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LP Relaxation of IP Problems

Definition
From the following integer programming (IP) problem

Minimize cTx-t

subject to x ∈ P
x ∈ Zn,

if we omit the condition x ∈ Zn, we obtain the associated linear
programming (LP) problem

Minimize cTx-t

subject to x ∈ P.

This is called the LP relaxation of the original IP problem.
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Relationship Between IP Problems and Their LP Relaxations

• IP problems are very general. NP-complete problems can easily
be formulated as IP problems. It cannot generally be expected to
be efficiently solvable.

• LP problems, however, are efficiently manageable.

• In general, this relaxation is a real simplification. Nevertheless, it
also provides useful information about the original problem.

Observation
If the optimum of the original IP problem is p∗I and that of the LP
relaxation is p∗, then

p∗ ≤ p∗I .

• Through the LP relaxation, we easily obtain a lower bound on the
optimal value.
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Integral Polyhedra

Definition
A polyhedron P = 〈g1, g2, . . . , gk〉convex + 〈h1, h2, . . . , h`〉cone is
integral iff all generating vectors can be chosen from Zn.

Definition
P = {x : Ax � b} is a regular polyhedron integral if ext(P) ⊆ Zn,
meaning that every extremal point has integer coordinates, and
A ∈ Qk×n, b ∈ Qk .

• For polytopes, the previous definition is equivalent to P being
integral if the convex hull of finitely many Zn points.

• From the above, if the IP problem defined by the continuous
constraints is integral, then the LP relaxation will have integral
optimal points (since the vertices of P are integral). In this case,
p∗I = p∗.
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Conditions Guaranteeing Integrality of Polyhedra I

Edmonds–Giles Theorem

Let P = {x : Ax � b} 6= ∅ be a polyhedron, A ∈ Qk×n, b ∈ Qk .
Then the following are equivalent:
(i) P is an integral polyhedron (i.e., ext(P) ⊆ Zn).
(ii) For every c ∈ Rn objective vector, the LP problem

Minimize cTx-t

subject to x ∈ P

either has p∗ = −∞ or has an optimal point in Zn.
(iii) For every c ∈ Zn, the optimal value of the LP problem

Minimize cTx-t

subject to x ∈ P

is either −∞ or integral.
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Initial notes

Note
The equivalence of (i) with (ii) follows from earlier results.

The (i)⇒(iii) is indeed true, as if a linear function attains its
minimum on a polyhedron, it does so at a vertex.

If the coordinates of this optimal point and the objective function
are integers, then the objective function value is also integral. (Of
course, this also establishes the validity of (ii) in this case.)
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The proof

(iii)⇒(i)

• Let e ∈ ext(P), which means that there exists ν 6= 0 ∈ Rn and
τ ∈ R such that

(?) P ⊂ {x : νTx ≥ τ} and νTe = τ.

• The normal vector ν is not unique. Obviously, it can be
multiplied by a positive scalar to obtain another possible ν (with a
new τ). Geometrically, it is sensible and easy to see that for a
suitable positive ε, any ν within a distance of at most ε from the
original one is also suitable as a normal vector.

• Based on these two remarks, there exists a ν ∈ Zn vector such
that both ν and the vectors (ν + ei ) are suitable for satisfying (?),
where ei are the standard unit vectors in n dimensions
(ei = (0, . . . , 0, 1, 0, . . . , 0)T).
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Proof (continued)

• The ν and (ν + ei ) are potential c values in condition (iii) of the
theorem.

• Furthermore, their corresponding optimal values are νTe and
(ν + ei )

Te.

• Indeed. If we minimize νTx over P, then we obtain at least the
same value as if we optimize over the half-space containing P
defined by {x : νTx ≥ τ}. That is, the minimum value is at least τ ,
which is achieved at the vertex e.

• Therefore, according to (iii), the optimal values of νTe and
(ν + ei )

Te are integers.

• Specifically, the i-th coordinate of e ∈ ext(P):
eT
i e = (ν + ei )

Te − νTe is also an integer.

• Thus, each component of e is an integer, i.e., e is an integer
vector.
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Break
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Conditions Guaranteeing Integrality II: Totally Unimodular
Matrices

Definition

A matrix M ∈ Rk×n is called totally unimodular (TU) if for every
square submatrix N, we have detN ∈ {−1, 0, 1}.

• Specifically, a TU matrix has a determinant of 0 or ±1 for every
1× 1 sized submatrix. That is, its elements can only be −1, 0, or 1.

