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The Original Problem

• Let’s consider the following optimization problem specified with explicit
conditions:

Minimize c(x)

Subject to fi (x) ≤ 0, i = 1, . . . , k ,

gj(x) = 0, j = 1, . . . , `, (P)

where x ∈ Rn, c : dom (c)(⊂ Rn)→ R, x = (x1, . . . , xn)T, and fi and gj are
real-valued functions of n variables.

• Let’s introduce a concise and simple notation. Let

f =

f1
...
fk

 : ∩ki=1dom fi ⊂ Rn → Rk , and g =

g1
...
g`

 : ∩`j=1dom gj ⊂ Rn → R`
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Notation Technique

• Expressing our problem in this notation, it takes the following form:

Minimize c(x)-t

subject to f (x) � 0,

g(x) = 0.

• It’s always good to keep in mind what the concise notation represents.
For example, in the above, the 0s represent zero vectors in Rk and R`.
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Dual Variables

• Next, we’ll introduce new variables for the conditions. For each
inequality, we’ll introduce a λi and for each equality, we’ll introduce
a µi . These are called Lagrange multipliers or alternatively dual
variables. As before, we’ll utilize the vector notation:

λ =

λ1
...
λk

 , µ =

µ1
...
µ`

 .
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Lagrange Function

• We introduce the concept of the Lagrange function associated
with the optimization problem.

Definition

L(x ;λ, µ) = c(x)+
k∑

i=1

λi fi (x)+
∑̀
j=1

µjgj(x) = c(x)+λTf (x)+µTg(x).

• The domain of the Lagrange function coincides with the domain
of the original optimization problem denoted by (P), which we
labeled as D.
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Lagrange Function: Remark

Remark

If x is a feasible solution (i.e., x ∈ L), and 0 � λ, then we have
c(x) ≥ L(x ;λ, µ).

• Indeed: Since x ∈ L, then for every j , gj(x) = 0 and hence∑
µjgj(x) = 0.

For every i , λi ≥ 0, and fi (x) ≤ 0, from which
∑
λi fi (x) ≤ 0.

Adding c(x) = c(x) to this and summing up the above, we get
precisely the following:

L(x , λ, µ) ≤ c(x).

• Thus, for every non-negative coordinate λ and any µ, we obtain
a lower bound for c(x) by evaluating L.
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Dual Objective Function

• It’s advantageous if our lower bound doesn’t depend on x . The
following definition makes our lower bound depend solely on the
dual variables.

Definition: Lagrange/Objective Function

c̃(λ, µ) = inf
x∈D

L(x , λ, µ).

• Note that this also represents an optimization problem, but it
has no constraints. More precisely,

”
the original constraints are

incorporated into the objective function”.

It immediately follows from the previous remark that for x ∈ L and
λ � 0,

c(x) ≥ c̃(λ, µ).

This is because c(x) ≥ L(λ, µ, x) ≥ c̃(λ, µ).
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Dual Problem

• Let’s define the dual of problem (P).

Definition: Dual Optimization Problem

Maximize c̃(λ, µ)

Subject to λ � 0. (D)

• We denote the dual problem as (D), and its optimal value as d∗.
(The original problem (P) is the primal problem; its optimal value
is p∗).
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Weak Duality Theorem

Weak Duality Theorem

p∗ ≥ d∗.

• This is obvious from the earlier discussions.

• The objective function of the dual problem is
”

guaranteedly
nice”, expressed as a minimization problem,

Minimize −c̃(λ, µ)-t

subject to λ � 0.

it will be convex:

Theorem

c̃(λ, µ) is concave, thus −c̃(λ, µ) is convex.
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Duality: Terminology

• Many times, weak duality theorem holds with equality.

• In such cases, we say that strong duality holds.

• However, this is not necessary.

• When p∗ − d∗ > 0, we say there is a (positive) duality gap.
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Break Time
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Example I: Dualization of LP in Simplex Form

Example

Minimize cTx-t

subject to Ax = b

x � 0

• In this case, the Lagrange function is:

L(λ, µ, x) = cTx − λTx + µT(Ax − b) = (cT − λT + (ATµ)T)x − µTb

= (c − λ+ ATµ)Tx − bTµ.

