Strong duality, Karush-Kuhn-Tucker theorem

Peter Hajnal

2024. Fall

Strong Duality: Reminder

Reminder

The optimal value of the primal problem is denoted by p^{*}, and the optimal value of the dual problem is denoted by d^{*} $\left(d^{*}, p^{*} \in \mathbb{R} \cup\{-\infty, \infty\}\right)$. The following is true (Weak Duality Theorem): $d^{*} \leq p^{*}$.

- We talk about strong duality when we can guarantee $d^{*}=p^{*}$ under certain conditions.
- There are various options for these certain conditions.
- An entire industry has developed around the development of such conditions. We only discuss one possibility.

Slater's Theorem

Slater's Theorem

Consider the following optimization problem:

$$
\begin{array}{ll}
\hline \text { Minimize } & c(x),-\mathrm{t} \\
\text { subject to } & f_{i}(x) \leq 0 \quad i=1, \ldots, k \\
& g_{i}(x)=0 \quad i=1, \ldots \ell \\
\hline
\end{array}
$$

Suppose that
(1) The problem is convex. Thus, c and f_{i} are convex functions, and g_{i} are affine functions. This means that the $g_{i}(x)=0(i=1, \ldots, \ell)$
constraints can be written in the following form: $A x-b=0$, where $A \in \mathbb{R}^{\ell \times n}$ and $b \in \mathbb{R}^{\ell}$.
(S) There exists $s \in \mathcal{D}$ such that (i) $f_{i}(s)<0(i=1, \ldots, k)$ and $g_{i}(s)=0$ ($i=1, \ldots, \ell$). Specifically, $s \in \mathcal{L}$. (ii) Moreover, $s \in \operatorname{int} \mathcal{D}=\{x: \exists r>0 \quad B(x, r) \subset \mathcal{D}\}$, the set of interior points of \mathcal{D}, where $B(x, r)$ is the ball centered at x with radius r.
Then, strong duality holds, i.e., $d^{*}=p^{*}$.

About the Conditions

- We call (S) Slater's condition.
- Points satisfying condition (S) are called Slater points.
- (S)(i) and (S)(ii) can be weakened. The statement of the theorem remains true under the following (weakened) conditions:
(S) (i) ${ }_{0}$ We only require from the Slater point s that $f_{i}(s)<0$ if f_{i} is not affine, and $f_{i}(s) \leq 0$ if it is affine.
(S) (ii) 0
$s \in$ relint $\mathcal{D}=\mathcal{D}$ relative interior \mathcal{D} in the affine hull of \mathcal{D} (int $\mathcal{D} \subset$ relint \mathcal{D}).
- Below, we present the proof under an important assumption: A (the matrix of equality and affine constraints) has full row rank.
- Without this assumption, the essence of the proof remains, with only a few technical complications making it lengthier.

Proof: 1st Observation

1st Observation

We can assume that

$$
p^{*} \in \mathbb{R} .
$$

- From (S), it follows that $\mathcal{L} \neq \emptyset$, implying $p^{*}<\infty$.
- Moreover, from weak duality, it follows that strong duality holds if $p^{*}=-\infty$. Thus, we can assume $p^{*}>-\infty$. Combining these, we conclude.

Proof: \mathcal{E}, \mathcal{F}, and Observations

- Let

$$
\begin{gathered}
\mathcal{E}=\left\{\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{\ell}, \tau\right) \in \mathbb{R}^{k} \times \mathbb{R}^{\ell} \times \mathbb{R}:\right. \\
\exists x \in \mathcal{D}, \text { such that } \\
\varphi_{i} \geq f_{i}(x) i=1, \ldots, k \\
\gamma_{i}=g_{i}(x) i=1, \ldots, \ell \\
\tau \geq c(x)\} \\
\mathcal{F}=\left\{(0,0, \ldots, 0, \tau) \in \mathbb{R}^{k} \times \mathbb{R}^{\ell} \times \mathbb{R}: \tau<p^{*}\right\}
\end{gathered}
$$

2nd Observation

\mathcal{E} and \mathcal{F} are convex sets.

3rd Observation

\mathcal{E} is closed under increasing the coordinates φ_{i} and τ.

