the two parts with one meta-edge, fitting onto
mT and mS .

Then we continue bisecting the two parts until we can:

Gomory–Hu Algorithm: Recursive Bisection Algorithm

Perform the initial bisection.

While each part contains at least 2 original vertices, repeat the
bisection (the vertices x and y defining the bisection are always
original vertices).
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The Gomory–Hu Algorithm in a Figure

Figure: The meta-vertices are circled in red, and the edges passing
through them are the meta-edges. x and y define the original V cut.
Only one edge from the computed tree passes through this cut. This
edge is not necessarily the xy edge.
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What’s the Output?

• At the end of the recursion, we have bisected the graph into
parts such that each part contains exactly one original vertex.

• Thus, the parts computed by the algorithm are identified with
the vertices.

• The meta-edges connect different parts corresponding to
different vertices.

• So, the meta-edges can be viewed as the edges between the
original vertices.

• These meta-edges constitute the computed graph (on the
vertex set of G ).
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Where’s the Tree? ... Found It!

Observation

The graph computed by the Gomory–Hu algorithm is a tree.

Indeed:

• We compute an n − 1 edge graph on n vertices.

• It is clear from the recursion (and can be formally proved by
induction) that the output is a connected graph.
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Correctness of the Gomory–Hu Algorithm

Theorem

The tree computed by the Gomory–Hu algorithm is a Gomory–Hu
tree.

The assertion is to show that each cut defined by a meta-edge is
an optimal separation of its endpoints. That is, we need to prove
n − 1 statements.
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Cuts of Our Graph Compared to the Base Cut

Let V be the cut corresponding to the initial bisection. The cuts of
G can be grouped as follows:

1. Crossing cuts with V,

2. Non-crossing cuts with V ′:
a) V ′ = V
b) V ′ = (S ′,T ′), S ′ ( S
c) V ′ = (S ′,T ′), T ′ ( T

Observation

The cuts of G/T can be paired with V and cuts of type 2.b), while
cuts of G/S can be paired with V and cuts of type 2.c). All cuts in
G/T and G/S are present in either G\T or G\S (and nowhere
else).
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Proving Correctness: Induction

• We proceed with induction, proving recursively.

• The base case is obvious.

• From the n− 1 assertions, (|S |− 1) + (|T |− 1) = |V |− 2 = n− 2
edges come from the Gomory–Hu tree of G\S and G\T .
According to the recursion, these apply to the graphs G\S and
G\T , so we have optimality there.

•

Figure: By the main lemma, x ′y ′ (and hence all blue edges) satisfies the
requirements from the Gomory–Hu tree.
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The Main Edge

The only issue is with the red edge (arising from the initial
bisection).

The crosscut of the Gomory–Hu tree crosses x ′y ′. This is the
only edge in F where we don’t yet know the assertion. The
problem is that we chose an optimal xy cut for the initial bisection.
However, the bisection led to an x ′y ′ crosscut, and it’s possible
that x 6= x ′ and y 6= y ′.

The meta-vertices are circled in red, and the edges passing through them
are the meta-edges. x and y define the original V cut. Only one edge
from the computed tree passes through this cut. This edge is not
necessarily the xy edge.
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The Last Remaining Assertion

Assertion

The cut of x ′y ′ edge (S ,T ) = V (which was chosen as the
w -optimal xy cut) is also a w -optimal x ′y ′ cut.

We prove this by contradiction. Assume there exists a V ′
w -optimal x ′y ′ cut such that w(V ′) < w(V).

From the main lemma, we know that V ′ = (S ′,T ′) can be chosen
such that S ′ ⊂ S or T ′ ⊂ T . We may assume S ′ ( S .
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Continuation of the Last Remaining Assertion Proof

Observation

It cannot be that V ′ doesn’t separate x and x ′.

Figure

That is, it cannot be that x and x ′ are on the same side while the
entire T is on the other side, including y .

In this case, V ′ would be an xy cut, which is a contradiction. V ′
separates x and x ′.
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Continuation of the Last Remaining Assertion Proof

Observation

G/T has a w -optimal xx ′ cut in its Gomory–Hu tree.

The V ′′ cut has x on one side, x ′ and mT on the other side (where
x ′ and mT stick together after bisections, hence the F crosscut fits
onto x ′).

By our initial observation, V ′′ corresponds to a cut Ṽ ′′ in G . From
the above, this is an xy cut, with weight smaller than V’s weight,
which contradicts.

The contradiction proves the assertion, the only missing piece in
proving the correctness of the Gomory–Hu algorithm.
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Summary

Gomory–Hu Theorem

For every (G ,w), there exists a Gomory–Hu tree F , which can be
computed by determining n − 1 minimal st cuts, achievable by
applying the flow algorithm n − 1 times. Specifically, the
Gomory–Hu algorithm is polynomial.
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This is the End!

Thnak you for your attention!
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