Geometry of linear programming

Péter Hajnal

2024. Fall

Basics of Linear Programming

Basics of Linear Programming

- There exist various normal forms.

Basics of Linear Programming

- There exist various normal forms. The one we most commonly use is the following:

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x \preceq b$

where $c \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}, A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$.

Basics of Linear Programming

- There exist various normal forms. The one we most commonly use is the following:

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x \preceq b$

where $c \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}, A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$.

- In this normal form, only linear inequalities are allowed among the constraints.

Basics of Linear Programming

- There exist various normal forms. The one we most commonly use is the following:

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x \preceq b$

where $c \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}, A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$.

- In this normal form, only linear inequalities are allowed among the constraints.
- Another common normal form is:

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x=b$,
	$x \succeq 0$.

LP Duality

LP Duality

For any LP problem, exactly one of the following two conditions holds:
(i) $p^{*}=d^{*}$, i.e., strong duality holds,
(ii) $d^{*}=-\infty<\infty=p^{*}$.

LP Duality

LP Duality

For any LP problem, exactly one of the following two conditions holds:
(i) $p^{*}=d^{*}$, i.e., strong duality holds,
(ii) $d^{*}=-\infty<\infty=p^{*}$.

- For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^{*}=d^{*} \in \mathbb{R}$.

LP Duality

LP Duality

For any LP problem, exactly one of the following two conditions holds:
(i) $p^{*}=d^{*}$, i.e., strong duality holds,
(ii) $d^{*}=-\infty<\infty=p^{*}$.

- For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^{*}=d^{*} \in \mathbb{R}$.
- If $p^{*}=-\infty$, weak duality guarantees strong duality.

LP Duality

LP Duality

For any LP problem, exactly one of the following two conditions holds:
(i) $p^{*}=d^{*}$, i.e., strong duality holds,
(ii) $d^{*}=-\infty<\infty=p^{*}$.

- For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^{*}=d^{*} \in \mathbb{R}$.
- If $p^{*}=-\infty$, weak duality guarantees strong duality.
- The only loophole for an LP problem to evade strong duality is to have $p^{*}=\infty$ and $d^{*}=-\infty$.

LP Duality

LP Duality

For any LP problem, exactly one of the following two conditions holds:
(i) $p^{*}=d^{*}$, i.e., strong duality holds,
(ii) $d^{*}=-\infty<\infty=p^{*}$.

- For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^{*}=d^{*} \in \mathbb{R}$.
- If $p^{*}=-\infty$, weak duality guarantees strong duality.
- The only loophole for an LP problem to evade strong duality is to have $p^{*}=\infty$ and $d^{*}=-\infty$. That is, both primal and dual problems are infeasible.

LP Duality

LP Duality

For any LP problem, exactly one of the following two conditions holds:
(i) $p^{*}=d^{*}$, i.e., strong duality holds,
(ii) $d^{*}=-\infty<\infty=p^{*}$.

- For example, if $\mathcal{L} \neq \emptyset$ (where \mathcal{L} is the feasible solutions set), and c is bounded below (which is often the case in practical applications), then $p^{*}=d^{*} \in \mathbb{R}$.
- If $p^{*}=-\infty$, weak duality guarantees strong duality.
- The only loophole for an LP problem to evade strong duality is to have $p^{*}=\infty$ and $d^{*}=-\infty$. That is, both primal and dual problems are infeasible. This possibility is not theoretical; it can occur in concrete examples.

Solution Set of a Linear Equation

Solution Set of a Linear Equation

$\frac{\text { LINEAR ALGEBRA }}{v \in \mathbb{R}^{n} \text { is a vector. }}$ GEOMETRY

Solution Set of a Linear Equation

LINEAR ALGEBRA	GEOMETRY
$v \in \mathbb{R}^{n}$ is a vector.	V is a point in \mathbb{R}^{n}, its position vec- tor is v.

Solution Set of a Linear Equation

LINEAR ALGEBRA	GEOMETRY
$v \in \mathbb{R}^{n}$ is a vector.	V is a point in \mathbb{R}^{n}, its position vec- tor is v.
$\nu \in \mathbb{R}^{n}-\{0\} . \nu^{\top} x=0$ is a non- trivial, homogeneous linear equa- tion solution set.	

