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Strong Duality: Reminder

Reminder

The optimal value of the primal problem is denoted by p∗, and the
optimal value of the dual problem is denoted by d∗

(d∗, p∗ ∈ R ∪ {−∞,∞}). The following is true (Weak Duality
Theorem): d∗ ≤ p∗.

• We talk about strong duality when we can guarantee d∗ = p∗

under certain conditions.

• There are various options for these certain conditions.

• An entire industry has developed around the development of
such conditions. We only discuss one possibility.
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Slater’s Theorem

Slater’s Theorem

Consider the following optimization problem:

Minimize c(x),-t

subject to fi (x) ≤ 0 i = 1, . . . , k

gi (x) = 0 i = 1, . . . `

Suppose that
(1) The problem is convex. Thus, c and fi are convex functions, and gi are

affine functions. This means that the gi (x) = 0 (i = 1, . . . , `)
constraints can be written in the following form: Ax − b = 0, where
A ∈ R`×n and b ∈ R`.

(S) There exists s ∈ D such that (i) fi (s) < 0 (i = 1, . . . , k) and gi (s) = 0
(i = 1, . . . , `). Specifically, s ∈ L. (ii) Moreover,
s ∈ int D = {x : ∃r > 0 B(x , r) ⊂ D}, the set of interior points of D,
where B(x , r) is the ball centered at x with radius r .

Then, strong duality holds, i.e., d∗ = p∗.
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About the Conditions

• We call (S) Slater’s condition.

• Points satisfying condition (S) are called Slater points.

• (S)(i) and (S)(ii) can be weakened. The statement of the
theorem remains true under the following (weakened) conditions:

(S) (i)0 We only require from the Slater point s that fi (s) < 0 if fi
is not affine, and fi (s) ≤ 0 if it is affine.

(S) (ii)0
s ∈ relint D = D relative interior D in the affine hull of D
(int D ⊂ relint D).

• Below, we present the proof under an important assumption: A
(the matrix of equality and affine constraints) has full row rank.

• Without this assumption, the essence of the proof remains, with
only a few technical complications making it lengthier.
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Proof: 1st Observation

1st Observation

We can assume that
p∗ ∈ R.

• From (S), it follows that L 6= ∅, implying p∗ <∞.

• Moreover, from weak duality, it follows that strong duality holds
if p∗ = −∞. Thus, we can assume p∗ > −∞. Combining these,
we conclude .
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Proof: E , F , and Observations

• Let

E = {(ϕ1, ϕ2, . . . , ϕk ,γ1, γ2, . . . , γ`, τ) ∈ Rk × R` × R :

∃x ∈ D, such that

ϕi ≥ fi (x) i = 1, . . . , k

γi = gi (x) i = 1, . . . , `

τ ≥ c(x)},

F = {(0, 0, . . . , 0, τ) ∈ Rk × R` × R : τ < p∗}.

2nd Observation

E and F are convex sets.

3rd Observation

E is closed under increasing the coordinates ϕi and τ .

Peter Hajnal Strong duality, SzTE, 2024



Proof: Lemma

Lemma

Lemma
E ∩ F = ∅.

• We will prove this indirectly.

• Assume v ∈ E ∩ F , i.e., v ∈ E and v ∈ F .

• v ∈ F implies v = (0, . . . , 0, τ), where τ < p∗.

• v ∈ E implies that there exists x ∈ D such that fi (x) ≤ 0,
gi (x) = 0, and τ ≥ c(x).

• Hence, x ∈ L, and c(x) ≤ τ < p∗, which is a contradiction.
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Proof: Application of the Separation Theorem

Separation theorem for convex sets ≈ Farkas’ Lemma

K , L convex sets and K ∩ L = ∅ then there exists a hyperplane H,
which separates the two sets.

That is, it divides the space into closed half-spaces H≤ and H≥,
such that H≤ ⊃ K and H≥ ⊃ L.

• From the theorem and Lemma 2, it follows that there exists an
n = (λ1, λ2, . . . , λk , µ1, . . . , µ`, ν) (n ∈ Rk+`+1 = Rk × R` × R)
nonzero vector and a real number α, such that the hyperplane
Hn,α = {x ∈ Rk+`+1, n>x = α} divides into two half-spaces:

H≥n,α = {x ∈ Rk+`+1 : n>x ≥ α} ⊇ E ,

H≤n,α = {x ∈ Rk+`+1 : n>x ≤ α} ⊇ F .
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Proof: Further Observations

• From Observation 3, we know that by increasing the first k and last
coordinates, we remain in E and thus in H≥.

Observation 4

λ � 0 and ν ≥ 0.

• (0, 0, p∗ − ε) ∈ F , which implies (0, 0, p∗ − ε) ∈ H≤, thus ν(p∗ − ε) ≤ α.
Since ε > 0 is arbitrary, we get limit transitions, yielding

Observation 5

νp∗ ≤ α.

• For x ∈ D, (f (x), g(x), c(x)) ∈ E , specifically in H≥.

