Geometry of linear programming

Péter Hajnal

2024. Fall

Péter Hajnal Geometry of LP, SzTE, 2024

Basics of Linear Programming

• There exist various normal forms. The one we most commonly use is the following:

Minimize	c [⊤] x-t
subject to	$Ax \preceq b$

where $c \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$.

• In this normal form, only linear inequalities are allowed among the constraints.

• Another common normal form is:

Minimize
$$c^{\mathsf{T}}x$$
-tsubject to $Ax = b$, $x \succeq 0.$

LP Duality

LP Duality

For any LP problem, exactly one of the following two conditions holds:

(i) p* = d*, i.e., strong duality holds,
(ii) d* = -∞ < ∞ = p*.

• For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^* = d^* \in \mathbb{R}$.

• If $p^* = -\infty$, weak duality guarantees strong duality.

• The only loophole for an LP problem to evade strong duality is to have $p^* = \infty$ and $d^* = -\infty$. That is, both primal and dual problems are infeasible. This possibility is not theoretical; it can occur in concrete examples.

Solution Set of a Linear Equation

LINEAR ALGEBRA	GEOMETRY
$v \in \mathbb{R}^n$ is a vector.	V is a point in \mathbb{R}^n , its position vector is v.
$\nu \in \mathbb{R}^n - \{0\}$. $\nu^T x = 0$ is a non- trivial, homogeneous linear equa- tion solution set.	$\nu \in \mathbb{R}^n - \{0\}$ is a normal vector. $\nu^T x = 0$ is the equation of vectors perpendicular to ν . It describes a hyperplane passing through the origin O .
$\nu \in \mathbb{R}^n - \{0\}, \ b \in \mathbb{R}. \ \nu^{T} x = b$ is a nontrivial linear equation solution set.	$\nu \in \mathbb{R}^n - \{0\}$ is a normal vector. $\nu^T x = b = \nu^T v_0$ is the equation of vectors perpendicular to ν and passing through v_0 .

Solution Set of Linear Inequalities

_

LINEAR ALGEBRA	GEOMETRY
$\nu \in \mathbb{R}^n - \{0\}$. The solution set of the non-trivial linear ho- mogeneous inequality $\nu^{T}x \leq 0/\nu^{T}x \geq 0$ is not trivial.	$\nu \in \mathbb{R}^n - \{0\}$ is a normal vector. The inequality $\nu^T x \leq 0/\nu^T x \geq 0$ defines a CLOSED half-space bounded by a hyperplane passing through the origin and perpendicular to ν .
$\nu \in \mathbb{R}^n - \{0\}, b \in \mathbb{R}$. The solution set of the non-trivial linear inequality $\nu^T x \leq b/\nu^T x \geq b$ is not trivial.	$\nu \in \mathbb{R}^n - \{0\}$ is a normal vector. The inequality $\nu^T x \leq b = \nu^T v_0 / \nu^T x \geq b$ defines a CLOSED half-space bounded by a hyperplane passing through v_0 and perpendicular to ν .

Formal Definitions

Definition

Let $\nu \in \mathbb{R}^n$ be a nonzero vector, τ any real number. Then the set $\{x \in \mathbb{R}^n : \nu^T x = \tau\}$ is called a hyperplane in \mathbb{R}^n . The sets of the form $\{x \in \mathbb{R}^n : \nu^T x \leq \tau\}$ are called (closed) half-spaces.

Remark

Every hyperplane defines two closed half-spaces, which share the same boundary.

Lemma

Half-spaces and hyperplanes are convex.

Solution Sets of Inequality Systems

LINEAR ALGEBRA	GEOMETRY
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $Ax = 0$.	Intersection of finitely many hyper- planes passing through the origin \equiv <i>linear subspace</i> .
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^k$. Solution set of the linear equation system $Ax = b$.	Intersection of finitely many hyper- planes \equiv affine subspace.
$A \in \mathbb{R}^{k \times n}$. Solution set of the ho-	Intersection of finitely many closed
mogeneous linear inequality system $Ax \leq 0$.	half-spaces passing through the origin \equiv polyhedral (closed, con- vex) cone.
mogeneous linear inequality system	half-spaces passing through the origin \equiv polyhedral (closed, con-

Formal Definitions

Definition: Linear Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}$ be a system of real numbers. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the linear combination of the v_i vectors.