Solution Set of a Linear Equation

LINEAR ALGEBRA	GEOMETRY
$v \in \mathbb{R}^{n}$ is a vector.	V is a point in \mathbb{R}^{n}, its position vec- tor is v.
$\nu \in \mathbb{R}^{n}-\{0\} . \nu^{\top} x=0$ is a non-	$\nu \in \mathbb{R}^{n}-\{0\}$ is a normal vector. $\nu^{\top} x=0$ is the equation of vectors trivial, homogeneous linear equa- tion solution set.
perpendicular to $\nu . ~ I t ~ d e s c r i b e s ~$ a hyperplane passing through the origin O.	

Solution Set of a Linear Equation

LINEAR ALGEBRA	GEOMETRY
$v \in \mathbb{R}^{n}$ is a vector.	V is a point in \mathbb{R}^{n}, its position vec- tor is v.
$\nu \in \mathbb{R}^{n}-\{0\} . \nu^{\top} x=0$ is a non- trivial, homogeneous linear equa- tion solution set.	$\nu \in \mathbb{R}^{n}-\{0\}$ is a normal vector. $\nu^{\top} x=0$ is the equation of vectors perpendicular to $\nu . ~ I t ~ d e s c r i b e s ~$ a hyperplane passing through the origin O.

$\nu \in \mathbb{R}^{n}-\{0\}, b \in \mathbb{R} . \nu^{\top} x=b$ is
a nontrivial linear equation solution set.

Solution Set of a Linear Equation

LINEAR ALGEBRA	GEOMETRY
$v \in \mathbb{R}^{n}$ is a vector.	V is a point in \mathbb{R}^{n}, its position vec- tor is v.
$\nu \in \mathbb{R}^{n}-\{0\} . \nu^{\top} x=0$ is a non- trivial, homogeneous linear equa- tion solution set.	$\nu \in \mathbb{R}^{n}-\{0\}$ is a normal vector. $\nu^{\top} x=0$ is the equation of vectors perpendicular to $\nu . ~ I t ~ d e s c r i b e s ~$ a hyperplane passing through the origin O.
$\nu \in \mathbb{R}^{n}-\{0\}, b \in \mathbb{R} . \nu^{\top} x=b$ is	
a nontrivial linear equation solution	$\nu \in \mathbb{R}^{n}-\{0\}$ is a normal vector. $\nu^{\top} x=b=\nu^{\top} v_{0}$ is the equation of vectors perpendicular to ν and passing through v_{0}.

Solution Set of Linear Inequalities

Solution Set of Linear Inequalities

LINEAR ALGEBRA

GEOMETRY

$\nu \in \mathbb{R}^{n}-\{0\}$. The solution set of the non-trivial linear homogeneous inequality $\nu^{\top} x \leq$ $0 / \nu^{\top} x \geq 0$ is not trivial.
$\nu \in \mathbb{R}^{n}-\{0\}$ is a normal vector. The inequality $\nu^{\top} x \leq$ $0 / \nu^{\top} x \geq 0$ defines a CLOSED half-space bounded by a hyperplane passing through the origin and perpendicular to ν.

$$
\begin{aligned}
& \nu \in \mathbb{R}^{n}-\{0\} \text { is a nor- } \\
& \text { mal vector. The inequality } \\
& \nu^{\top} x \leq b=\nu^{\top} v_{0} / \nu^{\top} x \geq b \\
& \text { defines a CLOSED half-space } \\
& \text { bounded by a hyperplane pass- } \\
& \text { ing through } v_{0} \text { and perpendic- } \\
& \text { ular to } \nu \text {. }
\end{aligned}
$$

$\nu \in \mathbb{R}^{n}-\{0\}, b \in \mathbb{R}$. The solution set of the non-trivial linear inequality $\nu^{\top} x \leq b / \nu^{\top} x \geq$ b is not trivial.

Formal Definitions

Formal Definitions

Definition

Let $\nu \in \mathbb{R}^{n}$ be a nonzero vector, τ any real number. Then the set $\left\{x \in \mathbb{R}^{n}: \nu^{\top} x=\tau\right\}$ is called a hyperplane in \mathbb{R}^{n}. The sets of the form $\left\{x \in \mathbb{R}^{n}: \nu^{\top} x \leq \tau\right\}$ are called (closed) half-spaces.