Proof: Lemma

Lemma

Lemma

$$
\mathcal{E} \cap \mathcal{F}=\emptyset
$$

- We will prove this indirectly.
- Assume $v \in \mathcal{E} \cap \mathcal{F}$, i.e., $v \in \mathcal{E}$ and $v \in \mathcal{F}$.
- $v \in \mathcal{F}$ implies $v=(0, \ldots, 0, \tau)$, where $\tau<p^{*}$.
- $v \in \mathcal{E}$ implies that there exists $x \in \mathcal{D}$ such that $f_{i}(x) \leq 0$, $g_{i}(x)=0$, and $\tau \geq c(x)$.
- Hence, $x \in \mathcal{L}$, and $c(x) \leq \tau<p^{*}$, which is a contradiction.

Proof: Application of the Separation Theorem

Separation theorem for convex sets \approx Farkas' Lemma

K, L convex sets and $K \cap L=\emptyset$ then there exists a hyperplane H, which separates the two sets.
That is, it divides the space into closed half-spaces H^{\leq}and H^{\geq}, such that $H^{\leq} \supset K$ and $H^{\geq} \supset L$.

- From the theorem and Lemma 2, it follows that there exists an $n=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, \mu_{1}, \ldots, \mu_{\ell}, \nu\right)\left(n \in \mathbb{R}^{k+\ell+1}=R^{k} \times \mathbb{R}^{\ell} \times \mathbb{R}\right)$ nonzero vector and a real number α, such that the hyperplane $H_{n, \alpha}=\left\{x \in \mathbb{R}^{k+\ell+1}, n^{\top} x=\alpha\right\}$ divides into two half-spaces:

$$
\begin{aligned}
& H_{n, \alpha}^{\geq}=\left\{x \in \mathbb{R}^{k+\ell+1}: n^{\top} x \geq \alpha\right\} \supseteq \mathcal{E}, \\
& H_{n, \alpha}^{\leq}=\left\{x \in \mathbb{R}^{k+\ell+1}: n^{\top} x \leq \alpha\right\} \supseteq \mathcal{F} .
\end{aligned}
$$

Proof: Further Observations

- From Observation 3, we know that by increasing the first k and last coordinates, we remain in \mathcal{E} and thus in H^{\geq}.

Observation 4

$\lambda \succeq 0$ and $\nu \geq 0$.

- $\left(0,0, p^{*}-\epsilon\right) \in \mathcal{F}$, which implies $\left(0,0, p^{*}-\epsilon\right) \in H^{\leq}$, thus $\nu\left(p^{*}-\epsilon\right) \leq \alpha$. Since $\epsilon>0$ is arbitrary, we get limit transitions, yielding

Observation 5

$\nu p^{*} \leq \alpha$.

- For $x \in \mathcal{D},(f(x), g(x), c(x)) \in \mathcal{E}$, specifically in H^{\geq}.

Observation 6

For every $x \in \mathcal{D}$:

$$
\sum_{i=1}^{k} \lambda_{i} f_{i}(x)+\sum_{i=1}^{\ell} \mu_{i} g_{i}(x)+\nu c(x) \geq \alpha
$$

Proof: Case 1: $\nu \neq 0(\nu>0)$

- Then for every $x \in \mathcal{D}$,

$$
L\left(\frac{\lambda_{i}}{\nu}, \frac{\mu_{i}}{\nu}, x\right)=\sum_{i=1}^{k} \frac{\lambda_{i}}{\nu} f_{i}(x)+\frac{\mu_{i}}{\nu} g_{i}(x)+c(x) \geq \frac{\alpha}{\nu}
$$

- This yields

$$
\widetilde{c}\left(\frac{\lambda_{i}}{\nu}, \frac{\mu_{i}}{\nu}\right) \geq \frac{\alpha}{\nu} \geq p^{*}
$$

$\left(\frac{\lambda_{i}}{\nu}\right)_{i=1}^{k}$ are the feasible solutions of the dual optimization problem.

- From this and the previous inequality, it follows that

$$
d^{*} \geq \widetilde{c}\left(\frac{\lambda_{i}}{\nu}, \frac{\mu_{i}}{\nu}\right) \geq p^{*}
$$

- Comparing with weak duality, we obtain strong duality.

Proof: Case 2: $\nu=0$

- In this case, $\sum_{i=1}^{k} \lambda_{i} f_{i}(x)+\sum_{i=1}^{\ell} \mu_{i} g_{i}(x) \geq \alpha \geq \nu p^{*}=0$ for all $x \in \mathcal{D}$.
- Write the inequality for $x=s$, where s is a Slater point.

$$
\sum_{i=1}^{k} \lambda_{i} f_{i}(s)+\sum_{i=1}^{\ell} \mu_{i} g_{i}(s) \geq 0, \quad \text { where } \quad \lambda_{i} \geq 0, f_{i}(s)<0 \text { and } g_{i}(s)=0
$$

- Then each λ_{i} must be zero.
- Our initial inequality simplifies to:

$$
\sum_{i=1}^{\ell} \mu_{i} g_{i}(x) \geq 0
$$

which rewritten becomes $\mu^{\top}(A x-b) \geq 0$ for all $x \in \mathcal{D}$.