• To determine the value of the dual objective function at (λ, µ),
we need to find the global minimum of a linear function.
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Example I: Dualization of LP in Simplex Form: Digression

• Our task is to minimize the function aTx + α.

• Minimizing linear functions with one variable is easy to visualize.
The graph is a line. If this graph is a horizontal line (our function
is a constant α), then α is the minimum. Otherwise, our function
can take any small value.

• The situation is similar for multiple variables. If the coefficient
vector is the 0 vector, then our linear function is constant. If one
coordinate of a (one coefficient of xi ) is not 0, then the linear
function can take any small value.

Remark

inf
x∈Rn

aTx + α =

{
α, a = 0

−∞, a 6= 0
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Dualization Example I: LP in Simplex Form (continued)

• After the digression, the dualization becomes clear:

c̃(λ, µ) = inf
x∈Rn

(c−λ+ATµ)Tx−bTµ =

{
−bTµ, if c − λ+ ATµ = 0,

−∞, otherwise.

• The dual problem:

Maximize c̃(λ, µ)-t

subject to λ � 0

• Or equivalently:

Maximize −bTµ-t

subject to c − λ+ ATµ = 0

λ � 0
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Dualization Example I: LP in Simplex Form (continued)

• Or equivalently:

Minimize bTµ-t

subject to c + ATµ � 0

Thus, the dual of the LP problem in simplex form is also an LP
problem. This LP problem is known as the polyhedral form of the
LP problem.
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Dualization Example II: LP in Polyhedral Form

Example

Minimize cT x-t

subject to Ax 4 b.

• We have:

L (x , λ) = cTx + λT (Ax − b) =
(
c + ATλ

)T
x − bTλ.

• Thus,

c̃ (λ) =

{
−bTλ, if c + ATλ = 0,

−∞, otherwise.
.
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Dualization Example II: LP in Polyhedral Form (continued)

• The dual problem is:

Maximize −bTλ-t

subject to c + ATλ = 0

λ < 0.

Equivalently:

Minimize bTλ-t

subject to c + ATλ = 0

λ < 0.

• In the previous two examples, we dualized perhaps the two most
common normal forms of LP problems. Both formalize the same
problem domain. Due to the different forms, the dualization
followed different paths. It turns out that the two forms are dual
to each other.
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Dualization Example II: LP: Strong Duality

• It may be known from operations research that while weak
duality theorem always holds for LP problems, strong duality often
holds as well. The only possibility for a positive duality gap is when
p∗ =∞ and d∗ = −∞ simultaneously. That is, if one problem has
finite optimum, then so does the other, and the two optimal values
coincide.

Strong Duality Theorem for LP

Consider any LP problem. Exactly one of the following two
possibilities holds:

(1)
p∗ =∞ > −∞ = d∗,

(2)
p∗ = d∗.
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Dualization Example III: Flow Problem

Example

H = (
−→
G , s, t, c) is a network, where

−→
G is a directed graph, s and t

are two distinguished vertices (source and sink), and c is the

capacity function. c : E (
−→
G )→ R ≡ c ∈ RE(

−→
G ).

Flow assigns a quantity to each edge such that it lies between 0
and the capacity of the corresponding edge (capacity constraints).
Furthermore, it ensures the conservation of flow at every vertex
except the source and sink.

We seek the flow f with maximum value.

• The flow function f : E (
−→
G )→ R can be described as

f ∈ RE(
−→
G ), i.e., x = (f (e1), . . . , f (em))T ∈ RE as a vector.

• Capacities can also be handled as vectors. Algebraically, the
capacity constraints are: 0 � x � c .
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Dualization Example III: Flow Problem (continued)

• The conservation law can also be written in algebraic form:∑
e:vKe

xe −
∑
e:vBe

xe = 0 for all v ∈ V \{s, t}.

