Strong duality, Karush—Kuhn—Tucker theorem

Peter Hajnal

2024. Fall

Peter Hajnal Strong duality, SzTE, 2024

Strong Duality: Reminder

Reminder

The optimal value of the primal problem is denoted by p^* , and the optimal value of the dual problem is denoted by d^* $(d^*, p^* \in \mathbb{R} \cup \{-\infty, \infty\})$. The following is true (Weak Duality **Theorem**): $d^* \leq p^*$.

• We talk about strong duality when we can guarantee $d^* = p^*$ under certain conditions.

- There are various options for these *certain* conditions.
- An entire *industry* has developed around the development of such conditions. We only discuss one possibility.

Slater's Theorem

Slater's Theorem

Consider the following optimization problem:

Minimize	c(x),-t	
subject to	$f_i(x) \leq 0$	$i=1,\ldots,k$
	$g_i(x) = 0$	$i=1,\ldots \ell$

Suppose that

- (1) The problem is convex. Thus, c and f_i are convex functions, and g_i are affine functions. This means that the $g_i(x) = 0$ $(i = 1, ..., \ell)$ constraints can be written in the following form: Ax b = 0, where $A \in \mathbb{R}^{\ell \times n}$ and $b \in \mathbb{R}^{\ell}$.
- (S) There exists $s \in D$ such that (i) $f_i(s) < 0$ (i = 1, ..., k) and $g_i(s) = 0$ ($i = 1, ..., \ell$). Specifically, $s \in \mathcal{L}$. (ii) Moreover, $s \in \text{int } \mathcal{D} = \{x : \exists r > 0 \ B(x, r) \subset \mathcal{D}\}$, the set of interior points of \mathcal{D} , where B(x, r) is the ball centered at x with radius r.

Then, strong duality holds, i.e., $d^* = p^*$.

- We call (S) Slater's condition.
- Points satisfying condition (S) are called Slater points.
- \bullet (S)(i) and (S)(ii) can be weakened. The statement of the theorem remains true under the following (weakened) conditions:
- (S) (i)₀ We only require from the Slater point s that $f_i(s) < 0$ if f_i is not affine, and $f_i(s) \le 0$ if it is affine.
- (S) $(ii)_0$
 - $s \in \text{relint } \mathcal{D} = \mathcal{D}$ relative interior \mathcal{D} in the affine hull of \mathcal{D} (int $\mathcal{D} \subset \text{relint } \mathcal{D}$).
- Below, we present the proof under an important assumption: A (the matrix of equality and affine constraints) has full row rank.
- Without this assumption, the essence of the proof remains, with only a few technical complications making it lengthier.

Proof: 1st Observation

1st Observation

We can assume that

$$p^* \in \mathbb{R}.$$

• From (S), it follows that $\mathcal{L} \neq \emptyset$, implying $p^* < \infty$.

• Moreover, from weak duality, it follows that strong duality holds if $p^* = -\infty$. Thus, we can assume $p^* > -\infty$. Combining these, we conclude .

Proof: \mathcal{E} , \mathcal{F} , and Observations

• Let

$$egin{aligned} \mathcal{E} &= \{(arphi_1,arphi_2,\ldots,arphi_k,\gamma_1,\gamma_2,\ldots,\gamma_\ell, au)\in \mathbb{R}^k imes \mathbb{R}^\ell imes \mathbb{R}:\ \exists x\in\mathcal{D}, ext{ such that}\ &arphi_i\geq f_i(x) \ i=1,\ldots,k\ &\gamma_i=g_i(x) \ i=1,\ldots,\ell\ & au\geq c(x)\},\ &\mathcal{F} &= \{(0,0,\ldots,0, au)\in \mathbb{R}^k imes \mathbb{R}^\ell imes \mathbb{R}: \ au < p^*\}. \end{aligned}$$

2nd Observation

 ${\mathcal E}$ and ${\mathcal F}$ are convex sets.

3rd Observation

 ${\cal E}$ is closed under increasing the coordinates φ_i and $\tau.$

Peter Hajnal Strong duality, SzTE, 2024

Proof: Lemma

Lemma

Lemma

$$\mathcal{E} \cap \mathcal{F} = \emptyset.$$

- We will prove this indirectly.
- Assume $v \in \mathcal{E} \cap \mathcal{F}$, i.e., $v \in \mathcal{E}$ and $v \in \mathcal{F}$.
- $v \in \mathcal{F}$ implies $v = (0, \ldots, 0, \tau)$, where $\tau < p^*$.
- $v \in \mathcal{E}$ implies that there exists $x \in \mathcal{D}$ such that $f_i(x) \leq 0$, $g_i(x) = 0$, and $\tau \geq c(x)$.
- Hence, $x \in \mathcal{L}$, and $c(x) \leq \tau < p^*$, which is a contradiction.