Definition: Linear Subspace of \mathbb{R}^n

 $\mathcal{L} \subset \mathbb{R}^n$ is a linear subspace if $0 \in \mathcal{L}$ and closed under linear combination.

Example

Example: Finitely Generated Linear Subspace

$$\langle v_1, v_2, \dots, v_N \rangle_{\mathsf{lin}} = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_N v_N : \lambda_i \in \mathbb{R}\}$$

Formal Definitions (continued)

Definition: Affine Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}$ be a system of real numbers such that $\lambda_1 + \lambda_2 + \ldots + \lambda_N = 1$. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the affine combination of the v_i vectors.

Definition: Affine Subspace of \mathbb{R}^n

 $\mathcal{A} \subset \mathbb{R}^n$ is an affine subspace if closed under affine combination.

Example

Example: Finitely Generated Affine Subspace $\langle v_1, v_2, \dots, v_N \rangle_{\text{affine}} = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_N v_N : \lambda_i \in \mathbb{R}, \sum_i \lambda_i = 1\}.$

Formal Definitions (continued)

Definition: Cone Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}_+$ be nonnegative real numbers. Then

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$$

is called the cone combination of the v_i vectors.

Definition: Cone in \mathbb{R}^n

 $\mathcal{C} \subset \mathbb{R}^n$ is a (convex) cone if closed under cone combination.

Example

Example: Finitely Generated Cone $\langle v_1, v_2, \dots, v_N \rangle_{cone} = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_N v_N : \lambda_i \in \mathbb{R}_+\}.$

Formal Definitions (continued)

Definition: Convex Combination of Vectors

Let $v_1, v_2, \ldots, v_N \in \mathbb{R}^n$ be vectors in a finite system and $\lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}_+$ be nonnegative real numbers such that $\lambda_1 + \lambda_2 + \ldots + \lambda_N = 1$. Then

 $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_N v_N$

is called the convex combination of the v_i vectors.

Definition: Convex Set in \mathbb{R}^n

 $\mathcal{K} \subset \mathbb{R}^n$ is a convex point set if closed under convex combination.

Example

Example: Finitely Generated Convex Set $\langle v_1, v_2, \dots, v_N \rangle_{convex} = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_N v_N : \lambda_i \in \mathbb{R}_+, \sum \lambda_i = 1\}.$

Theorems

Theorem

Let $0 \in \mathcal{L} \subset \mathbb{R}^n$. Then the following are equivalent:

- (i) Closed under line joining.
- (ii) Closed under linear combination.
- (iii) Solution set of Ax = 0 for some $A \in \mathbb{R}^{k \times n}$.
- (iv) Finitely generated linear subspace.

Theorem

Let $\mathcal{A} \subset \mathbb{R}^n$. Then the following are equivalent:

- (i) Closed under line joining.
- (ii) Closed under affine combination.
- (iii) Solution set of Ax = b for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$.
- (iv) Finitely generated affine subspace.

Theorems (continued)

Minkowski-Weyl Theorem

Let $\mathcal{C} \subset \mathbb{R}^n$. Then the following are equivalent:

- (i) Solution set of $Ax \leq 0$ for some $A \in \mathbb{R}^{k \times n}$.
- (ii) Finitely generated cone.

Fundamental Theorem of Polytopes

Let $\mathcal{T} \subset \mathbb{R}^n$. Then the following are equivalent:

- (i) Bounded polyhedron (\equiv polytope).
- (ii) Finitely generated convex set.

Minkowski-Weyl Theorem

- Let $\mathcal{P} \subset \mathbb{R}^n$. Then the following are equivalent:
 - (i) Polyhedron, i.e., solution set of $Ax \leq b$ for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$.
- (ii) T + C, where T is a polytope/finitely generated convex set and C is a polyhedral/finitely generated cone.

Nice Polyhedrons

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in \mathbb{R}^n : $\mathcal{P} = \{x : Ax \leq b\}$. Then the following are equivalent:

- (i) Not nice. That is, there exists a nonzero vector v such that for some p ∈ P, the line in the direction of v through p is a subset of P.
- (ii) There exists a nonzero vector v such that for every $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P} .
- (iii) The row rank of A is less than n (number of columns/dimension/number of variables).

(iv) $\operatorname{ext} \mathcal{P} = \emptyset$.