• The objective function/the value of the flow (x = x(flow))

c(x) = val(f ) =
∑
e:sKe

xe −
∑
e:sBe

xe .

• Before us is the LP form of the flow problem. We introduce a
little twist into the obvious formalization.
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Dualization Example III: Flow Problem (continued)

• Consider the following modification of the network: We add an
edge of infinite capacity (an edge without capacity constraint),

leading from t to s in
−→
G .

• In this
−→
G + graph, a flow should remain on the old edges, and

the e+ edge should have the value of the flow. Thus, conservation
is satisfied at every vertex (our network becomes a so-called
circulation). Let x+ =

(x
v

)
be the extended variable vector with the

variable corresponding to the new edge, i.e., the new coordinate
v = val(f ), the value of the flow.
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Dualization Example III: Flow Problem (continued)
• Let A be the incidence matrix of

−→
G , and A+ be the incidence

matrix of
−→
G +.

• The flow problem is the following:

Maximize v -t

subject to 0 � x � c ,

A+x+ = 0.

• The linear equation system in matrix form corresponds to |V |
equations, each representing the conservation law written for all
vertices except the source and sink. To dualize, we switch to the
standard form:

Minimize −v -t

subject to −x � 0,

x − c � 0,

A+x+ = 0.
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Dualization Example III: Flow Problem (continued)

• The Lagrange function is given by:

L(x+;λ1, λ2, µ) = −v + λT
1 (−x) + λT

2 (x − c) + µTA+x+︸ ︷︷ ︸
(AT

+µ)Tx+︸ ︷︷ ︸
(ATµ)Tx+(µs−µt )v

=

=(−1 + µs − µt)v + (λ2 − λ1 + ATµ)Tx − λT
2 c

• From here, the dual objective function is:

c̃ =

{
−λT

2 c, if (−1 + µs − µt) = 0 and λ2 − λ1 + ATµ = 0

−∞, otherwise
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Dualization Example III: Flow Problem (continued)

• The (D) dual problem is:

Maximize −λT
2 c-t

subject to µs − µt = 1

λ2 = λ1 − ATµ

λ1, λ2 � 0

• Below, we reconsider the dual problem using elementary
methods.
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Dualization Example III: Flow Problem: 1st + 2nd
Observation

1st Observation

The goal is to minimize the components of λ2, i.e., to make the
coordinates of the (non-negative) variable vector as close to zero
as possible. To achieve this, it suffices to choose µ and λ1

components wisely.

• If µ is given, then choosing λ1 is straightforward: If (ATµ)e ≥ 0,
then (λ1)e = (ATµ)e is the optimal choice (in this case,
(λ2)e = 0). If (ATµ)e < 0, then (λ1)e = 0 leads to the best (λ2)e .

2nd Observation

There exists an integral optimal solution.

• This is not trivial. We will prove it later in the semester.
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Dualization Example III: Flow Problem: 3rd Observation

3rd Observation

In the constraints of the dual problem, the µ vector appears only
as differences of two µ coordinates: e = −→uv edge has
(ATµ)e = µv − µu. Moreover, it is advantageous if this difference
— when negative — is as close to 0 as possible.

• If µ ∈ Rv is a feasible solution, then for any constant c ,

µ+


c
c
...
c

 = µ+ c · 1T is also a feasible solution and equivalent to

the original µ.

• Due to such shifts, we can assume that the µ vector satisfies
µs = 1 and µt = 0 (normalization).
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Dualization Example III: Flow Problem (continued)

• From this, it can be computed which ce edge capacities will have
non-zero coefficients in the objective function. Exactly those edges
leading from the set S = {v ∈ V : µ(v) = 1} to the set
T = {v ∈ V : µ(v) = 0} (on such an edge (ATµ)e = −1, when
the optimal choice assigns (λ1)e = 0 and (λ2)e = 1).

• That is, the capacity of the s-t cut defined by µ will be the value
of the objective function.

• After the considerations, the dual problem turns out to be the
problem of finding the minimal capacity cut:

Minimize C (V)-t

subject to V is an s-t cut.