Formal Definitions

Definition

Let $\nu \in \mathbb{R}^{n}$ be a nonzero vector, τ any real number. Then the set $\left\{x \in \mathbb{R}^{n}: \nu^{\top} x=\tau\right\}$ is called a hyperplane in \mathbb{R}^{n}. The sets of the form $\left\{x \in \mathbb{R}^{n}: \nu^{\top} x \leq \tau\right\}$ are called (closed) half-spaces.

Remark

Every hyperplane defines two closed half-spaces, which share the same boundary.

Formal Definitions

Definition

Let $\nu \in \mathbb{R}^{n}$ be a nonzero vector, τ any real number. Then the set $\left\{x \in \mathbb{R}^{n}: \nu^{\top} x=\tau\right\}$ is called a hyperplane in \mathbb{R}^{n}. The sets of the form $\left\{x \in \mathbb{R}^{n}: \nu^{\top} x \leq \tau\right\}$ are called (closed) half-spaces.

Remark

Every hyperplane defines two closed half-spaces, which share the same boundary.

Lemma

Half-spaces and hyperplanes are convex.

Solution Sets of Inequality Systems

LINEAR ALGEBRA
GEOMETRY

Solution Sets of Inequality Systems

LINEAR ALGEBRA
 $A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $A x=0$.

 GEOMETRY
Solution Sets of Inequality Systems

LINEAR ALGEBRA	GEOMETRY
$A \in \mathbb{R}^{k \times n}$. Solution set of the ho- mogeneous linear equation system Intersection of finitely many hyper- planes passing through the origin $A x=0$. \equiv linear subspace.	

Solution Sets of Inequality Systems

LINEAR ALGEBRA

$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $A x=0$.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$. Solution set of the linear equation system $A x=b$.

Solution Sets of Inequality Systems

LINEAR ALGEBRA
$A \in \mathbb{R}^{k \times n}$. Solution set of the ho-

GEOMETRY

Intersection of finitely many hyperplanes passing through the origin \equiv linear subspace.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$. Solution set of the linear equation system $A x=b$.

Intersection of finitely many hyperplanes \equiv affine subspace.

Solution Sets of Inequality Systems

LINEAR ALGEBRA

$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $A x=0$.

GEOMETRY

Intersection of finitely many hyperplanes passing through the origin \equiv linear subspace.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$. Solution set of the linear equation system $A x=b$.
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear inequality system $A x \preceq 0$.

Intersection of finitely many hyperplanes \equiv affine subspace.

Solution Sets of Inequality Systems

LINEAR ALGEBRA

$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $A x=0$.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$. Solution set of the linear equation system $A x=b$.
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear inequality system $A x \preceq 0$.

GEOMETRY

Intersection of finitely many hyperplanes passing through the origin \equiv linear subspace.

Intersection of finitely many hyperplanes \equiv affine subspace.

Intersection of finitely many closed half-spaces passing through the origin \equiv polyhedral (closed, convex) cone.

Geometric Background of LP

Solution Sets of Inequality Systems

LINEAR ALGEBRA

$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $A x=0$.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$. Solution set of the linear equation system $A x=b$.
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear inequality system $A x \preceq 0$.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$. Solution set of the linear inequality system $A x \preceq$ b.

GEOMETRY

Intersection of finitely many hyperplanes passing through the origin \equiv linear subspace.

Intersection of finitely many hyperplanes \equiv affine subspace.

Intersection of finitely many closed half-spaces passing through the origin \equiv polyhedral (closed, convex) cone.

Solution Sets of Inequality Systems

LINEAR ALGEBRA

$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear equation system $A x=0$.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$. Solution set of the linear equation system $A x=b$.
$A \in \mathbb{R}^{k \times n}$. Solution set of the homogeneous linear inequality system $A x \preceq 0$.
$A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$. Solution set of the linear inequality system $A x \preceq$ b.

Intersection of finitely many closed half-spaces passing through the origin \equiv polyhedral (closed, convex) cone.

Intersection of finitely many closed half-spaces \equiv (convex, closed) polyhedron.
Intersection of finitely many hyperplanes \equiv affine subspace.
Intersection of finitely many hyperplanes passing through the origin \equiv linear subspace.

GEOMETRY

Formal Definitions

Formal Definitions

Definition: Linear Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}$ be a system of real numbers. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the linear combination of the v_{i} vectors.