Further Decomposition Theorems

• When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called *pointed cones*.

• These are exactly those cones for which there exists a hyperplane passing through the origin, such that all nonzero vectors of the cone lie strictly on one side of it. (This needs to be proved!)

• Every cone is a sum of a linear subspace and a pointed cone.

Theorem

Let $\ensuremath{\mathcal{P}}$ be an arbitrary polyhedron. Then

$$\mathcal{P} = \mathcal{T} + \mathcal{C}_{\mathsf{pointed}} + \mathcal{L},$$

where ${\cal T}$ is polytope, ${\cal C}_{pointed}$ is a pointed cone, and ${\cal L}$ is a linear subspace.

Break

Vertices of Polyhedra

LINEAR ALGEBRA	GEOMETRY
	If the polyhedron $\mathcal{P} : Ax \leq b$ is contained in the half-space $\mathcal{F} : \nu^{T}x \leq \beta$ and $\mathcal{P} \cap \mathcal{H} \neq \emptyset$, where $\mathcal{H} : \nu^{T}x = \beta$ (that is, \mathcal{F} is a closed half-space border), then \mathcal{F} is a half-space and the hyperplane \mathcal{H} is the supporting face, or supporting hyperplane, of the polyhedron \mathcal{P} .
A solution m of a linear inequality system $Ax \leq b$ (assuming A has no zero rows) is exactly an interior point of m (and any neighborhood of m contains only solutions) if every con- dition is satisfied with strict inequali- ties. That is, every condition is tight.	The boundary points of a polyhedron \mathcal{P} are those points that have both \mathcal{P} - interior and \mathcal{P} -exterior points in ev- ery neighborhood. The set of bound- ary points, or the boundary itself, is denoted by $\partial \mathcal{P}$. The polyhedron \mathcal{P} is closed, thus $\partial \mathcal{P} \subseteq \mathcal{P}$.
	Commentary of LD S-TE 2024

Péter Hajnal

Boundary Points Revisited

Theorem

A polyhedron is a closed, convex set.

• If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^n$ as solutions or none at all. In a special case $(A = 0 \in \mathbb{R}^{k \times n}, b = 0 \in \mathbb{R}^k)$, the entire space is a polyhedron. The empty set is also a polyhedron.

• Even in two dimensions, it is easy to give a closed set and a point on its boundary such that no supporting hyperplane can be placed on it. This is not the case in the convex setting.

Theorem

Let $K \subseteq \mathbb{R}^n$ be a closed convex set. The following are equivalent: (i) $p \in \partial K$, (ii) $p \in K$ and a supporting hyperplane can be placed on it.

Faces of Polyhedra

Definition

Let K be a closed convex set. A face of K is a subset of its boundary that can be intersected by an appropriate supporting hyperplane.

• Of course, faces are also closed, convex sets, subsets of ∂K .

Definition

Let K be a convex set and F be a face. Let aff(F) be the affine hull of the set F, i.e., the smallest affine subspace containing F. The dimension of F is dim(aff(F)).

Special Faces: Vertices

Theorem

Let $\mathcal{P}: \{x : Ax \leq b\} \subset \mathbb{R}^n$ be a polyhedron, $e \in \mathcal{P}$. Then the following are equivalent:

- (i) There exists a supporting hyperplane that intersects \mathcal{P} only at e.
- (ii) There is no line segment in \mathcal{P} that contains e as an interior point.

(iii) Let $I = \{i : a_i^T e = b_i\}$. Then I is such that $\{a_i : i \in I\}$ spans \mathbb{R}^n .

General Faces

• The surfaces of polyhedra are formed by the faces. We've only looked at the vertices in a bit more detail.

Definition

Let \mathcal{P} be a polyhedron, $p \in \partial \mathcal{P}$

$$C_{p} := \{ \nu \in \mathbb{R}^{n} \setminus \{0\} : \exists \alpha \in \mathbb{R} \text{ such that} \\ \{ x : \nu^{\mathsf{T}} x \leq \alpha \} \supseteq \mathcal{P} \text{ and } \nu p = \alpha \} \cup \{\underline{0}\}.$$

Lemma

 C_p is a convex cone.

Special Faces: Vertices (again)

• The cone associated with boundary points provides a new, alternative description of the vertices.