Theorem

If A ∈ Rk×n is a totally unimodular matrix and b ∈ Zk , then
P = {x ∈ Rn : Ax � b} is an integral polyhedron.
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Proof

• Let e ∈ ext(P). Specifically, e ∈ P and the inequalities that e
sharpens are such that the vectors on the left sides span Rn.

• That is, A has rows such as aT
i1
, . . . , aT

in
, which are linearly

independent and satisfy
aT
i1
e = bi1
...

aT
in
e = bin .

• From this (given A and b), e can be expressed using Cramer’s
rule.
When calculating each coordinate, we work with integers, and there
is only one division involved. The divisor is the determinant of a
square submatrix of A. The submatrix does not degenerate, so its
determinant cannot be 0. Thus, its value is −1 or 1. Dividing by
this does not lead to non-integer results.
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Totally Unimodular Matrices: Example I

• The vertex-edge incidence matrix of a loopless graph G is
denoted by BG , where the rows correspond to the vertices and the
columns correspond to the edges, and at the intersection of a
vertex v ∈ V row and an edge e ∈ E column, we have

(BG )v ,e =

{
1, if v is incident to e,
0, otherwise.

• Note that each column of BG contains exactly two non-zero
elements, two 1s.

• Let G be a complete graph on three vertices: Then

BK3 =

0 1 1
1 0 1
1 1 0

 .

• The complete matrix is a square submatrix of itself. Since
detBK3 = 2, BK3 is not TU.
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Totally Unimodular Matrices: Examples II

• Thus, if G contains a clique of size three, then BG contains the
above submatrix, specifically, it is not TU.

• Similarly, it can be shown that the vertex-edge incidence matrix
of a cycle with an odd length (which is square) also has a
determinant of 2.

• Specifically, if a graph contains an odd-length cycle (which is
equivalent to being non-bipartite), then its vertex-edge incidence
matrix is not TU.

• We will see that if G is a bipartite graph, then BG is a TU matrix.
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Totally Unimodular Matrices: Examples III

Example

Example
−→
G is a loopless directed graph. Then, the vertex-edge

incidence matrix D of
−→
G has an element Dv ,e (the element at the

intersection of the row corresponding to vertex v and the column
corresponding to edge e) given by:

Dv ,e =


+1, if the edge "enters" the vertex
−1, if the edge "leaves" the vertex
0, otherwise.

It can be seen that each column of DG contains one 1 and one
(−1), with the remaining elements being 0.

• We will show that for any directed graph G , DG matrix is totally
unimodular.
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Totally Unimodular Matrices: Operations

Lemma

Let A be a totally unimodular matrix. Form Ã from A by the
following rules/operations:
(i) Multiplying rows/columns by −1.
(ii) Deleting rows/columns.
(iii) Repeating existing rows/columns.
(iv) Adding rows/columns with ei where ei contains exactly one

non-zero element which is 1.
(v) Transposing.
Then the resulting Ã matrix is also totally unimodular.

Péter Hajnal Integer polytopes, SzTE, 2024



Totally Unimodular Matrices: Operations

Lemma

Let A be a totally unimodular matrix. Form Ã from A by the
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Totally Unimodular Matrices: Examples and Proofs

Theorem
(i) Let G be any bipartite graph. Then BG is a TU matrix.

(ii) Let
−→
G be any directed graph. Then D−→

G
is a TU matrix.

• We prove the two statements in parallel for a while. We use
complete induction on k .

• The statement holds for k = 1 since all elements of both matrices
are from the set {−1, 0, 1}.

• Induction step. Suppose that for square submatrices of size k or
less, we know that their determinants are ±1 or 0. Let N be a k × k
sized submatrix. We need to prove that its determinant is ±1 or 0.
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Proof (continued): 3 cases

Case 1: One of the columns of N contains only 0s. In this case,
detN = 0 and we are done.

Case 2: One of the columns of N contains exactly one non-zero
value and 0s. We know that the non-zero element is −1 or 1 (in
the even case, it can only be 1). Then there exists an expansion for
this column, and the induction hypothesis gives the result.

Case 3: The complement of the above two cases. For the two
types of matrices, this means that each column contains exactly
two non-zero elements.

The proof now splits into two branches. For D−→
G
, we know that the

sum of rows will be the zero vector. For BG , we know that the sum
of rows corresponding to bottom vertices and the sum of rows
corresponding to top vertices will both be the all-ones vector. In
both cases, there exists a non-trivial linear dependency among the
rows. Hence, the determinant is 0, and we are done.
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Consequences: Weighted Matching Problem

The Weighted Matching Problem

Given a graph G with an edge weighting c : E (G )→ R+.
Find a maximum-weight matching, where the weight of a
matching/edge set is

∑
e:e∈M c(e).