• The weak duality theorem states that every cut capacity is an
upper bound for every flow value. We also know that the optimal
values of the two optimization problems are equal.
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Break
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Dualization Example IV: Least Squares Problem

Example

Minimize xTx-t

subject to Ax = b,

where x ∈ Rn, A ∈ R`×n, b ∈ R`.

• Then
L(x ;µ) = xTx + µT(Ax − b).

• Expressing c̃ :

c̃(µ) = inf
x∈Rn

L(µ, x) = inf
x∈Rn

(xTx + µT(Ax))︸ ︷︷ ︸
(ATµ)Tx

− µTb︸︷︷︸
independent of x
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Dualization Example IV: Least Squares Problem
(continued)

• The infimum over x is taken for a function depending on x as

L̃ = xTx + (ATµ)Tx .

• L̃ : Rn → R is a quadratic polynomial function, differentiable, so
calculus tools can be applied for finding extrema.

• Gradient of L:

∇L = grad L = 2x + ATµ.

• We know that at an extremum, the gradient is zero. ∇xL = 0 if
and only if x = −1

2A
Tµ.
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Dualization Example IV: Least Squares Problem
(continued)

• The zero gradient does not necessarily mean a minimum, but in
our case, we have a convex function, so there will definitely be a
minimum here. Therefore, substituting x with −1

2A
Tµ, we get that

c̃(µ) =

(
−1

2
ATµ

)T

·
(
−1

2
ATµ

)
+ (ATµ)T ·

(
−1

2
ATµ

)
− bTµ =

=− 1

4
µTAATµ− bTµ.

• The dual problem is then

Maximize −1
4µ

TAATµ− µTb-t

• So the dual (D) problem is an unconstrained optimization
question.
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Dualization Example V: Maximum Cut

Example

Consider a simple graph G . The task is to find such a cut V (a
partition of the vertices into two classes) where the |E (V)| is
maximized (maximize the number of edges crossing).

• First, let’s formalize/arithmeticize the problem.

• We can describe a cut by encoding with an additional plus or
minus 1 component for each vertex to indicate which side of the
cut it falls on:

V ≡ x ∈ {−1, 1}V ⊂ RV .
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Dualization Example V: Maximum Cut (continued)

• Let A = AG be the adjacency matrix of G .

• For the quadratic form xTAx , each edge e = uv contributes
2xuxv . The value of xuxv is +1 if edge e belongs to one side of the
cut, and −1 if edge e belongs to the cut set (crosses).

• It’s easy to calculate that

xTAx = 2 |E (G )| − 4 |E (V)| .

• So the original problem’s formalization is

Minimize xTAx , x ∈ RV -t

subject to x2
v = 1, for all v ∈ V .

• This formalization of the problem is NP-hard. Of course, we can
determine its dual.
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Dualization Example V: Maximum Cut (continued)

• The Lagrange function of the dual problem is

L(µ, x) = xTAx +
∑
v∈V

µv
(
x2
v − 1

)
= xTAx +

∑
v

µvx
2
v −

∑
v

µv

= xT (A + diag µ) x − 1Tµ,

where for a vector a ∈ Rn diag (a) =


a1 0 . . . 0

0 a2
. . .

...
...

. . .
. . . 0

0 . . . 0 an

 is an

n × n diagonal matrix.

• From this, the dual objective function is

c̃(µ) = −1Tµ+ inf
x∈Rn

xT (A + diag µ) x .
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Dualization Example V: Maximum Cut (continued)

• The infimum needs to be determined for every vector in Rn,
because the expression is defined for every such x , there are no
restrictions.

• Now the question is, what is the (unconstrained) minimum of a
homogeneous quadratic function in Rn?

• To answer this, let’s take a little detour.

Notation

Let M ∈ Sn ⊂ Rn×n be a symmetric matrix.

If M is positive semidefinite, then we write

M � 0, or M ∈ Sn+.