Formal Definitions

Definition: Linear Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}$ be a system of real numbers. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the linear combination of the v_{i} vectors.

Definition: Linear Subspace of \mathbb{R}^{n}

$\mathcal{L} \subset \mathbb{R}^{n}$ is a linear subspace if $0 \in \mathcal{L}$ and closed under linear combination.

Formal Definitions

Definition: Linear Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}$ be a system of real numbers. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the linear combination of the v_{i} vectors.

Definition: Linear Subspace of \mathbb{R}^{n}

$\mathcal{L} \subset \mathbb{R}^{n}$ is a linear subspace if $0 \in \mathcal{L}$ and closed under linear combination.

Example

Example: Finitely Generated Linear Subspace

$$
\left\langle v_{1}, v_{2}, \ldots, v_{N}\right\rangle_{\text {lin }}=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}: \lambda_{i} \in \mathbb{R}\right\} .
$$

Formal Definitions (continued)

Formal Definitions (continued)

Definition: Affine Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}$ be a system of real numbers such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{N}=1$. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the affine combination of the v_{i} vectors.

Formal Definitions (continued)

Definition: Affine Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}$ be a system of real numbers such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{N}=1$. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the affine combination of the v_{i} vectors.

Definition: Affine Subspace of \mathbb{R}^{n}

$\mathcal{A} \subset \mathbb{R}^{n}$ is an affine subspace if closed under affine combination.

Formal Definitions (continued)

Definition: Affine Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}$ be a system of real numbers such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{N}=1$. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the affine combination of the v_{i} vectors.

Definition: Affine Subspace of \mathbb{R}^{n}

$\mathcal{A} \subset \mathbb{R}^{n}$ is an affine subspace if closed under affine combination.

Example

Example: Finitely Generated Affine Subspace

$$
\left\langle v_{1}, v_{2}, \ldots, v_{N}\right\rangle_{\text {affine }}=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}: \lambda_{i} \in \mathbb{R}, \sum_{i} \lambda_{i}=1\right\} .
$$

Formal Definitions (continued)

Formal Definitions (continued)

Definition: Cone Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}_{+}$be nonnegative real numbers. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the cone combination of the v_{i} vectors.

Formal Definitions (continued)

Definition: Cone Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}_{+}$be nonnegative real numbers. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the cone combination of the v_{i} vectors.

Definition: Cone in \mathbb{R}^{n}

$\mathcal{C} \subset \mathbb{R}^{n}$ is a (convex) cone if closed under cone combination.

Formal Definitions (continued)

Definition: Cone Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}_{+}$be nonnegative real numbers. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the cone combination of the v_{i} vectors.

Definition: Cone in \mathbb{R}^{n}

$\mathcal{C} \subset \mathbb{R}^{n}$ is a (convex) cone if closed under cone combination.

Example

Example: Finitely Generated Cone

$$
\left\langle v_{1}, v_{2}, \ldots, v_{N}\right\rangle_{\text {cone }}=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}: \lambda_{i} \in \mathbb{R}_{+}\right\} .
$$

Formal Definitions (continued)

Formal Definitions (continued)

Definition: Convex Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}_{+}$be nonnegative real numbers such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{N}=1$. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the convex combination of the v_{i} vectors.

Formal Definitions (continued)

Definition: Convex Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}_{+}$be nonnegative real numbers such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{N}=1$. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the convex combination of the v_{i} vectors.

Definition: Convex Set in \mathbb{R}^{n}

$\mathcal{K} \subset \mathbb{R}^{n}$ is a convex point set if closed under convex combination.

Formal Definitions (continued)

Definition: Convex Combination of Vectors

Let $v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{n}$ be vectors in a finite system and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}_{+}$be nonnegative real numbers such that $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{N}=1$. Then

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}
$$

is called the convex combination of the v_{i} vectors.

Definition: Convex Set in \mathbb{R}^{n}

$\mathcal{K} \subset \mathbb{R}^{n}$ is a convex point set if closed under convex combination.

Example

Example: Finitely Generated Convex Set
$\left\langle v_{1}, v_{2}, \ldots, v_{N}\right\rangle_{\text {convex }}=\left\{\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{N} v_{N}: \lambda_{i} \in \mathbb{R}_{+}, \sum_{i} \lambda_{i}=1\right\}$.