Consequence
The weighted matching problem on bipartite graphs can be solved
using an LP algorithm.
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Consequences: Weighted Matching Problem as an IP

• Identifying the weight function c with a vector c ∈ RE(G), the
problem becomes the following

Minimize cT x-t

subject to
∑
e:vIe

xe ≤ 1, ∀ v ∈ V

0 ≤ xe , ∀ e ∈ E

xe ∈ Z, ∀ e ∈ E

integer programming formulation.

• We obtain its LP relaxation by removing the xe ∈ Z constraints:

Minimize cT x-t

subject to
∑
e:vIe

xe ≤ 1,

xe ≥ 0.
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Consequences: Weighted Matching Problem: LP Relaxation

• This is now an LP problem and the matrix is totally unimodular
IF G IS BIPARTITE.

• Indeed. The essential part of the matrix is the vertex-edge
incidence matrix of the bipartite graph, which we have shown to
have the TU property. The TU property of the complete matrix
easily follows from this.

• Thus, the LP relaxation’s vertices are integer-coordinate, i.e.,
they correspond to matchings.

• So the LP relaxation is equivalent to the original formulation. An
LP problem can be efficiently handled in many ways.
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Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above. The algebraic description of the flow
problem is an LP problem. The matrix is TU. Hence, the vertices of
the polytope are integer-coordinate vectors. Among the optimal
points, there is an integer one.

• The same applies to the dual problem. When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions. We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above. The algebraic description of the flow
problem is an LP problem. The matrix is TU. Hence, the vertices of
the polytope are integer-coordinate vectors. Among the optimal
points, there is an integer one.

• The same applies to the dual problem. When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions. We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above. The algebraic description of the flow
problem is an LP problem. The matrix is TU. Hence, the vertices of
the polytope are integer-coordinate vectors. Among the optimal
points, there is an integer one.

• The same applies to the dual problem. When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions. We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above.

The algebraic description of the flow
problem is an LP problem. The matrix is TU. Hence, the vertices of
the polytope are integer-coordinate vectors. Among the optimal
points, there is an integer one.

• The same applies to the dual problem. When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions. We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above. The algebraic description of the flow
problem is an LP problem.

The matrix is TU. Hence, the vertices of
the polytope are integer-coordinate vectors. Among the optimal
points, there is an integer one.

• The same applies to the dual problem. When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions. We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above. The algebraic description of the flow
problem is an LP problem. The matrix is TU.

Hence, the vertices of
the polytope are integer-coordinate vectors. Among the optimal
points, there is an integer one.

• The same applies to the dual problem. When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions. We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above. The algebraic description of the flow
problem is an LP problem. The matrix is TU. Hence, the vertices of
the polytope are integer-coordinate vectors.

Among the optimal
points, there is an integer one.

• The same applies to the dual problem. When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions. We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above. The algebraic description of the flow
problem is an LP problem. The matrix is TU. Hence, the vertices of
the polytope are integer-coordinate vectors. Among the optimal
points, there is an integer one.

• The same applies to the dual problem. When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions. We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above. The algebraic description of the flow
problem is an LP problem. The matrix is TU. Hence, the vertices of
the polytope are integer-coordinate vectors. Among the optimal
points, there is an integer one.

• The same applies to the dual problem.

When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions. We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above. The algebraic description of the flow
problem is an LP problem. The matrix is TU. Hence, the vertices of
the polytope are integer-coordinate vectors. Among the optimal
points, there is an integer one.

• The same applies to the dual problem. When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions.

We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Consequences: Networks

Theorem
If all edge capacities in a network are integers, then there exists an
optimal flow in which every edge carries an integer amount of
material.

• This theorem was seen and proven in discrete mathematics
lectures.

• It follows from the above. The algebraic description of the flow
problem is an LP problem. The matrix is TU. Hence, the vertices of
the polytope are integer-coordinate vectors. Among the optimal
points, there is an integer one.

• The same applies to the dual problem. When searching for the
optimal dual solution, we can confine ourselves to integral dual
feasible solutions. We utilized this in one of our previous examples
of duality.

Péter Hajnal Integer polytopes, SzTE, 2024



Break

Péter Hajnal Integer polytopes, SzTE, 2024



Conditions Guaranteeing Integrality III: TDI Inequality
Systems

• Let E : Ax � b be an inequality system. Suppose A ∈ Qk×n, b ∈ Qk . Let
P : {x ∈ Rn : Ax � b} be the corresponding non-empty polyhedron
(solution set).