If M is positive definite, then we write

M � 0, or M ∈ Sn++.
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Dualization Example V: Maximum Cut: Digression

• What is the minimum of the real function wx2? The answer is
simple based on our elementary school studies:

inf
x∈R

wx2 =

{
0, if w ≥ 0,

−∞, if w < 0.

• Let W ∈ Sn ⊂ Rn×n, that is, an n × n symmetric matrix. Then

inf
x∈Rn

xTWx =

{
0, if W � 0,

−∞, otherwise.

• The case W � 0 corresponds to the definition of positive
semidefiniteness, and because of 0TW 0 = 0, it holds true.

• In the second case, since W is not positive semidefinite,
substituting an appropriate vector x results in a negative value in
the expression to be minimized. However, through scaling, the
quadratic form can take arbitrarily small values as well.
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Dualization Example V: Maximum Cut (continued)

• After the digression, we can now determine the dual objective
function:

c̃(µ) =

{
−1Tµ, if A + diag µ � 0,

−∞, otherwise.

• Thus, the dual problem is as follows:

Maximize −1Tµ-t

subject to A + diag µ � 0.

• The dual problem is a semidefinite programming problem,
manageable. Strong duality is not expected. However, every
possible dual solution provides a lower bound on the value of p∗.
We hope that a clever dual solution can provide a good
approximation to p∗.
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Dualization Example V: Maximum Cut (continued)

Consequence

Let G be any arbitrary simple graph, and λmin be the smallest
eigenvalue of graph G (the adjacency matrix A). Then

1

2
|E (G )|

(1)

≤ max
V cut

|E (V)|
(2)

≤ 1

2
|E (G )| − λmin

4
|V (G )| .
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Dualization Example V: Maximum Cut (continued)

• The inequality (1) follows from

max
V cut

|E (V)| ≥ E(|E (V)|),

where V is a random cut in graph G (vector chosen uniformly at
random from {−1, 1}n). We need to check how many times each
edge contributes to the expected value. Let ξ be the following
random variable:

ξe =

{
1, if e ∈ E (V),

0, if e 6∈ E (V),

which can be easily calculated to have P(ξe = 1) = P(ξe = 0) = 1
2

for each e edge. Then

E(E (V)) = E

 ∑
e∈E(G)

ξe

 =
∑

e∈E(G)

E (ξe) =
∑

e∈E(G)

1

2
=

1

2
|E (G )| .
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Dualization Example V: Maximum Cut (continued)

• To prove inequality (2), let’s denote the optimal solution of the
dual problem as d∗, and let µ be any feasible dual solution. Then
it’s obvious that d∗ ≥ c̃(µ).

• The condition A + diag µ � 0 is equivalent to saying that all
eigenvalues of the matrix A + diag µ are non-negative.

• Now we just need to choose a good µ vector. Let

µ = −λmin1 =


−λmin

−λmin
...

−λmin

 .
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Dualization Example V: Maximum Cut (continued)

• The first claim is that the µ chosen in this way is a feasible
solution: This means that the condition A + diag µ � 0 must be
satisfied. If λ1 ≥ λ2 ≥ . . . ≥ λn = λmin are the eigenvalues of
matrix A, then the eigenvalues of matrix A + diag µ are
λ1 − λmin ≥ . . . ≥ λn − λmin ≥ 0. This can be easily proved by
considering that the eigenvectors of A are also eigenvectors of
A + diag µ. Hence all eigenvalues of A + diag µ are non-negative.

• Thus, the µ chosen in this way satisfies the positive
semidefiniteness condition. We have already seen that the optimal
solution of the primal problem is p∗ = 2 |E (G )| − 4 max |E (V)|.
Then

2 |E (G )| − 4 max |E (V)| = p∗ ≥ d∗ ≥ c(µ) = |V |λmin.

Rearranging this gives us equality (2).
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Break Time
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Dualization Example VI: Minimizing Norm under Linear
Constraints

Example

Minimize ‖x‖ , x ∈ Rn,-t

subject to Ax = b,

where ‖.‖ : Rn → R is an arbitrary norm.

• For the L2 norm, we have already seen how easy it is to dualize.