Theorems

Theorems

Theorem

Let $0 \in \mathcal{L} \subset \mathbb{R}^{n}$. Then the following are equivalent:
(i) Closed under line joining.
(ii) Closed under linear combination.
(iii) Solution set of $A x=0$ for some $A \in \mathbb{R}^{k \times n}$.
(iv) Finitely generated linear subspace.

Theorems

Theorem

Let $0 \in \mathcal{L} \subset \mathbb{R}^{n}$. Then the following are equivalent:
(i) Closed under line joining.
(ii) Closed under linear combination.
(iii) Solution set of $A x=0$ for some $A \in \mathbb{R}^{k \times n}$.
(iv) Finitely generated linear subspace.

Theorem

Let $\mathcal{A} \subset \mathbb{R}^{n}$. Then the following are equivalent:
(i) Closed under line joining.
(ii) Closed under affine combination.
(iii) Solution set of $A x=b$ for some $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$.
(iv) Finitely generated affine subspace.

Theorems (continued)

Theorems (continued)

Minkowski-Weyl Theorem

Let $\mathcal{C} \subset \mathbb{R}^{n}$. Then the following are equivalent:
(i) Solution set of $A x \preceq 0$ for some $A \in \mathbb{R}^{k \times n}$.
(ii) Finitely generated cone.

Minkowski-Weyl Theorem

Let $\mathcal{C} \subset \mathbb{R}^{n}$. Then the following are equivalent:
(i) Solution set of $A x \preceq 0$ for some $A \in \mathbb{R}^{k \times n}$.
(ii) Finitely generated cone.

Fundamental Theorem of Polytopes

Let $\mathcal{T} \subset \mathbb{R}^{n}$. Then the following are equivalent:
(i) Bounded polyhedron (\equiv polytope).
(ii) Finitely generated convex set.

Theorems (continued)

Minkowski-Weyl Theorem

Let $\mathcal{C} \subset \mathbb{R}^{n}$. Then the following are equivalent:
(i) Solution set of $A x \preceq 0$ for some $A \in \mathbb{R}^{k \times n}$.
(ii) Finitely generated cone.

Fundamental Theorem of Polytopes

Let $\mathcal{T} \subset \mathbb{R}^{n}$. Then the following are equivalent:
(i) Bounded polyhedron (\equiv polytope).
(ii) Finitely generated convex set.

Minkowski-Weyl Theorem

Let $\mathcal{P} \subset \mathbb{R}^{n}$. Then the following are equivalent:
(i) Polyhedron, i.e., solution set of $A x \preceq b$ for some $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$.
(ii) $\mathcal{T}+\mathcal{C}$, where \mathcal{T} is a polytope/finitely generated convex set and \mathcal{C} is a polyhedral/finitely generated cone.

Nice Polyhedrons

Nice Polyhedrons

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Nice Polyhedrons

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in $\mathbb{R}^{n}: \mathcal{P}=\{x: A x \preceq b\}$. Then the following are equivalent:

Nice Polyhedrons

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in $\mathbb{R}^{n}: \mathcal{P}=\{x: A x \preceq b\}$. Then the following are equivalent:
(i) Not nice. That is, there exists a nonzero vector v such that for some $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P}.

Nice Polyhedrons

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in $\mathbb{R}^{n}: \mathcal{P}=\{x: A x \preceq b\}$. Then the following are equivalent:
(i) Not nice. That is, there exists a nonzero vector v such that for some $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P}.
(ii) There exists a nonzero vector v such that for every $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P}.

Nice Polyhedrons

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in $\mathbb{R}^{n}: \mathcal{P}=\{x: A x \preceq b\}$. Then the following are equivalent:
(i) Not nice. That is, there exists a nonzero vector v such that for some $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P}.
(ii) There exists a nonzero vector v such that for every $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P}.
(iii) The row rank of A is less than n (number of columns/dimension/number of variables).

Nice Polyhedrons

Definition

Let \mathcal{P} be a polyhedron. \mathcal{P} is called nice if it does not contain a line.