• Consider the following four optimization problems related to E .

(P)Z : (P) : (D) : (D)Z :

Min cT x

st. Ax � b

x ∈ Zn

Min cT x

st. Ax � b

Max−bTλ
st. c + ATλ = 0

λ � 0

Max−bTλ
st. c + ATλ = 0

λ ∈ Nk

p∗Z ≥ p∗ = d∗ ≥ d∗Z,

where p∗Z, p
∗, d∗, d∗Z are the optimal values of the respective optimization

problems (in the specified order).
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Comments

• Examples can be provided for an inequality system E and a vector
c so that the first and last inequalities can be arbitrarily sharp.

◦ For suitable inequality system E and vector c , equality can be
maintained throughout for both the first and last inequalities.
◦ For suitable inequality system E and vector c , the first

inequality can be strict, while the last one can be an equality.
◦ For suitable inequality system E and vector c , the first

inequality can be an equality, while the last one can be strict.
◦ For suitable inequality system E and vector c , both the first

and last inequalities can be strict.
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and last inequalities can be strict.
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TPI Systems

• The situation is different if c is not fixed but an arbitrary vector
in Zn.

• There are inequality systems for which for every c ∈ Zn, p∗Z = p∗

These are called totally primal integral (TPI) systems.

• Thus, specifically for a TPI system (since p∗Z is obviously integral
if finite), p∗ is also integral (if finite).

• We know that this is equivalent to P being an integral
polyhedron.
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TDI Systems

Definition

Definition Let A ∈ Qk×n, b ∈ Qk . The inequality system
E : Ax � b is dual integral (TDI) if for every c ∈ Zn, d∗ = d∗Z
(assuming d∗ is finite).

• The TDI property fundamental theorem states that if for every
c ∈ Zn, the last inequality in our inequality chain is an equality,
then necessarily the first inequality is also an equality for every
c ∈ Zn.

Edmonds—Giles Theorem

If E : Ax � b is TDI and b ∈ Zk , then it is also TPI. Thus, P is an
integral polyhedron.
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Important Note

• The statement is NOT about the polyhedron P = {x : Ax � b}
itself.

Example (
1 1
1 −1

)(
x1
x2

)
�
(
0
0

)
is not TDI.

Example 1 1
1 −1
1 0

(x1
x2

)
�

0
0
0


is TDI.
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Important Note (continued)

• It is known that for every integral polyhedron, there exists a
description with matrix A, vector b such that Ax � b is TDI.

• So if we want to prove that a polyhedron is integral, our plan
could be as follows:
(1) We „cleverly” express the polyhedron as {x : Ax � b}.
(2) We show that Ax � b is a TDI system. That is, we show that

the

Minimize bTx-t

subject to ATλ = −c
λ � 0

problem has an integral optimal solution for every c ∈ Zn.
(3) We conclude the integrality of P.
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Edmonds—Giles Theorem: The Proof

• Our assumption is that b ∈ Zk .

• Based on the TDI property, we know that for every c ∈ Zn,
p∗ = d∗ = d∗Z. Since b ∈ Zk , d∗Z is integral. Thus, p∗ is integral for
every c ∈ Zn.

• We have seen („earlier” Edmonds—Giles Theorem) that from
this, we can deduce the integrality of P.
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MP(G ) Matching Polytope (G loopless)

• Consider the convex hull of characteristic vectors of matchings:

MP(G ) = conv {χM : M matching}.

• Any linear inequality that holds for all χM vectors (M matching)
holds for all elements of the convex hull. If a half-space contains all
χM , then its convex hull also does.

• Thus, it is easy to provide an „upper bound” for the convex hull:

conv {χM :M matching} ⊆{
x ∈ RE(G) : xe ≥ 0,

∑
e:vIe

xe ≤ 1, v ∈ V (G )
}
⊆ RE(G)

• If G is a bipartite graph, equality holds. In the general case, more
inequalities are needed to describe the convex hull.
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Edmonds Polyhedron Theorem

Edmonds’ Polyhedron Theorem
Let G be any simple graph. Then

conv {χM : M matching} = {x ∈ RE(G) :

xe ≥ 0 ∀e ∈ E (G )∑
e:vIe

xe ≤ 1 ∀v ∈ V (G )

∑
e=xy∈E(G):
x∈S,y /∈S

xe ≤
|S | − 1

2
∀S ∈ O},

where O is the set of subsets of V with odd number of elements.
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Proof: Cunningham—Marsh Theorem

• We need to show that the vertices of the right-hand side polytope
are integral.