• For an arbitrary norm, the Lagrange function is

L(µ, x) = ‖x‖+ µT (Ax − b) = ‖x‖+
(
ATµ

)T
x − bTµ.

• Now we seek an infimum of this, and here too we need a little
digression, as in the previous example.
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Digression

• Our task is essentially to determine the infimum of an expression
in the form ‖x‖+ vT x .

Definition

Let ‖.‖ be any norm. The

‖v‖∗ = sup
{
vT x : ‖x‖ = 1

}
norm is called the dual norm.

• From the definition of the dual norm and the properties of
norms, it follows that |vT x | ≤ ‖v‖∗, if ‖x‖ = 1. (Why?)

• Scaling leads to the following Lemma.
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Digression (continued)

Lemma ∣∣∣vT x∣∣∣ ≤ ‖v‖∗ ‖x‖ .
• Using the dual norm, the sought infimum can be expressed as
follows:

inf
x∈Rn
‖x‖+ vT x =

{
0, if ‖v‖∗ ≤ 1,

−∞, if ‖v‖∗ > 1.

• In the first case, it is equivalent to ‖v‖∗ ≤ 1 implying
‖x‖+ vT x ≥ 0 for all x vectors. This can be easily deduced from
the above statement.

• In the second case, if we reach a negative value, then through
scaling we can achieve arbitrarily large negative values, leading to
the −∞ infimum.
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Dualization Example VI: Minimizing Norm under Linear
Constraints (continued)

The dual objective function is as follows:

c̃(µ) =

{
−bTµ, if

∥∥ATµ
∥∥
∗ ≤ 1,

−∞, if
∥∥ATµ

∥∥
∗ > 1.

Thus, the dual problem is as follows:

Maximize −bTµ-t

subject to
∥∥ATµ

∥∥
∗ ≤ 1.
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Dualization Example VII: Optimization under Linear
Constraints

Example

Minimize c(x)-t

subject to Ax � b,

Cx = d .

• The problem is much more general than an LP problem, where
we also work with linear constraints. Here, the objective function
can be any function.

• The Lagrange function of the problem is

L(λ, µ, x) = c(x) + λT (Ax − b) + µT (Cx − d)

= c(x) +
(
ATλ+ CTµ

)T
x − (bTλ+ dTµ).
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Digression

• Now we are seeking the infimum of an expression in the form
f (x) + vT x over the domain dom (f ).

Definition

The convex conjugate, or alternatively the Fenchel conjugate, of
the function f is defined as

f ∗(u) = sup
x∈dom (f )

uT x − f (x).

• In the expression to be minimized, the role of u in the objective
function will be played by −v :

inf
x
f (x)+vTx = − sup

x
−f (x)−vTx = − sup

x
−vTx−f (x) = −f ∗(−v).
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Dualization Example VII: Optimization under Linear
Constraints (continued)

• Following this, the dual problem becomes

Maximize −c∗(−ATλ− CTµ)− (bTλ+ dTµ)-t

subject to λ � 0.
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Dualization Example VIII: Maximizing Entropy

Example

Minimize
∑n

i=1 xi log xi -t

subject to Ax � b,

1Tx = 1.

• The objective function is negative entropy, resolving the apparent
contradiction between the maximization sign and the minimization
optimization task.

• Due to the appearance of the logarithm function, the
components of the feasible solutions are positive. 1Tx = 1
indicates that x encodes a probability distribution. The linear
inequalities Ax � b can be statistical observations about the
distribution. For example, its expected value, variance, moments,
estimation of the tail of the distribution, etc.
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Dualization Example VIII: Maximizing Entropy (continued)

• This example is a special case of the previous one. Let’s write
down the

c(x) =
n∑

i=1

xi log xi .

• It is easy to calculate that in the one variable case

(x log x)∗ = ey−1.

• It can be easily shown that this implies

c∗(x) =
n∑

i=1

eyi−1.