Lemma

Let \mathcal{P} be a polyhedron in $\mathbb{R}^{n}: \mathcal{P}=\{x: A x \preceq b\}$. Then the following are equivalent:
(i) Not nice. That is, there exists a nonzero vector v such that for some $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P}.
(ii) There exists a nonzero vector v such that for every $p \in \mathcal{P}$, the line in the direction of v through p is a subset of \mathcal{P}.
(iii) The row rank of A is less than n (number of columns/dimension/number of variables).
(iv) $\operatorname{ext} \mathcal{P}=\emptyset$.

Further Decomposition Theorems

Further Decomposition Theorems

- When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

Further Decomposition Theorems

- When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called pointed cones.

Further Decomposition Theorems

- When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called pointed cones.

- These are exactly those cones for which there exists a hyperplane passing through the origin, such that all nonzero vectors of the cone lie strictly on one side of it. (This needs to be proved!)

Further Decomposition Theorems

- When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called pointed cones.

- These are exactly those cones for which there exists a hyperplane passing through the origin, such that all nonzero vectors of the cone lie strictly on one side of it. (This needs to be proved!)
- Every cone is a sum of a linear subspace and a pointed cone.

Further Decomposition Theorems

- When decomposing a non-nice polyhedron according to the above fundamental theorem, a component will be a line segment.

Definition: Pointed Cone

Among cones, those that do not contain a line are called pointed cones.

- These are exactly those cones for which there exists a hyperplane passing through the origin, such that all nonzero vectors of the cone lie strictly on one side of it. (This needs to be proved!)
- Every cone is a sum of a linear subspace and a pointed cone.

Theorem

Let \mathcal{P} be an arbitrary polyhedron. Then

$$
\mathcal{P}=\mathcal{T}+\mathcal{C}_{\text {pointed }}+\mathcal{L}
$$

where \mathcal{T} is polytope, $\mathcal{C}_{\text {pointed }}$ is a pointed cone, and \mathcal{L} is a linear subspace.

Break

Vertices of Polyhedra

Vertices of Polyhedra

LINEAR ALGEBRA GEOMETRY

Vertices of Polyhedra

LINEAR ALGEBRA	GEOMETRY
	If the polyhedron $\mathcal{P}: A x \preceq b$ is con- tained in the half-space $\mathcal{F}: \nu^{\top} x \leq \beta$ and $\mathcal{P} \cap \mathcal{H} \neq \emptyset$, where $\mathcal{H}: \nu^{\top} x=\beta$ (that is, \mathcal{F} is a closed half-space border), then \mathcal{F} is a half-space and the hyperplane \mathcal{H} is the supporting face, or supporting hyperplane, of the polyhedron \mathcal{P}.

Vertices of Polyhedra

LINEAR ALGEBRA

GEOMETRY

If the polyhedron $\mathcal{P}: A x \preceq b$ is contained in the half-space $\mathcal{F}: \nu^{\top} x \leq \beta$ and $\mathcal{P} \cap \mathcal{H} \neq \emptyset$, where $\mathcal{H}: \nu^{\top} x=\beta$ (that is, \mathcal{F} is a closed half-space border), then \mathcal{F} is a half-space and the hyperplane \mathcal{H} is the supporting face, or supporting hyperplane, of the polyhedron \mathcal{P}.

A solution m of a linear inequality system $A x \preceq b$ (assuming A has no zero rows) is exactly an interior point of m (and any neighborhood of m contains only solutions) if every condition is satisfied with strict inequalities. That is, every condition is tight.

Vertices of Polyhedra

LINEAR ALGEBRA	GEOMETRY
	If the polyhedron $\mathcal{P}: A x \preceq b$ is con- tained in the half-space $\mathcal{F}: \nu^{\top} x \leq \beta$ and $\mathcal{P} \cap \mathcal{H} \neq \emptyset$, where $\mathcal{H}: \nu^{\top} x=\beta$ (that is, \mathcal{F} is a closed half-space border), then \mathcal{F} is a half-space and the hyperplane \mathcal{H} is the supporting face, or supporting hyperplane, of the polyhedron \mathcal{P}.

A solution m of a linear inequality system $A x \preceq b$ (assuming A has no zero rows) is exactly an interior point of m (and any neighborhood of m contains only solutions) if every condition is satisfied with strict inequalities. That is, every condition is tight.