Theorem

Let \mathcal{P} be a polyhedron, $\mathcal{P} = \{x \colon Ax \preceq b\}, \ p \in \partial \mathcal{P}$. The following are equivalent:

(i) p ∈ ext(P),
(ii) C_p has an interior point (in ℝⁿ),
(iii) there exist row vectors a^T_{i1}, a^T_{i2}, ..., a^T_{in} in A such that

(1) they are linearly independent,
(2) a^T_{ij} p = b_{ij} for every j = 1, 2, ..., n.

• That is, C_p is full-dimensional if and only if p is a vertex. Generally, the dimension of C_p determines the dimension of the interior point of the boundary p point.

Refinement of Minkowski-Weyl Theorem

• Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, $\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$.

• If $\mathcal P$ is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

Theorem

Let
$$\mathcal{P} = \{x \in \mathbb{R}^n : Ax \leq b\}$$
 be an arbitrary nice polyhedron.

Let $C = \{x \in \mathbb{R}^n : Ax \leq 0\}$ be a polyhedral/cone.

Let $\mathcal{T} = \langle ext(\mathcal{P}) \rangle_{conv}$ be a finitely generated convex set/polytope. Then

$$\mathcal{P}=\mathcal{T}+\mathcal{C}.$$

Break Time

LP Geometrically

• The fundamental task of LP is to minimize a linear function, $c^{T}x$, over a polyhedron.

• The level sets of $c^{\mathsf{T}}x$ are hyperplanes.

• A lower bound, λ , on the objective function over a non-empty polytope \mathcal{P} means that the half-space $\{x : c^{\mathsf{T}}x \geq \lambda\}$ contains the polyhedron \mathcal{P} .

• The half-space $c^{\mathsf{T}}x = \lambda$ lies on one side of \mathcal{P} .

• The minimal objective value is attained when λ is increased (pushing the hyperplane towards \mathcal{P}) until the moving hyperplane touches \mathcal{P} .

 \bullet Then ${\mathcal P}$ supports the hyperplane. The supporting points are the optimal points.

Optimal Points and Vertices

Theorem

Let $\mathcal{P} = \{x : Ax \leq b\}$ be a non-empty nice polyhedron. Consider the

Minimize	c [⊤] x-t
subject to	$Ax \preceq b$,

LP problems (where c varies).

Then

- (i) For every $c \in \mathbb{R}^n$, either $p^* = -\infty$ or there exists $x \in ext(\mathcal{P})$ as an optimal point.
- (ii) For every $x \in ext(\mathcal{P})$, there exists c such that x is the unique optimal point.

Proof

(i) We know that P = T + C, where T is a polytope and C is a cone.

- Assume $p^* \neq -\infty$.
- Let *o* be an optimal point: $o \in \mathcal{P} = \mathcal{T} + \mathcal{C}$, i.e., o = t + k, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^{\mathsf{T}}k \geq 0$.
- Indeed. For $\alpha \ge 0$, $\alpha k \in C$, so $t + \alpha k \in P$. If $c^{\mathsf{T}}k < 0$, then the objective function can take arbitrarily small values.
- If $c^{\mathsf{T}}k \ge 0$, we can assume k = 0, i.e., *o* falls into the *polytope part* of our polyhedron.

Proof (continued)

- Then o is a convex combination of $ext(\mathcal{T})$ points.
- Thus $c^{\mathsf{T}}o$ is a convex combination of $c^{\mathsf{T}}e$ values $(e \in ext(\mathcal{C}))$. In particular,

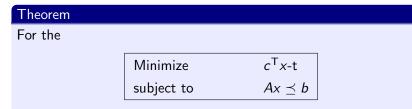
$$c^{\mathsf{T}}o \geq \min\{c^{\mathsf{T}}e : e \in \mathsf{ext}(\mathcal{T})\}.$$

This proves the statement.

(ii) Consider a supporting hyperplane ({ $x : \nu^{\mathsf{T}} x \ge b$ }), where { $x : \nu^{\mathsf{T}} x = b$ } $\cap \mathcal{P} = \{x\}$.

• Obviously, $c = \nu$ is a good choice.