Proof: Application of the Separation Theorem

Separation theorem for convex sets \approx Farkas' Lemma

K, L convex sets and $K \cap L = \emptyset$ then there exists a hyperplane H, which separates the two sets.

That is, it divides the space into closed half-spaces H^{\leq} and H^{\geq} , such that $H^{\leq} \supset K$ and $H^{\geq} \supset L$.

• From the theorem and Lemma 2, it follows that there exists an $n = (\lambda_1, \lambda_2, \dots, \lambda_k, \mu_1, \dots, \mu_\ell, \nu)$ $(n \in \mathbb{R}^{k+\ell+1} = R^k \times \mathbb{R}^\ell \times \mathbb{R})$ nonzero vector and a real number α , such that the hyperplane $H_{n,\alpha} = \{x \in \mathbb{R}^{k+\ell+1}, n^\top x = \alpha\}$ divides into two half-spaces:

$$H_{n,\alpha}^{\geq} = \{ x \in \mathbb{R}^{k+\ell+1} : n^{\top} x \geq \alpha \} \supseteq \mathcal{E},$$

$$H_{n,\alpha}^{\leq} = \{ x \in \mathbb{R}^{k+\ell+1} : n^{\top}x \leq \alpha \} \supseteq \mathcal{F}.$$

Proof: Further Observations

• From Observation 3, we know that by increasing the first k and last coordinates, we remain in \mathcal{E} and thus in H^{\geq} .

Observation 4 $\lambda \succeq 0 \text{ and } \nu \ge 0.$

• $(0, 0, p^* - \epsilon) \in \mathcal{F}$, which implies $(0, 0, p^* - \epsilon) \in H^{\leq}$, thus $\nu(p^* - \epsilon) \leq \alpha$. Since $\epsilon > 0$ is arbitrary, we get limit transitions, yielding

Observation 5

 $\nu p^* \leq \alpha.$

• For $x \in \mathcal{D}$, $(f(x), g(x), c(x)) \in \mathcal{E}$, specifically in H^{\geq} .

Observation 6

For every $x \in \mathcal{D}$:

$$\sum_{i=1}^k \lambda_i f_i(x) + \sum_{i=1}^\ell \mu_i g_i(x) + \nu c(x) \ge \alpha.$$

Peter Hajnal

Strong duality, SzTE, 2024

Proof: Case 1: $\nu \neq 0$ ($\nu > 0$)

• Then for every $x \in \mathcal{D}$,

$$L\left(\frac{\lambda_i}{\nu},\frac{\mu_i}{\nu},x\right) = \sum_{i=1}^k \frac{\lambda_i}{\nu} f_i(x) + \frac{\mu_i}{\nu} g_i(x) + c(x) \ge \frac{\alpha}{\nu}$$

• This yields

$$\widetilde{c}\left(\frac{\lambda_i}{\nu},\frac{\mu_i}{\nu}\right)\geq \frac{\alpha}{\nu}\geq p^*.$$

 $\left(\frac{\lambda_i}{\nu}\right)_{i=1}^k$ are the feasible solutions of the dual optimization problem.

• From this and the previous inequality, it follows that

$$d^* \geq \widetilde{c}\left(\frac{\lambda_i}{\nu}, \frac{\mu_i}{\nu}\right) \geq p^*.$$

Comparing with weak duality, we obtain strong duality.

Proof: Case 2: $\nu = 0$

- In this case, $\sum_{i=1}^{k} \lambda_i f_i(x) + \sum_{i=1}^{\ell} \mu_i g_i(x) \ge \alpha \ge \nu p^* = 0$ for all $x \in \mathcal{D}$.
- Write the inequality for x = s, where s is a Slater point.

$$\sum_{i=1}^k \lambda_i f_i(s) + \sum_{i=1}^\ell \mu_i g_i(s) \ge 0, \quad \text{where} \quad \lambda_i \ge 0, f_i(s) < 0 \text{ and } g_i(s) = 0.$$

- Then each λ_i must be zero.
- Our initial inequality simplifies to:

$$\sum_{i=1}^{\ell} \mu_i g_i(x) \ge 0,$$

which rewritten becomes $\mu^{\top}(Ax - b) \ge 0$ for all $x \in \mathcal{D}$.