The boundary points of a polyhedron \mathcal{P} are those points that have both \mathcal{P} interior and \mathcal{P}-exterior points in every neighborhood. The set of boundary points, or the boundary itself, is denoted by $\partial \mathcal{P}$. The polyhedron \mathcal{P} is closed, thus $\partial \mathcal{P} \subseteq \mathcal{P}$.

Boundary Points Revisited

Boundary Points Revisited

Theorem
 A polyhedron is a closed, convex set.

Boundary Points Revisited

Theorem
 A polyhedron is a closed, convex set.

- If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^{n}$ as solutions or none at all.

Boundary Points Revisited

Theorem

A polyhedron is a closed, convex set.

- If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^{n}$ as solutions or none at all. In a special case ($A=0 \in \mathbb{R}^{k \times n}, b=0 \in \mathbb{R}^{k}$), the entire space is a polyhedron.

Boundary Points Revisited

Theorem

A polyhedron is a closed, convex set.

- If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^{n}$ as solutions or none at all. In a special case ($A=0 \in \mathbb{R}^{k \times n}, b=0 \in \mathbb{R}^{k}$), the entire space is a polyhedron. The empty set is also a polyhedron.

Boundary Points Revisited

Theorem

A polyhedron is a closed, convex set.

- If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^{n}$ as solutions or none at all. In a special case ($A=0 \in \mathbb{R}^{k \times n}, b=0 \in \mathbb{R}^{k}$), the entire space is a polyhedron. The empty set is also a polyhedron.
- Even in two dimensions, it is easy to give a closed set and a point on its boundary such that no supporting hyperplane can be placed on it.

Boundary Points Revisited

Theorem

A polyhedron is a closed, convex set.

- If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^{n}$ as solutions or none at all. In a special case ($A=0 \in \mathbb{R}^{k \times n}, b=0 \in \mathbb{R}^{k}$), the entire space is a polyhedron. The empty set is also a polyhedron.
- Even in two dimensions, it is easy to give a closed set and a point on its boundary such that no supporting hyperplane can be placed on it. This is not the case in the convex setting.

Boundary Points Revisited

Theorem

A polyhedron is a closed, convex set.

- If A has a zero row, then the resulting inequality can have either all $x \in \mathbb{R}^{n}$ as solutions or none at all. In a special case ($A=0 \in \mathbb{R}^{k \times n}, b=0 \in \mathbb{R}^{k}$), the entire space is a polyhedron. The empty set is also a polyhedron.
- Even in two dimensions, it is easy to give a closed set and a point on its boundary such that no supporting hyperplane can be placed on it. This is not the case in the convex setting.

Theorem

Let $K \subseteq \mathbb{R}^{n}$ be a closed convex set. The following are equivalent:
(i) $p \in \partial K$,
(ii) $p \in K$ and a supporting hyperplane can be placed on it.

Faces of Polyhedra

Faces of Polyhedra

Definition

Let K be a closed convex set. A face of K is a subset of its boundary that can be intersected by an appropriate supporting hyperplane.

Faces of Polyhedra

Definition

Let K be a closed convex set. A face of K is a subset of its boundary that can be intersected by an appropriate supporting hyperplane.

- Of course, faces are also closed, convex sets, subsets of ∂K.

Faces of Polyhedra

Definition

Let K be a closed convex set. A face of K is a subset of its boundary that can be intersected by an appropriate supporting hyperplane.

- Of course, faces are also closed, convex sets, subsets of ∂K.

Definition

Let K be a convex set and F be a face. Let $\operatorname{aff}(F)$ be the affine hull of the set F, i.e., the smallest affine subspace containing F. The dimension of F is $\operatorname{dim}(\operatorname{aff}(F))$.

Special Faces: Vertices

Special Faces: Vertices

Theorem

Let $\mathcal{P}:\{x: A x \preceq b\} \subset \mathbb{R}^{n}$ be a polyhedron, $e \in \mathcal{P}$. Then the following are equivalent:
(i) There exists a supporting hyperplane that intersects \mathcal{P} only at e.
(ii) There is no line segment in \mathcal{P} that contains e as an interior point.
(iii) Let $I=\left\{i: a_{i}^{\top} e=b_{i}\right\}$. Then I is such that $\left\{a_{i}: i \in I\right\}$ spans \mathbb{R}^{n}.

General Faces

General Faces

- The surfaces of polyhedra are formed by the faces. We've only looked at the vertices in a bit more detail.