Rational Optimal Points



LP problem, assume that $A \in \mathbb{Q}^{k \times n}$, $b \in \mathbb{Q}^k$. Moreover, assume that $\{x : Ax \leq b\}$ is a nice polyhedron. If $p^* \in \mathbb{R}$, then there exists $x \in \mathbb{Q}^n$ as an optimal point.

Proof

- If $p^* \in \mathbb{R}$, then we can choose $e \in ext(\mathcal{P})$ as an optimal point.
- Then the inequalities $a_i^T x \leq b_i$ satisfied by e are such that the corresponding a_i vectors span \mathbb{R}^n .

• Specifically, we can write a system of n equations, whose matrix is a submatrix of A, constants are the components of b, and e is the unique solution.

• By Cramer's rule, the components of *e* are the ratio of the determinants of two matrices containing rational numbers, specifically rational.

Break Time

Farkas' Lemma: First Alternative Form

Farkas' Lemma, First Alternative Form

Let
$$Ax \leq b$$
 be a system of equations, where $A \in \mathbb{R}^{k \times n}$,
 $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, and $b \in \mathbb{R}^k$. Then exactly one of the following two
statements holds:

(i) The system of equations is solvable, i.e., there exists $x_0 \in \mathbb{R}^n$ such that $Ax_0 \leq b$.

(ii) There exists $0 \leq \lambda \in \mathbb{R}^k$ such that $\lambda^T A = 0^T$ and $\lambda^T b = -1$.

Second Alternative Form

Farkas' Lemma, Second Alternative Form Consider the system of equations $\begin{cases} Ax = b \\ x \succeq 0 \end{cases}$, where $A \in \mathbb{R}^{\ell \times n}$, $x = \begin{pmatrix} x_2 \\ \vdots \\ \vdots \\ x_2 \end{pmatrix}$, and $b \in \mathbb{R}^{\ell}$. Then exactly one of the following two statements holds: (i) The system of equations is solvable, i.e., there exists $0 \leq x_0 \in \mathbb{R}^n$ such that $Ax_0 = b$. (ii) There exists $\lambda \in \mathbb{R}^{\ell}$ such that $\lambda^{\mathsf{T}}A \succeq 0^{\mathsf{T}}$ and $\lambda^{\mathsf{T}}b = -1$.

Farkas' Lemma: Geometric Form

Let $C \subset \mathbb{R}^n$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$\mathcal{C} = \{ \mathsf{G}\lambda : \mathsf{0} \preceq \lambda \in \mathbb{R}^k \}.$$

The columns of G are the generators of the cone.

• Alternatively,
$$b \in C_G$$
 if and only if
$$\begin{cases} Gx = b, \\ 0 \leq x \end{cases}$$
 is solvable.

• The infeasibility of such a system of inequalities is precisely one alternative of Farkas' Lemma. What is the other alternative?

Farkas' Lemma: Geometric Form (continued)

• According to Farkas' Lemma, the infeasibility of $\begin{cases} Gx = b, \\ 0 \prec x \end{cases}$ is

equivalent to the existence of a vector $\lambda \in \mathbb{R}^n$ such that

$$\lambda^{\mathsf{T}} G \succeq 0 \text{ and } \lambda^{\mathsf{T}} b = -1.$$

• In other words, the hyperplane $\mathcal{H} : \lambda^T x = 0$ passing through the origin separates the cone and the point *b*, where one side $\mathcal{F}^{\geq} : \lambda^T x \ge 0$ contains the cone \mathcal{C} , while the other side $\mathcal{F}^{\leq} : \lambda^T x \le 0$ contains *b*.

Farkas' Lemma: Geometric Form

Let $C \subset \mathbb{R}^n$ be a finitely generated cone, $b \notin C$. Then there exists a hyperplane $\mathcal{H} : \lambda^T x = 0$ that separates the cone and b.

Proof of Weyl's Theorem: If a cone is finitely generated, then it's polyhedral

Let $\mathcal{G} = \{G\lambda : 0 \leq \lambda\}$ be a finitely generated cone.

$$\widehat{\mathcal{G}} = \left\{ \begin{pmatrix} \lambda \\ y \end{pmatrix} : y = G\lambda, 0 \preceq \lambda \right\}.$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.

Obviously, \mathcal{G} can be obtained from the projections of $\widehat{\mathcal{G}}$.

Theorem

Let

The projection of a polyhedron is also a polyhedron.

We know that \mathcal{G} is both a polyhedron and a cone.