Proof: Case 2 (continued)

• Let $x = s + \delta$, where $\delta \in \mathbb{R}^{k+\ell+1}$ and $|\delta| < r_0$, with r_0 so small that $B(s, r_0) \subset \mathcal{D}$.

$$egin{aligned} \mu^ op(\mathcal{A}(s+\delta)-b) =& \mu^ op(\mathcal{A}s+\mathcal{A}\delta-b) = \mu^ op(b+\mathcal{A}\delta-b) \ =& \mu^ op\mathcal{A}\delta = \sum_{i=1}^\ell (\mu^ op\mathcal{A})_i\delta_i \geq 0. \end{aligned}$$

- This holds for $-\delta$ as well, implying $\mu^{\top} A = 0$.
- Due to our initial assumption (full row rank of A), $\mu = 0$.
- Thus $n = (\lambda, \mu, \nu) = 0$, which is a contradiction.

Break

Slack Conditions, Weak Duality Reminder

Notation

Let $x \in \mathcal{L}$. We say that the *i*-th inequality constraint is slack at x if

 $f_i(x) < 0.$

- Let x^* be a primal optimal point and (λ^*, μ^*) be a dual optimal point. Specifically, $\lambda^* \succeq 0$.
- The weak duality is summarized.
- Let $L(\lambda, \mu, x) = c(x) + \lambda^{\top} f(x) + \mu^{\top} g(x)$.
- Then

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

 $\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$

• If strong duality holds, then equality holds throughout.

Weak Duality: Analysis of the Second Inequality

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

Definition

Definition Let x_0 be a primal feasible solution, i.e., $f_i(x_0) \le 0$, $g_i(x_0) = 0$. Let (λ_0, μ_0) be a dual feasible solution, i.e., $(\lambda_0)_i \ge 0$. This solution pair exhibits *complementary slackness* if (i) $f_i(x_0) < 0$ implies $(\lambda_0)_i = 0$. (ii) $(\lambda_0)_i > 0$ implies $f_i(x_0) = 0$.

Observation

In the second inequality, equality holds if and only if x^* and (λ^*, μ^*) exhibit complementary slackness.

Weak Duality: Analysis of the First Inequality

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

 $\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$

Observation

If the first inequality is an equality, then $c(x) + (\lambda^*)^{\top} f(x) + (\mu^*)^{\top} g(x)$ functions attains a minimum at x^* . Suppose *c* and *f_i* functions are differentiable. Then

$$abla c(x^*) + (\lambda^*)^\top
abla f(x^*) + (\mu^*)^\top
abla g(x^*) = 0.$$

Suppose c, f_i are convex and g_i are affine. Then $c(x) + (\lambda^*)^{\top} f(x) + (\mu^*)^{\top} g(x)$ is also convex $(\lambda^* \succeq 0)$. In this case, the above condition is both necessary and sufficient for the equality in the second inequality to hold.

Karush—Kuhn—Tucker Theorem: Background

- The theorem was Karush's master's thesis in the 1930s.
- Later, Kuhn and Tucker discovered the theorem and made it known in the 1950s.

Assume that c, f_i, g_j are differentiable. Moreover, c, f_i are convex, and g_j are affine.

Definition: Karush—Kuhn—Tucker Conditions

For $x^* \in \mathbb{R}^n$, $(\lambda^*, \mu^*) \in \mathbb{R}^k \times \mathbb{R}^\ell$, the conditions are

(KKT1) $f_i(x^*) \leq 0$ and $g_i(x^*) = 0$, i.e., x is primal feasible.

(KKT2) $\lambda_i^* \ge 0$, i.e., (λ^*, μ^*) is dual feasible.

(KKT3) x^* and (λ^*, μ^*) exhibit complementary slackness.

(KKT4)
$$(\nabla c)(x^*) + (\lambda^*)^\top \nabla f(x^*) + (\mu^*)^\top \nabla g(x^*) = 0.$$

KKT Theorem

Suppose g_i are affine functions, c, f_i are convex and differentiable functions.

If strong duality holds with optimal points, then there exist x_0 and (λ_0, μ_0) that satisfy the (KKT1), (KKT2), (KKT3), (KKT4) conditions.

Conversely, if there exist x_0 , (λ_0, μ_0) , satisfying the (KKT1), (KKT2), (KKT3), (KKT4) conditions, then strong duality holds and these are primal and dual optimal points.

• We have already seen the first part of the theorem.

Establishing Sufficiency

$$\widetilde{c}(\lambda_0, \mu_0) = \inf(c(x) + \lambda_0^\top f(x) + \mu_0^\top g(x))$$
$$= c(x_0) + \lambda_0^\top f(x_0) + \mu_0^\top g(x)$$
$$= c(x_0).$$

Since KKT4 is necessary and sufficient for x_0 to be an optimum point.