• This directly follows from the following theorem:

Cunningham—Marsh Theorem
The inequality system appearing in the Edmonds’ description of
MP(G ) is dual integral (TDI).

• That is, for any c ∈ Zn,

Minimize
∑

v∈V (G) λv +
∑

S∈O
|S |−1

2 · λS -t
subject to −ce + λu + λv +

∑
S∈O
u,v∈S

λS − λe = 0

∀e = uv ∈ E (G ), and λ � 0.

Then there exists an integral optimal solution.
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Break
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Edmonds’ Polyhedron Theorem II

Edmonds’ Theorem, II

PMP(G ) = conv{χM : M perfect matching} =

= {x ∈ RE(G) : xe ≥ 0, e ∈ E (G )∑
e:v Ie xe ≤ 1, v ∈ V (G ),∑

e=xy∈E(G):
x∈S,y /∈S

xe ≥ 1, S ⊆ V (G ),

|S | odd}.

• PMP(G ) is the perfect matching polytope of graph G .
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Consequence of Edmonds’ Polyhedron Theorem

Theorem
G is a k-regular, k-edge-connected graph with an even number of
vertices. Then there exists a positive integer t such that

χe(t × G ) = t · k,

where t × G is the graph obtained from G by multiplying its edges
by t (alternatively, we add t − 1 "twin copies" to each edge of G ).

• The χe in the theorem is the edge chromatic number: Color the
edges of the graph in such a way that converging edges have
different colors, i.e., edges belonging to the same color class form a
perfect matching.

• The minimum number of colors needed for this is the edge
chromatic number of the graph.
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Reminder

Reminder: Vizing’s Theorem
If G is a simple graph, then

D(G ) ≤ χe(G ) ≤ D(G ) + 1,

where D(G ) denotes the maximum degree of the graph.

• For non-simple graphs, the corresponding upper bound does not
hold.

Reminder: Shannon’s Theorem

D(G ) ≤ χe(G ) ≤ 3
2
· D(G ),

• The theorem is tight: χe(t × K3) = 3t, while D(t × K3) = 2t.
Thus, by multiplying edges, we can reach up to the upper bound
given by Shannon’s estimate.

• The claim of the theorem: for regular graphs with even vertex
count, by edge multiplication, we can reach the lower bound of
Shannon’s estimate.
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Consequence: Proof

• Observe that 1
k · 1¯
∈MP(G), where 1

k · 1¯
∈ QE is the vector

containing all 1/k coordinates.

• To show this, it suffices to verify thatMP(G) satisfies each
condition in the Edmonds’ description.

• Obviously, its components are nonnegative. The sum of
components corresponding to converging edges at each vertex is a
sum of k 1/k terms, totaling exactly 1.

• We check the third type condition for S ∈ O (|V | even, so
S 6= ∅,V ): First, for an arbitrary (xe) vector, sum the component
sums corresponding to edges meeting at vertices in S :∑

v∈S

∑
e:vIe

xe = 2
∑

e=xy :x ,y∈S
xe +

∑
e∈∂S

xe .
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Consequence: Proof (Continuation)

• Rearranging,∑
e⊆S

xe =

∑
v∈S

∑
e:vIe xe −

∑
e∈∂S xe

2

• The k-edge connectivity implies that |∂S | ≥ k .

• Now if we apply this to (xe) = 1
k · 1¯

, the subtracted term in the
numerator is at least 1 (at least k 1/k terms are summed). This
gives us the third type inequality to check.

• Summing up: 1
k 1¯
∈MP(G)
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Consequence: Proof (Continuation)

• By Edmonds’ theorem, we know that our vector can be
represented as a convex combination of the vertex vectors of the
polytope:

1
k
· 1
¯

=
∑

M matching

αMχM =
∑

M matching

`M
L
χM ,

where
∑

M: matching αM = 1, αM ≥ 0.

• Since the vertices of the polytope are integral, our vector is
rational, so the αM ’s can be assumed to be rational, i.e.,
(αM) ∈ QE , thus L ∈ N+, `M ∈ N.

• The relationship sorted becomes

L· 1
¯

=
∑

(k · `M)χM .
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Consequence: Proof (Continuation)

• We demonstrate that this equality precisely means that our claim
is true for t = L.

• Indeed, consider each M matching k · `M times. The matchings
form possible color classes.

• Based on the above equality, each edge in G is covered L times
by these matchings. That is, they form a partition of L×G , a good
edge coloring.