Lemma

We know that ${\mathcal C}$ is both a polyhedron and a cone. Then ${\mathcal C}$ is a polyhedral cone.

Minkowski's Lemma

Lemma

Suppose that

$$\{x: Ax \leq 0\} = \{G\lambda : 0 \leq \lambda\}.$$

Then

$$\{x: G^{\mathsf{T}}x \preceq 0\} = \{A^{\mathsf{T}}\lambda : 0 \preceq \lambda\}.$$

• We can interpret the condition of the lemma as two containment relations:

$$\{x: Ax \leq 0\} \supset \{G\lambda: 0 \leq \lambda\}.$$

$$\{x: Ax \leq 0\} \subset \{G\lambda: 0 \leq \lambda\}.$$

Minkowski's Lemma: The First Condition

 $\{x: Ax \leq 0\} \supset \{G\lambda: 0 \leq \lambda\}.$

• The elements on the left side are cone combinations of the columns of G. By containment, each of these vectors is contained in the left-hand set.

 \bullet This is equivalent to saying that the columns of G are contained in the left-hand set.

• This is equivalent to saying that

the elements of AG are all non-positive.

Minkowski's Lemma: The Second Condition

$$\{x: Ax \leq 0\} \subset \{G\lambda: 0 \leq \lambda\}.$$

- An element *b* from the left side is also in the right side. That is, if $Ab \leq 0$, then the system $\begin{cases} G\lambda = b \\ 0 \leq \lambda \end{cases}$ is solvable.
- By Farkas' Lemma, this can be reformulated as: The system $\begin{cases} Ab \leq 0 \\ \mu^{\mathsf{T}}G \leq 0 \\ \mu^{\mathsf{T}}b = 1 \end{cases}$ has no solution.

Minkowski's Lemma: The Conditions

• Based on the above, the conditions are

the elements of AG are all non-positive and

$$\begin{cases} Ab \leq 0 \\ \mu^{\mathsf{T}}G \leq 0 \\ \mu^{\mathsf{T}}b = 1 \end{cases}$$
 has no solution

• Alternatively,

the elements of
$$G^{\mathsf{T}}A^{\mathsf{T}}$$
 are all non-positive and
$$\begin{cases} G^{\mathsf{T}}\mu \leq 0\\ b^{\mathsf{T}}A^{\mathsf{T}} \leq 0\\ b^{\mathsf{T}}\mu = 1 \end{cases}$$
 has not

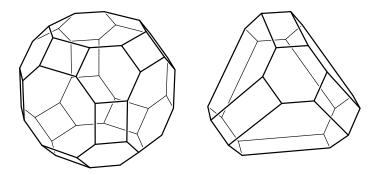
• These are equivalent to the proposition to be proven.

Polytopes

Definition

A polyhedron $\mathcal{P} \subset \mathbb{R}^n$ is called a polytope if it is bounded.

• Bounded polyhedra/polytopes play an important role in understanding polyhedra.



Fundamental Theorem of Convex Polytopes

Theorem

Let $\mathcal{P} \subset \mathbb{R}^d$. Then the following are equivalent:

(i) \mathcal{P} is a bounded polyhedron.

(ii) \mathcal{P} is the convex hull of finitely many points in \mathbb{R}^d .

Polyhedra: Coning, Homogenization

Let \mathcal{P} be a polyhedron, i.e.,

$$\mathcal{P} = \{x : Ax \leq b\} \subset \mathbb{R}^d.$$

Define

$$\widehat{\mathcal{P}} = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : x \in \mathbb{R}^d, \lambda \in \mathbb{R}, Ax \preceq \lambda b, 0 \leq \lambda \right\} \subset \mathbb{R}^d \times \mathbb{R}_+ \subset \mathbb{R}^{d+1}.$$

Example

$$\mathcal{P} = \{(x,y)^\mathsf{T} : x \leq 0, y \leq 0\} \subset \mathbb{R}^2.$$

$$\widehat{\mathcal{P}} = \{(x, y, \lambda)^{\mathsf{T}} : x \leq 0, y \leq 0, \lambda \geq 0\} \subset \mathbb{R}^2 \times \mathbb{R}_+ \subset \mathbb{R}^3$$

Coning of Polyhedra: The Observation

Observation

(i)
$$x \in \mathcal{P}$$
 if and only if $\begin{pmatrix} x \\ 1 \end{pmatrix} \in \widehat{\mathcal{P}}$.