• Now we write down c̃ (λ, µ) function:

c̃ (λ, µ) = −bTλ−µ−
n∑

i=1

e−a
T
i λ−µ−1 = −bTλ−µ−e−µ−1

n∑
i=1

e−a
T
i λ,

where aT
i is the i-th row of the AT matrix, i.e., the i-th column of

A.
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Dualization Example VIII: Maximizing Entropy (continued)

• The dual problem is:

Maximize c̃ (λ, µ)-t

subject to λ < 0.

• This can be easily simplified: If λ is fixed, then c̃ is a
single-variable real function, and thus a good µ value can be
determined for each λ:

µ = log
n∑

i=1

e−a
T
i λ − 1.

• Substituting, the dual becomes equivalent to the following:

Maximize −bTλ− log
(∑n

i=1 e
−aT

i λ
)

-t

subject to λ < 0.
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Break
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Dualization Example IX

Example

Minimize x1x2-t

subject to x1 ≥ 0

x2 ≥ 0

x2
1 + x2

2 ≤ 1

• The optimization problem is trivial: The product of non-negative
numbers is non-negative, in our case (0, 0) is a feasible solution.

• Thus, p∗ = 0.

• Nevertheless, let’s practice the learned dualization formalism.
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Dualization Example IX (continued)

• The dual variables are λ1, λ2, and λ3.

• The Lagrange function is:

x1x2 − λ1x1 − λ2x2 + λ3(x2
1 + x2

2 − 1).

• The dual objective function is:

c̃(λ) = inf
x∈R2

(
x1x2 − λ1x1 − λ2x2 + λ3(x2

1 + x2
2 − 1)

)
=

= inf
x∈R2

(
(x1, x2)

(
λ3 1/2

1/2 λ3

)(
x1

x2

)
− (λ1, λ2)

(
x1

x2

)
− λ3

)
.
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Dualization Example IX (continued)

• The matrix of the quadratic part is positive definite if λ3 > 1/2,
positive semidefinite if λ3 = 1/2, and indefinite if λ3 < 1/2.

• It can be easily seen that in the indefinite case (having both
positive and negative eigenvalues), c̃ can take arbitrarily small
(arbitrarily large absolute value negative) values.

• It can be easily seen that in the positive semidefinite case
(λ3 = 1/2), if λ1 − λ2 6= 0, the c̃(λ1, λ2, λ3) objective function can
be arbitrarily small.

• For positive semidefinite matrices and λ1 = λ2, the value of
c̃(λ1, λ2, λ3) is −λ3.

• In the case of positive definite matrix, it can be easily seen that a
finite minimum exists. With our analytical knowledge, the
minimum value can be easily determined as:

−1

4
(λ1, λ2)

(
λ3 1/2

1/2 λ3

)−1(
λ1

λ2

)
− λ3.
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Dualization Example IX (continued)

• The dual problem is:

Maximize c̃(λ1, λ2, λ3)-t

subject to λ1 ≥ 0

λ2 ≥ 0

λ3 ≥ 1
2

• Elementary consideration suggests that the optimal points are:
(λ, λ, 1/2) and d∗ = −1/2.

• Weak duality inequality is of course satisfied, but as a strict
inequality.
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Dualization Example ĨX

Example

Minimize x1x2-t

subject to x1 ≥ 0

x2 ≥ 0

x2
1 + x2

2 ≤ 1

x1x2 ≥ 0

• We repeated the previous example with an additional, obviously
(mathematically) redundant constraint.

• Of course, p∗ remains 0.
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Dualization Example ĨX (continued)

• However, the dualization will change.

• A dual variable λ4 appears.

• The Lagrange function is:

x1x2 − λ1x1 − λ2x2 + λ3(x2
1 + x2

2 − 1)− λ4x1x2.

• The dual objective function is:

c̃(λ) = inf
x∈R2

(
x1x2 − λ1x1 − λ2x2 + λ3(x2

1 + x2
2 − 1)− λ4x1x2

)
=

= inf
x∈R2

(
(x1, x2)

(
λ3

1−λ4
2

1−λ4
2 λ3

)(
x1

x2

)
− (λ1, λ2)

(
x1

x2

)
− λ3

)
.
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Dualization Example ĨX (continued)

• The analysis/solution of the dual problem can be easily done
following the previous reasoning.