Then

$$d^* \geq \widetilde{c}(\lambda_0,\mu_0) = c(x_0) \geq p^* \geq d^*.$$

From the chain of inequalities, it is evident that equality holds throughout, i.e., strong duality holds, x_0 is a primal optimal point, and (λ_0, μ_0) is a dual optimal point.

Minimize	$\frac{1}{2}x^{\top}Px + q^{\top}x + r$ -t
subject to	Ax = b,

where $P \in \mathcal{S}_{+}^{n}$.

• c(x) is convex (since $P \in S^n_+$) and differentiable, hence KKT theorem can be applied.

 \bullet We need to find x_0, μ_0 that satisfy all four Karush—Kuhn-Tucker conditions:

(KKT1): $Ax_0 = b$. (KKT2): \emptyset . (KKT3): \emptyset . (KKT4): $\nabla c(x_0) + \mu_0^\top \nabla (Ax - b)|_{x=x_0} = 0$, i.e., $Px_0 + q + A^\top \mu_0 = 0$.

KKT: Example I (continued)

• Summarizing the properties of the sought x_0, μ_0 :

$$egin{pmatrix} P_{n imes n} & A_{n imes k}^{ op} \ A_{k imes n} & 0 \end{pmatrix} egin{pmatrix} x_0 \ \mu_0 \end{pmatrix} = egin{pmatrix} -q \ b \end{pmatrix}.$$

• The discussion of the solvability of this system of equations, and finding the solution in case of solvability, is a straightforward linear algebraic task.

KKT: Example II

Example

Example

Minimize	$2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$ -t
subject to	$x_1^2 + x_2^2 \le 5$,
	$3x_1+x_2\leq 6.$

- In our case, $\mathcal{D} = \mathbb{R}^2$.
- It can be easily verified that the objective function is convex, and the inequality constraints f_i are also convex functions.
- All occurring functions are differentiable.

KKT: Example II (continued)

• The KKT searches for primal/dual $x_1, x_2, \lambda_1, \lambda_2$ instead, satisfying the primal/dual conditions ((KKT1) and (KKT2)):

$$x_1^2 + x_2^2 \le 5$$
, $3x_1 + x_2 \le 6$, $\lambda_1 \ge 0$, $\lambda_2 \ge 0$.

• (KKT4) is crucial to find the optimal place. For this:

$$abla(2x_1^2+2x_1x_2+x_2^2-10x_1-10x_2)=egin{pmatrix} 4x_1+2x_2-10\ 2x_1+2x_2-10\end{pmatrix},$$

$$abla(x_1^2+x_2^2-5)= \begin{pmatrix} 2x_1\\2x_2 \end{pmatrix},
abla(3x_1+x_2-6)= \begin{pmatrix} 3\\1 \end{pmatrix}$$

• Hence, expressing the satisfaction of (KKT4):

 $4x_1 + 2x_2 - 10 + 2\lambda_1 x_1 + 3\lambda_2 = 0,$

$$2x_1 + 2x_2 - 10 + 2\lambda_1 x_2 + \lambda_2 = 0.$$

KKT: Example II (continued)

- What our number four should also know is the complementary slackness property.
- This can be fulfilled in four different ways:

$$\begin{split} I : & x_1^2 + x_2^2 = 5 \text{ and } \lambda_1 \ge 0, \quad 3x_1 + x_2 = 6 \text{ and } \lambda_2 \ge 0. \\ II : & x_1^2 + x_2^2 < 5 \text{ and } \lambda_1 = 0, \quad 3x_1 + x_2 < 6 \text{ and } \lambda_2 = 0. \\ III : & x_1^2 + x_2^2 < 5 \text{ and } \lambda_1 = 0, \quad 3x_1 + x_2 = 6 \text{ and } \lambda_2 \ge 0. \\ IV : & x_1^2 + x_2^2 = 5 \text{ and } \lambda_1 \ge 0, \quad 3x_1 + x_2 < 6 \text{ and } \lambda_2 = 0. \end{split}$$

KKT: Example II (continued)

• By elementary methods, it can be determined that I, II, and III do not lead to appropriate quadruples.

• The possibility IV, however, leads to the

$$x_1 = 1, x_2 = 2, \lambda_1 = 1, \lambda_2 = 0$$

solution.

• From this, it follows that (1,2) is a primal optimal solution, (1,0) is a dual optimal solution. Furthermore, strong duality holds.

Thank you for your attention!