• The color demand:∑
M matching

k`M =k
∑

M matching

`M = kL
∑

M matching

`M
L

=

=kL
∑

M matching

αM = kL, since
∑

M matching

αM = 1.
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Break
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Reminder: Cunningham—Marsh Theorem

• For any c ∈ Zn,

Minimize
∑

v∈V (G) λv +
∑

S∈O
|S|−1

2 · λS -t
subject to −ce + λu + λv +

∑
S∈O
u,v∈S

λS − λe = 0

∀e = uv ∈ E (G ), and λ � 0.

Then there exists an integer feasible solution.

• Equivalently:

Minimize
∑

v∈V (G) λv +
∑

S∈O
|S |−1

2 · λS -t
subject to λu + λv +

∑
S∈O
u,v∈S

λS ≥ ce

∀e = uv ∈ E (G ), and λ � 0.

Then there exists an integer feasible solution.
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New Form of Cunningham—Marsh Theorem

Cunningham—Marsh Theorem

Let (ce)c∈E(G) ∈ ZE(G) be an arbitrary integral edge weighting of
G . Then there exists (λv ) ∈ RV

+, (λS) ∈ RO+ satisfying

λu + λv +
∑
S∈O
u,v∈S

λS ≥ ce ∀e = uv ∈ E (G )

and ∑
v∈V (G)

λv +
∑
S∈O

|S | − 1
2

λS ≤ νc(G ),

furthermore, these are integral solutions.
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New Form of Cunningham—Marsh Theorem: Justification

• The system of conditions is the dualized conditions of the primal
problem with the natural elimination of the λe (with sign
constraints) variables (these did not appear in the objective
function).

• The disappearance of the optimization is due to the additional
condition.

• Satisfying the additional condition, we have∑
v∈V (G)

λv +
∑
S∈O

|S | − 1
2

λS ≤ νc(G ) ≤ p∗ ≤ d∗

(The last inequality holds due to the weak duality for maximization
problems), thus guaranteeing that our possible dual solution is
optimal.
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Proof of Cunningham—Marsh Theorem: Initial Steps

• If we know the theorem for connected graphs, then from the dual
solutions found for the components we can construct a solution for
the entire G . To those sets of odd cardinality containing multiple
components, we assign 0 values.

• Parallel edges can be handled easily. From now on, we assume
that our graph is simple.

• If any component of the (ce)e∈E(G) vector is not positive, then in
the dual problem, the edge imposes no constraint. Thus, these
edges can be removed from our graph. Hence, we may assume that
(ce)e∈E(G) ∈ NE(G)

+ .

• We carry out a complete induction on |V |+ |E |+
∑

e∈E(G) c(e).
Verification of the cases of small graphs (with small weights) is
straightforward, left as an exercise for the interested reader.
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Proof of Cunningham—Marsh Theorem: Case 1 and Scheme

Case 1: Let G and c be such that there exists a vertex v ∈ V (G ) such
that every c-optimal matching covers v . By c-optimal matching, we mean
a matching M such that c(M) = νc(G ).

• The scheme of our proof will be as follows:

G , c
back-−−−→
step

G ′ = G (the graph remains the same)

c ′e =

{
ce − 1, if vIe
ce , otherwise.y induction

assumption

λu =

{
λ′v + 1, if u = v

λ′u, otherwise,

λS = λ′S for all S ∈ O
←−−−

possible, integral dual λ′∑
v∈V (G)

λ′v +
∑
S∈O

|S | − 1
2

λ′S ≤ νc ′(G )
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Proof of Case 1

Claim
The λ defined in the above scheme satisfies the assertion. That is,
they are possible integral dual solutions and fulfill the inequality
proving the theorem.

• Non-negativity and integrality are obvious.

• From the induction assumption, we know that∑
x

λ′x +
∑
S

|S | − 1
2

λ′S ≤ νc ′(G ).

• The question is:∑
x

λx +
∑
S

|S | − 1
2

λS ≤ νc(G ).
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Proof of Case 1 (continued)

• How do the two sides of the first inequality change when we drop
the primes?

• The condition of Case 1 and the definition of c ′ guarantee that
the right side increases by one. On the left side, the same obviously
happens.

• For each edge, we need to verify the prescribed condition for
feasible solutions. Let e = xy be an arbitrary edge. We know the
following:

λ′x + λ′y +
∑
S∈O
xy∈S

λS ≥ c ′e .

• We need to show that

λx + λy +
∑
S∈O
xy∈S

λS ≥ ce .
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Proof of Case 1 (conclusion)

• If v does not match with e, then λ′x = λx , λ′y = λy , c ′e = ce ,
from which the claim is obvious.