Proof: Case 2 (continued)

- Let $x=s+\delta$, where $\delta \in \mathbb{R}^{k+\ell+1}$ and $|\delta|<r_{0}$, with r_{0} so small that $B\left(s, r_{0}\right) \subset \mathcal{D}$.

$$
\begin{aligned}
\mu^{\top}(A(s+\delta)-b) & =\mu^{\top}(A s+A \delta-b)=\mu^{\top}(b+A \delta-b) \\
& =\mu^{\top} A \delta=\sum_{i=1}^{\ell}\left(\mu^{\top} A\right)_{i} \delta_{i} \geq 0
\end{aligned}
$$

- This holds for $-\delta$ as well, implying $\mu^{\top} A=0$.
- Due to our initial assumption (full row rank of A), $\mu=0$.
- Thus $n=(\lambda, \mu, \nu)=0$, which is a contradiction.

Break

Slack Conditions, Weak Duality Reminder

Notation

Let $x \in \mathcal{L}$. We say that the i-th inequality constraint is slack at x if

$$
f_{i}(x)<0
$$

- Let x^{*} be a primal optimal point and $\left(\lambda^{*}, \mu^{*}\right)$ be a dual optimal point. Specifically, $\lambda^{*} \succeq 0$.
- The weak duality is summarized.
- Let $L(\lambda, \mu, x)=c(x)+\lambda^{\top} f(x)+\mu^{\top} g(x)$.
- Then

$$
\begin{aligned}
d^{*} & =\widetilde{c}\left(\lambda^{*}, \mu^{*}\right)=\inf L\left(\lambda^{*}, \mu^{*}, x\right)=\inf _{x \in \mathcal{D}}\left(c(x)+\left(\lambda^{*}\right)^{\top} f(x)+\left(\mu^{*}\right)^{\top} g(x)\right) \\
& \leq c\left(x^{*}\right)+\left(\lambda^{*}\right)^{\top} f\left(x^{*}\right)+\left(\mu^{*}\right)^{\top} g\left(x^{*}\right) \leq c\left(x^{*}\right)=p^{*} .
\end{aligned}
$$

- If strong duality holds, then equality holds throughout.

Weak Duality: Analysis of the Second Inequality

$$
\begin{aligned}
d^{*} & =\widetilde{c}\left(\lambda^{*}, \mu^{*}\right)=\inf L\left(\lambda^{*}, \mu^{*}, x\right)=\inf _{x \in \mathcal{D}}\left(c(x)+\left(\lambda^{*}\right)^{\top} f(x)+\left(\mu^{*}\right)^{\top} g(x)\right) \\
& \leq c\left(x^{*}\right)+\left(\lambda^{*}\right)^{\top} f\left(x^{*}\right)+\left(\mu^{*}\right)^{\top} g\left(x^{*}\right) \leq c\left(x^{*}\right)=p^{*} .
\end{aligned}
$$

Definition

Definition Let x_{0} be a primal feasible solution, i.e., $f_{i}\left(x_{0}\right) \leq 0$, $g_{i}\left(x_{0}\right)=0$. Let $\left(\lambda_{0}, \mu_{0}\right)$ be a dual feasible solution, i.e., $\left(\lambda_{0}\right)_{i} \geq 0$. This solution pair exhibits complementary slackness if
(i) $f_{i}\left(x_{0}\right)<0$ implies $\left(\lambda_{0}\right)_{i}=0$.
(ii) $\left(\lambda_{0}\right)_{i}>0$ implies $f_{i}\left(x_{0}\right)=0$.

Observation

In the second inequality, equality holds if and only if x^{*} and $\left(\lambda^{*}, \mu^{*}\right)$ exhibit complementary slackness.