Observation 6

For every x ∈ D: k∑
i=1

λi fi (x) +
∑̀
i=1

µigi (x) + νc(x) ≥ α.
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Proof: Case 1: ν 6= 0 (ν > 0)

• Then for every x ∈ D,

L

(
λi
ν
,
µi
ν
, x

)
=

k∑
i=1

λi
ν
fi (x) +

µi
ν
gi (x) + c(x) ≥ α

ν
.

• This yields

c̃

(
λi
ν
,
µi
ν

)
≥ α

ν
≥ p∗.(

λi
ν

)k
i=1

are the feasible solutions of the dual optimization problem.

• From this and the previous inequality, it follows that

d∗ ≥ c̃

(
λi
ν
,
µi
ν

)
≥ p∗.

• Comparing with weak duality, we obtain strong duality.
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Proof: Case 2: ν = 0

• In this case,
∑k

i=1 λi fi (x) +
∑`

i=1 µigi (x) ≥ α ≥ νp∗ = 0 for all
x ∈ D.

• Write the inequality for x = s, where s is a Slater point.

k∑
i=1

λi fi (s)+
∑̀
i=1

µigi (s) ≥ 0, where λi ≥ 0, fi (s) < 0 and gi (s) = 0.

• Then each λi must be zero.

• Our initial inequality simplifies to:

∑̀
i=1

µigi (x) ≥ 0,

which rewritten becomes µ>(Ax − b) ≥ 0 for all x ∈ D.
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Proof: Case 2 (continued)

• Let x = s + δ, where δ ∈ Rk+`+1 and |δ| < r0, with r0 so small
that B(s, r0) ⊂ D.

µ>(A(s + δ)− b) =µ>(As + Aδ − b) = µ>(b + Aδ − b)

=µ>Aδ =
∑̀
i=1

(µ>A)iδi ≥ 0.

• This holds for −δ as well, implying µ>A = 0.

• Due to our initial assumption (full row rank of A), µ = 0.

• Thus n = (λ, µ, ν) = 0, which is a contradiction.
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Break
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Slack Conditions, Weak Duality Reminder

Notation

Let x ∈ L. We say that the i-th inequality constraint is slack at x if

fi (x) < 0.

• Let x∗ be a primal optimal point and (λ∗, µ∗) be a dual optimal
point. Specifically, λ∗ � 0.

• The weak duality is summarized.

• Let L(λ, µ, x) = c(x) + λ>f (x) + µ>g(x).

• Then

d∗ =c̃(λ∗, µ∗) = inf L(λ∗, µ∗, x) = inf
x∈D

(c(x) + (λ∗)>f (x) + (µ∗)>g(x))

≤c(x∗) + (λ∗)>f (x∗) + (µ∗)>g(x∗) ≤ c(x∗) = p∗.

• If strong duality holds, then equality holds throughout.
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Weak Duality: Analysis of the Second Inequality

d∗ =c̃(λ∗, µ∗) = inf L(λ∗, µ∗, x) = inf
x∈D

(c(x) + (λ∗)>f (x) + (µ∗)>g(x))

≤c(x∗) + (λ∗)>f (x∗) + (µ∗)>g(x∗) ≤ c(x∗) = p∗.

Definition

Definition Let x0 be a primal feasible solution, i.e., fi (x0) ≤ 0,
gi (x0) = 0. Let (λ0, µ0) be a dual feasible solution, i.e., (λ0)i ≥ 0.
This solution pair exhibits complementary slackness if

(i) fi (x0) < 0 implies (λ0)i = 0.

(ii) (λ0)i > 0 implies fi (x0) = 0.

Observation

In the second inequality, equality holds if and only if x∗ and
(λ∗, µ∗) exhibit complementary slackness.
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Weak Duality: Analysis of the First Inequality

d∗ =c̃(λ∗, µ∗) = inf L(λ∗, µ∗, x) = inf
x∈D

(c(x) + (λ∗)>f (x) + (µ∗)>g(x))

≤c(x∗) + (λ∗)>f (x∗) + (µ∗)>g(x∗) ≤ c(x∗) = p∗.

Observation

If the first inequality is an equality, then
c(x) + (λ∗)>f (x) + (µ∗)>g(x) functions attains a minimum at x∗.

Suppose c and fi functions are differentiable. Then

∇c(x∗) + (λ∗)>∇f (x∗) + (µ∗)>∇g(x∗) = 0.

Suppose c , fi are convex and gi are affine. Then
c(x) + (λ∗)>f (x) + (µ∗)>g(x) is also convex (λ∗ � 0). In this
case, the above condition is both necessary and sufficient for the
equality in the second inequality to hold.
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Karush—Kuhn—Tucker Theorem: Background

• The theorem was Karush’s master’s thesis in the 1930s.

• Later, Kuhn and Tucker discovered the theorem and made it
known in the 1950s.

Assume that c, fi , gj are differentiable. Moreover, c , fi are convex,
and gj are affine.