• If v matches with e, then again we analyze the change between
the known and the to-be-proven inequalities.

• It is easy to see that by dropping the primes, both sides increase
by 1, from which the claim follows.
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Proof of Cunningham—Marsh Theorem: Case 2 and Scheme

Case 2: For every vertex v , there exists an M c-optimal matching that does
not cover (skips) v .

• The scheme of our proof will be as follows:

G , c
back-−−−→
step

G ′ = G (the graph remains the same)

c ′ = c − 1y induction

step

λv = λ′v

λS =

{
λ′S + 1, if S = V (G )

λ′S , otherwise.

? CONDITION←−−−−−−−−−
CLAIM

possible, integral dual λ′∑
v∈V (G)

λ′v +
∑
S∈O

|S | − 1
2

λ′S ≤ νc ′(G )

• When discussing Case 2, we assume

? CONDITION
The c ’-optimal matching leaves only one vertex unmatched.

Specifically, the cardinality of V is odd, thus V ∈ O.
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Proof of Case 2 with ? CONDITION

Claim
The λ defined in the above scheme satisfies the assertion.

• Non-negativity and integrality are obvious.

• To prove the inequality ensuring optimality, we know that∑
x

λ′x +
∑
S

|S | − 1
2

λ′S ≤ νc ′(G ).

• We need to show:∑
x

λx +
∑
S

|S | − 1
2

λS ≤ νc(G ).
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Proof of Case 2 with ? CONDITION (continued)

• How do the two sides of the first inequality change when we drop
the primes?

• The definition of c ′ guarantees that the right side increases by
one, where M is a c ′-optimal matching.

• The CONDITION ensures that the increase is |M|, where M is a
c ′-optimal matching.

• On the left side, only one term changes: the dual variable indexed
by V . Its coefficient is |V |−1

2 , and its value increases by 1. The
claim is obvious.
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Justification of ? CONDITION: 1st Lemma

Claim
After Case 1/In Case 2, the ? CONDITION can be assumed.

• This follows from the following two lemmas. In the justification,
we assume that the conditions of Case 2 are satisfied.

Lemma
A c ′-optimal matching cannot be a perfect matching.

• Let M be a c-optimal matching. Since we are in Case 2, we may
assume that M is not perfect.

• Let M ′ be a c ′-optimal matching. Indirectly, assume that M ′ is
perfect.
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Validity of ? CONDITION: 1st Lemma (continued)

• Since M is c-optimal, we have c(M ′) ≤ c(M). Knowing that M
is not perfect, we can say something about the weight under c ′ as
well:

c ′(M) = c(M)− |M| > c(M)− |V |
2
≥ c(M ′)− |V |

2
.

• Moreover, M ′ being a perfect matching implies

c ′(M ′) = c(M ′)− |M ′| = c(M ′)− |V |
2

(< c ′(M)).

• This contradicts the fact that M ′ is a c ′-optimal matching.

Péter Hajnal Integer polytopes, SzTE, 2024



Validity of ? CONDITION: 1st Lemma (continued)

• Since M is c-optimal, we have c(M ′) ≤ c(M). Knowing that M
is not perfect, we can say something about the weight under c ′ as
well:

c ′(M) = c(M)− |M| > c(M)− |V |
2
≥ c(M ′)− |V |

2
.

• Moreover, M ′ being a perfect matching implies

c ′(M ′) = c(M ′)− |M ′| = c(M ′)− |V |
2

(< c ′(M)).

• This contradicts the fact that M ′ is a c ′-optimal matching.

Péter Hajnal Integer polytopes, SzTE, 2024



Validity of ? CONDITION: 1st Lemma (continued)

• Since M is c-optimal, we have c(M ′) ≤ c(M). Knowing that M
is not perfect, we can say something about the weight under c ′ as
well:

c ′(M) = c(M)− |M| > c(M)− |V |
2
≥ c(M ′)− |V |

2
.

• Moreover, M ′ being a perfect matching implies

c ′(M ′) = c(M ′)− |M ′| = c(M ′)− |V |
2

(< c ′(M)).

• This contradicts the fact that M ′ is a c ′-optimal matching.

Péter Hajnal Integer polytopes, SzTE, 2024



Validity of ? CONDITION: 1st Lemma (continued)

• Since M is c-optimal, we have c(M ′) ≤ c(M). Knowing that M
is not perfect, we can say something about the weight under c ′ as
well:

c ′(M) = c(M)− |M| > c(M)− |V |
2
≥ c(M ′)− |V |

2
.