• The calculation results in: the optimal point is (0, 0, 0, 1) and
d∗ = 0, strong duality holds.

• The optimal point and the dual optimal value were controlled by
the fourth (corresponding to the redundant) dual variable. Adding
the seemingly redundant constraint can be justified afterwards.
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Dualization Example X

Example

Minimize c(u)-t

subject to u ≤ 0

where c(u) = −
(
u+1

2

)2
, dom (c) = [−1, 1], meaning the graph of

c is a parabolic arc.

• The domain of the objective function is unnatural. With this
strange, unnatural domain, we built constraints into the objective
function. This is not fair. This is cheating.

• Our goal is not to present an application, but to demonstrate the
geometric view of duality gap.
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Dualization Example X (continued)

• First, let’s dualize the original problem. We use the notation
v = c(u).

• The Lagrange function is:

L (u, λ) = −
(
u + 1

2

)2

+ λu = λu + v .

• The dual objective function is:

c̃(λ) = inf
u∈[−1,1],v= 1

4
(u+1)2

λu + v .

• The dual is:

Maximize c̃(λ) = inf
u∈[−1,1],v= 1

4
(u+1)2

λu + v -t

subject to λ ≥ 0
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Dualization Example X: The Figure

• With the following figure, we can visualize the solutions to the
primal and dual problems:

d
?
p
?

The function v = − 1
4 (u + 1) 2 is plotted in the u-v coordinate plane.

Additionally, there are v + λu = α-type functions visible, which bound
the objective function from below.
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Dualization Example X: The Figure (continued)

• The solution to the primal is evident: On the feasible values
([−1, 0]), the function is monotonically decreasing, thus attaining a
minimum at 0. So, x∗ = 0 and p∗ = −1/4.

• The Lagrange function is of the form v + λu. If it takes the
value α0 for some λ0, it bounds the objective function from below
for u ∈ [−1, 1]. v + λ0u ≥ α intersects the parabolic arc in the
half-space.

• Thus, the lines of the form λu + v = α are going underneath the
graph. A specific line (λ0) corresponds to the intersection with the
v -axis.

• The dual optimum is the highest intersection with the v -axis.

• In the figure, the optimal value d∗ is clearly visible, as well as the
strict inequality d∗ < p∗. There is no strong duality.
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Dualization Example XI

Example

Let n = 2, c(x , y) : R× R≥0 → R, (x , y) 7→ e−x . Our
optimization problem is the following:

Minimize c(x , y)-t

subject to x2

y ≤ 0

• Then, the domain of the optimization problem is as follows:
D = R× R>0.

• To satisfy the constraint, due to the non-negativity of x2 and
y > 0, x must be 0.

• The feasible solution set for the problem is

{(x , y) : x = 0, y > 0}.
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Dualization Example XI (continued)

• If we restrict the objective function to L, then c |L = e−0 = 1
becomes a constant function.

• It follows that the optimal value of the primal problem is 1, thus
p∗ = 1.

• Let’s write the Lagrange function for the problem:

L(x , y ;λ) = c(x , y) + λ
x2

y
= e−x + λ

x2

y
.

• Then, the dual objective function is as follows:

c̃(λ) = inf
(x ,y)∈D

L(x , y ;λ) = inf
(x ,y)∈D

(
e−x + λ

x2

y

)
=

{
0 if λ ≥ 0

−∞ otherwise
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Dualization Example XI (continued)

• So we can write down the dual optimization problem:

Maximize c̃(λ)-t

subject to λ ≥ 0.

• Its optimal value is d∗ = 0.

• Note that the weak duality theorem holds in this case, since
p∗ ≥ d∗.

• In our case, the inequality is strict, creating a so-called duality
gap, because p∗ − d∗ = 1 > 0.

Péter Hajnal Dualization, SzTE, 2024



This is the End!

Thank you for your attention!
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