Definition: Karush—Kuhn—Tucker Conditions

For x∗ ∈ Rn, (λ∗, µ∗) ∈ Rk × R`, the conditions are

(KKT1) fi (x
∗) ≤ 0 and gi (x

∗) = 0, i.e., x is primal feasible.

(KKT2) λ∗i ≥ 0, i.e., (λ∗, µ∗) is dual feasible.

(KKT3) x∗ and (λ∗, µ∗) exhibit complementary slackness.

(KKT4) (∇c)(x∗) + (λ∗)>∇f (x∗) + (µ∗)>∇g(x∗) = 0.
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Karush—Kuhn—Tucker Theorem: The Theorem

KKT Theorem

Suppose gi are affine functions, c , fi are convex and differentiable
functions.

If strong duality holds with optimal points, then there exist x0 and
(λ0, µ0) that satisfy the (KKT1), (KKT2), (KKT3), (KKT4)
conditions.

Conversely, if there exist x0, (λ0, µ0), satisfying the (KKT1),
(KKT2), (KKT3), (KKT4) conditions, then strong duality holds
and these are primal and dual optimal points.

• We have already seen the first part of the theorem.
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Establishing Sufficiency

c̃(λ0, µ0) = inf(c(x) + λ>0 f (x) + µ>0 g(x))

=
(KKT4)

c(x0) + λ>0 f (x0) + µ>0 g(x)

=
(KKT3)

c(x0).

Since KKT4 is necessary and sufficient for x0 to be an optimum
point.

Then

d∗ ≥
(KKT2)

c̃(λ0, µ0) = c(x0) ≥
(KKT1)

p∗ ≥
weak duality

d∗.

From the chain of inequalities, it is evident that equality holds
throughout, i.e., strong duality holds, x0 is a primal optimal point,
and (λ0, µ0) is a dual optimal point.
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KKT: Example I

Minimize 1
2x
>Px + q>x + r -t

subject to Ax = b,

where P ∈ Sn+.

• c(x) is convex (since P ∈ Sn+) and differentiable, hence KKT
theorem can be applied.

• We need to find x0, µ0 that satisfy all four Karush—Kuhn-Tucker
conditions:
(KKT1): Ax0 = b.
(KKT2): ∅.
(KKT3): ∅.
(KKT4): ∇c(x0) + µ>0 ∇(Ax − b)|x=x0 = 0, i.e.,

Px0 + q + A>µ0 = 0.
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KKT: Example I (continued)

• Summarizing the properties of the sought x0, µ0:(
Pn×n A>n×k
Ak×n 0

)(
x0
µ0

)
=

(
−q
b

)
.

• The discussion of the solvability of this system of equations, and
finding the solution in case of solvability, is a straightforward linear
algebraic task.
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KKT: Example II

Example

Example

Minimize 2x21 + 2x1x2 + x22 − 10x1 − 10x2-t

subject to x21 + x22 ≤ 5,

3x1 + x2 ≤ 6.

• In our case, D = R2.

• It can be easily verified that the objective function is convex, and
the inequality constraints fi are also convex functions.

• All occurring functions are differentiable.
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KKT: Example II (continued)

• The KKT searches for primal/dual x1, x2, λ1, λ2 instead,
satisfying the primal/dual conditions ((KKT1) and (KKT2)):

x21 + x22 ≤ 5, 3x1 + x2 ≤ 6, λ1 ≥ 0, λ2 ≥ 0.

• (KKT4) is crucial to find the optimal place. For this:

∇(2x21 + 2x1x2 + x22 − 10x1 − 10x2) =

(
4x1 + 2x2 − 10
2x1 + 2x2 − 10

)
,

∇(x21 + x22 − 5) =

(
2x1
2x2

)
,∇(3x1 + x2 − 6) =

(
3
1

)
.

• Hence, expressing the satisfaction of (KKT4):

4x1+2x2−10+2λ1x1+3λ2 = 0, 2x1+2x2−10+2λ1x2+λ2 = 0.
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KKT: Example II (continued)

• What our number four should also know is the complementary
slackness property.

• This can be fulfilled in four different ways:

I : x21 + x22 = 5 and λ1 ≥ 0, 3x1 + x2 = 6 and λ2 ≥ 0.

II : x21 + x22 < 5 and λ1 = 0, 3x1 + x2 < 6 and λ2 = 0.

III : x21 + x22 < 5 and λ1 = 0, 3x1 + x2 = 6 and λ2 ≥ 0.

IV : x21 + x22 = 5 and λ1 ≥ 0, 3x1 + x2 < 6 and λ2 = 0.
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KKT: Example II (continued)

• By elementary methods, it can be determined that I, II, and III
do not lead to appropriate quadruples.

• The possibility IV, however, leads to the

x1 = 1, x2 = 2, λ1 = 1, λ2 = 0

solution.

• From this, it follows that (1, 2) is a primal optimal solution,
(1, 0) is a dual optimal solution. Furthermore, strong duality holds.
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This is the End!

Thank you for your attention!
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