• Moreover, M ′ being a perfect matching implies

c ′(M ′) = c(M ′)− |M ′| = c(M ′)− |V |
2

(< c ′(M)).

• This contradicts the fact that M ′ is a c ′-optimal matching.

Péter Hajnal Integer polytopes, SzTE, 2024



Validity of ? CONDITION: 2nd Lemma

Lemma
It cannot be the case that every c ′-optimal matching leaves at least
two vertices unmatched.

• Indirectly assume that M ′ is c ′-optimal and x , y ∈ V such that
M ′ does not cover x and y . Let (M ′, x , y) be such that d(x , y) is
minimized.

• d(x , y) > 1, because the connectivity between x and y would
ensure that M ′ ∪ {xy edge} is also a matching, contradicting the
c ′-optimality (c ′ > 0). (Generally, an optimal matching cannot
leave two connected vertices unmatched.)
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Validity of ? CONDITION: 2nd Lemma (continued)

• Let x+ be the first vertex following x on a shortest xy path
(towards y). (Due to the above, x+ 6= y .) Consider the following
two matchings:
(1) Mx+ : a c-optimal matching that does not cover x+ (such

exists in Case 2).
(2) M ′. The c ′-optimality ensures that M ′ covers x+ (x and x+

are connected).

• The components of the graphM formed by the edges of
Mx+∆M ′ are cycles and paths (BSc Combinatorics course).

• Due to the properties of our matchings, x+ is a degree 1 vertex
inM. Thus x+ is an endpoint of a path Q inM. Let

M̃x+ = Mx∆E (Q) and M̃ ′ = M ′∆E (Q).
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Validity of ? CONDITION: 2nd Lemma: Figure

On the left, black edges denote the P path edges, red edges denote Mx+

edges, blue edges denote M ′ edges, purple indicates the Q path. On the
right, the modified matchings (M̃ ′ and M̃x+): we exchange the red and
blue edges along the Q/purple path. The total weight of red and blue
edges remains the same on both sides.
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Validity of ? CONDITION: 2nd Lemma (continued)

• Then due to the c-optimality of Mx+

c(M̃x+) ≤ c(Mx+).

• The same reasoning applies to M ′ being c ′-optimal:
c ′(M̃ ′) ≤ c ′(M ′).

• But with a little insight, we can say more: M̃ ′ does not cover the
vertex x+. Moreover, either x or y remains uncovered (the
exchange only changes the matching status at the endpoints of the
Q path, and one endpoint must be x or y (not x+)).

• Since d(x+, x) = 1 < d(x , y) and
d(x+, y) = d(x , y)− 1 < d(x , y) also hold, then (M ′, x , y) being
the choice implies M̃ ′ cannot be c ′-optimal:

c ′(M̃ ′) < c ′(M ′).
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Validity of ? CONDITION: 2nd Lemma (continued)

• There is an edge of M ′ incident to x+ (one of Q’s endpoints)
along the Q path. From this, it is obvious that Q contains at least
as many edges of M ′ as of Mx+ . Thus, the number of edges in M ′

cannot increase with the exchange: |M̃ ′| ≤ |M ′|.

• Thus,

c(M̃ ′) = c ′(M̃ ′) + |M̃ ′| < c ′(M ′) + |M̃ ′| ≤ c ′(M ′) + |M ′| = c(M ′).

• The modification exchanged the roles of the two matchings along
a path. The total weight of edges in the two matchings did not
change, thus

c(M̃ ′) + c(M̃x+) = c(M ′) + c(Mx+).

• This contradicts the sum of (1) and (2). From this, the assertion
follows.

Péter Hajnal Integer polytopes, SzTE, 2024



Validity of ? CONDITION: 2nd Lemma (continued)
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as many edges of M ′ as of Mx+ . Thus, the number of edges in M ′

cannot increase with the exchange: |M̃ ′| ≤ |M ′|.

• Thus,

c(M̃ ′) = c ′(M̃ ′) + |M̃ ′| < c ′(M ′) + |M̃ ′| ≤ c ′(M ′) + |M ′| = c(M ′).

• The modification exchanged the roles of the two matchings along
a path. The total weight of edges in the two matchings did not
change, thus

c(M̃ ′) + c(M̃x+) = c(M ′) + c(Mx+).

• This contradicts the sum of (1) and (2). From this, the assertion
follows.
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Conclusion of the Proof

• The two lemmas establish the validity of the ASSUMPTION.

• Thus, the consideration of Case 2 is justified.

• The proof is complete.
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This is the End!

Thank you for your attention!
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