(ii) $\widehat{\mathcal{P}}$ is a polyhedral cone.

Fundamental Theorem of Convex Polytopes: Proof $(i) \Rightarrow (ii)$

- Since $\mathcal P$ is bounded, the polyhedral cone $\widehat{\mathcal P}$ contains only 0 from the hyperplane $\lambda=0.$
- By Weyl's theorem,

$$\widehat{\mathcal{P}} = \langle \widehat{g}_1, \widehat{g}_2, \dots, \widehat{g}_k \rangle_{\mathsf{cone}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix} \right\rangle_{\mathsf{cone}}$$

• Thus,

$$\begin{pmatrix} g \\ 1 \end{pmatrix} \in \widehat{\mathcal{P}}$$

if and only if

$$g \in \langle g_1, g_2, \ldots, g_k \rangle_{\text{convex}}$$

Fundamental Theorem of Convex Polytopes: Proof $(ii) \Rightarrow (i)$

Assume
$$\mathcal{P} = \langle g_1, g_2, \dots, g_k \rangle_{\text{convex}}$$
. Clearly, \mathcal{P} is bounded.
Let
 $\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix} \right\rangle_{\text{cone}},$

a finitely generated polyhedral cone.

By Weyl's theorem, there exists a matrix (A|-b) such that

$$\widehat{\mathcal{P}} = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : (A|-b) \begin{pmatrix} x \\ \lambda \end{pmatrix} \preceq 0 \right\}.$$

Then

$$\mathcal{P} = \{ x : Ax \preceq b \},\$$

i.e., \mathcal{P} is a polyhedron.

Combining Geometric Sets

Definition

Let $A, B \subset \mathbb{R}^d$. Then

$$A + B = \{a + b : a \in A, b \in B\}$$

is called the direct or Minkowski sum of sets A and B.

Minkowski-Weyl Theorem

(i) Let ${\cal P}$ be any polyhedron. Then there exist finitely generated convex sets/polytopes ${\cal T}$ and ${\cal C}$

$$\mathcal{P}=\mathcal{T}+\mathcal{C}.$$

(ii) Let \mathcal{T} be a finitely generated convex set/polytope and \mathcal{C} be a finitely generated cone. Then $\mathcal{T} + \mathcal{C}$ is a polyhedron.

Minkowski-Weyl Theorem: Proof: (i)

- \bullet For $\mathcal P$, we defined a $\widehat{\mathcal P}$ polyhedral cone.
- By Weyl's theorem,

$$\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix}, \begin{pmatrix} h_1 \\ 0 \end{pmatrix}, \begin{pmatrix} h_2 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} h_\ell \\ 0 \end{pmatrix} \right\rangle_{\text{cone}},$$

• Then

$$\mathcal{P} = \langle g_1, g_2, \dots, g_k
angle_{\mathsf{convex}} + \langle h_1, h_2, \dots, h_\ell
angle_{\mathsf{cone}} \,,$$

Minkowski-Weyl Theorem: Proof: (ii)

Assume
$$\mathcal{P} = \langle g_1, g_2, \dots, g_k \rangle_{\text{convex}} + \langle h_1, h_2, \dots, h_\ell \rangle_{\text{cone}}.$$

Let

$$\widehat{\mathcal{P}} = \left\langle \begin{pmatrix} g_1 \\ 1 \end{pmatrix}, \begin{pmatrix} g_2 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} g_k \\ 1 \end{pmatrix}, \begin{pmatrix} h_1 \\ 0 \end{pmatrix}, \begin{pmatrix} h_2 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} h_\ell \\ 0 \end{pmatrix} \right\rangle_{\text{cone}},$$

a finitely generated cone.

By Weyl's theorem, there exists a matrix (A|-b) such that

$$\widehat{\mathcal{P}} = \left\{ \begin{pmatrix} x \\ \lambda \end{pmatrix} : (A|-b) \begin{pmatrix} x \\ \lambda \end{pmatrix} \preceq 0 \right\}.$$

Then

$$\mathcal{P} = \{ x : Ax \preceq b \},\$$

i.e., \mathcal{P} is a polyhedron.

Thank you for your attention!