Weak Duality: Analysis of the First Inequality

$$
\begin{aligned}
d^{*} & =\widetilde{c}\left(\lambda^{*}, \mu^{*}\right)=\inf L\left(\lambda^{*}, \mu^{*}, x\right)=\inf _{x \in \mathcal{D}}\left(c(x)+\left(\lambda^{*}\right)^{\top} f(x)+\left(\mu^{*}\right)^{\top} g(x)\right) \\
& \leq c\left(x^{*}\right)+\left(\lambda^{*}\right)^{\top} f\left(x^{*}\right)+\left(\mu^{*}\right)^{\top} g\left(x^{*}\right) \leq c\left(x^{*}\right)=p^{*} .
\end{aligned}
$$

Observation

If the first inequality is an equality, then
$c(x)+\left(\lambda^{*}\right)^{\top} f(x)+\left(\mu^{*}\right)^{\top} g(x)$ functions attains a minimum at x^{*}.
Suppose c and f_{i} functions are differentiable. Then

$$
\nabla c\left(x^{*}\right)+\left(\lambda^{*}\right)^{\top} \nabla f\left(x^{*}\right)+\left(\mu^{*}\right)^{\top} \nabla g\left(x^{*}\right)=0
$$

Suppose c, f_{i} are convex and g_{i} are affine. Then $c(x)+\left(\lambda^{*}\right)^{\top} f(x)+\left(\mu^{*}\right)^{\top} g(x)$ is also convex $\left(\lambda^{*} \succeq 0\right)$. In this case, the above condition is both necessary and sufficient for the equality in the second inequality to hold.

Karush—Kuhn-Tucker Theorem: Background

- The theorem was Karush's master's thesis in the 1930s.
- Later, Kuhn and Tucker discovered the theorem and made it known in the 1950s.

Assume that c, f_{i}, g_{j} are differentiable. Moreover, c, f_{i} are convex, and g_{j} are affine.

Definition: Karush—Kuhn-Tucker Conditions

For $x^{*} \in \mathbb{R}^{n},\left(\lambda^{*}, \mu^{*}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{\ell}$, the conditions are (KKT1) $f_{i}\left(x^{*}\right) \leq 0$ and $g_{i}\left(x^{*}\right)=0$, i.e., x is primal feasible.
(KKT2) $\lambda_{i}^{*} \geq 0$, i.e., $\left(\lambda^{*}, \mu^{*}\right)$ is dual feasible.
(KKT3) x^{*} and $\left(\lambda^{*}, \mu^{*}\right)$ exhibit complementary slackness.
$\left(\right.$ KKT4) $(\nabla c)\left(x^{*}\right)+\left(\lambda^{*}\right)^{\top} \nabla f\left(x^{*}\right)+\left(\mu^{*}\right)^{\top} \nabla g\left(x^{*}\right)=0$.

Karush—Kuhn—Tucker Theorem: The Theorem

KKT Theorem

Suppose g_{i} are affine functions, c, f_{i} are convex and differentiable functions.
If strong duality holds with optimal points, then there exist x_{0} and $\left(\lambda_{0}, \mu_{0}\right)$ that satisfy the (KKT1), (KKT2), (KKT3), (KKT4) conditions.
Conversely, if there exist $x_{0},\left(\lambda_{0}, \mu_{0}\right)$, satisfying the (KKT1), (KKT2), (KKT3), (KKT4) conditions, then strong duality holds and these are primal and dual optimal points.

- We have already seen the first part of the theorem.

Establishing Sufficiency

$$
\begin{aligned}
\widetilde{c}\left(\lambda_{0}, \mu_{0}\right) & =\inf \left(c(x)+\lambda_{0}^{\top} f(x)+\mu_{0}^{\top} g(x)\right) \\
& =(\mathrm{KKT} 4) \\
\overline{\bar{K}} & c\left(x_{0}\right)+\lambda_{0}^{\top} f\left(x_{0}\right)+\mu_{0}^{\top} g(x) \\
& c\left(x_{0}\right) .
\end{aligned}
$$

Since KKT4 is necessary and sufficient for x_{0} to be an optimum point.

Then

$$
d^{*} \underset{(K \bar{K} T 2)}{\geq} \widetilde{c}\left(\lambda_{0}, \mu_{0}\right)=c\left(x_{0}\right) \underset{(K K T 1)}{\geq} p^{*} \underset{\text { weak duality }}{\geq} d^{*} .
$$

From the chain of inequalities, it is evident that equality holds throughout, i.e., strong duality holds, x_{0} is a primal optimal point, and $\left(\lambda_{0}, \mu_{0}\right)$ is a dual optimal point.

KKT: Example I

$$
\begin{array}{ll}
\text { Minimize } & \frac{1}{2} x^{\top} P x+q^{\top} x+r-\mathrm{t} \\
\text { subject to } & A x=b, \\
\hline
\end{array}
$$

where $P \in \mathcal{S}_{+}^{n}$.

- $c(x)$ is convex (since $P \in \mathcal{S}_{+}^{n}$) and differentiable, hence KKT theorem can be applied.
- We need to find x_{0}, μ_{0} that satisfy all four Karush—Kuhn-Tucker conditions:
(KKT1): $A x_{0}=b$.
(KKT2): \emptyset.
(KKT3): \emptyset.
(KKT4): $\nabla c\left(x_{0}\right)+\left.\mu_{0}^{\top} \nabla(A x-b)\right|_{x=x_{0}}=0$, i.e.,

$$
P x_{0}+q+A^{\top} \mu_{0}=0 .
$$

KKT: Example I (continued)

- Summarizing the properties of the sought x_{0}, μ_{0} :

$$
\left(\begin{array}{cc}
P_{n \times n} & A_{n \times k}^{\top} \\
A_{k \times n} & 0
\end{array}\right)\binom{x_{0}}{\mu_{0}}=\binom{-q}{b} .
$$

- The discussion of the solvability of this system of equations, and finding the solution in case of solvability, is a straightforward linear algebraic task.

KKT: Example II

Example

Example

$$
\begin{array}{ll}
\text { Minimize } & 2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2}-t \\
\text { subject to } & x_{1}^{2}+x_{2}^{2} \leq 5 \\
& 3 x_{1}+x_{2} \leq 6
\end{array}
$$

- In our case, $\mathcal{D}=\mathbb{R}^{2}$.
- It can be easily verified that the objective function is convex, and the inequality constraints f_{i} are also convex functions.
- All occurring functions are differentiable.

KKT: Example II (continued)

- The KKT searches for primal/dual $x_{1}, x_{2}, \lambda_{1}, \lambda_{2}$ instead, satisfying the primal/dual conditions ((KKT1) and (KKT2)):

$$
x_{1}^{2}+x_{2}^{2} \leq 5, \quad 3 x_{1}+x_{2} \leq 6, \quad \lambda_{1} \geq 0, \quad \lambda_{2} \geq 0
$$

- (KKT4) is crucial to find the optimal place. For this:

$$
\begin{gathered}
\nabla\left(2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}-10 x_{1}-10 x_{2}\right)=\binom{4 x_{1}+2 x_{2}-10}{2 x_{1}+2 x_{2}-10}, \\
\nabla\left(x_{1}^{2}+x_{2}^{2}-5\right)=\binom{2 x_{1}}{2 x_{2}}, \nabla\left(3 x_{1}+x_{2}-6\right)=\binom{3}{1}
\end{gathered}
$$

- Hence, expressing the satisfaction of (KKT4):

$$
4 x_{1}+2 x_{2}-10+2 \lambda_{1} x_{1}+3 \lambda_{2}=0, \quad 2 x_{1}+2 x_{2}-10+2 \lambda_{1} x_{2}+\lambda_{2}=0
$$

KKT: Example II (continued)

- What our number four should also know is the complementary slackness property.
- This can be fulfilled in four different ways:

$$
\begin{array}{ll}
I: & x_{1}^{2}+x_{2}^{2}=5 \text { and } \lambda_{1} \geq 0, \quad 3 x_{1}+x_{2}=6 \text { and } \lambda_{2} \geq 0 . \\
\text { II }: & x_{1}^{2}+x_{2}^{2}<5 \text { and } \lambda_{1}=0, \quad 3 x_{1}+x_{2}<6 \text { and } \lambda_{2}=0 . \\
\text { III }: & x_{1}^{2}+x_{2}^{2}<5 \text { and } \lambda_{1}=0, \quad 3 x_{1}+x_{2}=6 \text { and } \lambda_{2} \geq 0 . \\
\text { IV }: & x_{1}^{2}+x_{2}^{2}=5 \text { and } \lambda_{1} \geq 0, \quad 3 x_{1}+x_{2}<6 \text { and } \lambda_{2}=0 .
\end{array}
$$

KKT: Example II (continued)

- By elementary methods, it can be determined that I, II, and III do not lead to appropriate quadruples.
- The possibility IV, however, leads to the

$$
x_{1}=1, x_{2}=2, \lambda_{1}=1, \lambda_{2}=0
$$

solution.

- From this, it follows that $(1,2)$ is a primal optimal solution, $(1,0)$ is a dual optimal solution. Furthermore, strong duality holds.

Thank you for your attention!