General Faces

- The surfaces of polyhedra are formed by the faces. We've only looked at the vertices in a bit more detail.

Definition

Let \mathcal{P} be a polyhedron, $p \in \partial \mathcal{P}$

$$
\begin{aligned}
C_{p}:=\left\{\nu \in \mathbb{R}^{n} \backslash\{0\}\right. & : \exists \alpha \in \mathbb{R} \text { such that } \\
& \left.\left\{x: \nu^{\top} x \leq \alpha\right\} \supseteq \mathcal{P} \text { and } \nu p=\alpha\right\} \cup\{\underline{0}\} .
\end{aligned}
$$

General Faces

- The surfaces of polyhedra are formed by the faces. We've only looked at the vertices in a bit more detail.

Definition

Let \mathcal{P} be a polyhedron, $p \in \partial \mathcal{P}$

$$
\begin{aligned}
& C_{p}:=\left\{\nu \in \mathbb{R}^{n} \backslash\{0\}: \exists \alpha \in \mathbb{R}\right. \text { such that } \\
& \left.\qquad\left\{x: \nu^{\top} x \leq \alpha\right\} \supseteq \mathcal{P} \text { and } \nu p=\alpha\right\} \cup\{\underline{0}\} .
\end{aligned}
$$

Lemma

C_{p} is a convex cone.

- The cone associated with boundary points provides a new, alternative description of the vertices.

Special Faces: Vertices (again)

- The cone associated with boundary points provides a new, alternative description of the vertices.

Theorem

Let \mathcal{P} be a polyhedron, $\mathcal{P}=\{x: A x \preceq b\}, p \in \partial \mathcal{P}$. The following are equivalent:
(i) $p \in \operatorname{ext}(\mathcal{P})$,
(ii) C_{p} has an interior point (in \mathbb{R}^{n}),
(iii) there exist row vectors $a_{i_{1}}^{\top}, a_{i_{2}}^{\top}, \ldots, a_{i_{n}}^{\top}$ in A such that
(1) they are linearly independent,
(2) $a_{i_{j}}^{\top} p=b_{i_{j}}$ for every $j=1,2, \ldots, n$.

Special Faces: Vertices (again)

- The cone associated with boundary points provides a new, alternative description of the vertices.

Theorem

Let \mathcal{P} be a polyhedron, $\mathcal{P}=\{x: A x \preceq b\}, p \in \partial \mathcal{P}$. The following are equivalent:
(i) $p \in \operatorname{ext}(\mathcal{P})$,
(ii) C_{p} has an interior point (in \mathbb{R}^{n}),
(iii) there exist row vectors $a_{i_{1}}^{\top}, a_{i_{2}}^{\top}, \ldots, a_{i_{n}}^{\top}$ in A such that
(1) they are linearly independent,
(2) $a_{i_{j}}^{\top} p=b_{i_{j}}$ for every $j=1,2, \ldots, n$.

- That is, C_{p} is full-dimensional if and only if p is a vertex. Generally, the dimension of C_{p} determines the dimension of the interior point of the boundary p point.

Refinement of Minkowski-Weyl Theorem

Refinement of Minkowski-Weyl Theorem

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$, $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$.

Refinement of Minkowski-Weyl Theorem

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$, $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$.
- If \mathcal{P} is not nice, it's easy to recognize this based on linear algebraic knowledge.

Refinement of Minkowski-Weyl Theorem

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$, $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$.
- If \mathcal{P} is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron.

Refinement of Minkowski-Weyl Theorem

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$, $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$.
- If \mathcal{P} is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

Refinement of Minkowski-Weyl Theorem

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$, $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$.
- If \mathcal{P} is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

Theorem

Let $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$ be an arbitrary nice polyhedron.

Refinement of Minkowski-Weyl Theorem

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$, $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$.
- If \mathcal{P} is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

Theorem

Let $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$ be an arbitrary nice polyhedron.
Let $\mathcal{C}=\left\{x \in \mathbb{R}^{n}: A x \preceq 0\right\}$ be a polyhedral/cone.

Refinement of Minkowski-Weyl Theorem

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$, $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$.
- If \mathcal{P} is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

Theorem

Let $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$ be an arbitrary nice polyhedron.
Let $\mathcal{C}=\left\{x \in \mathbb{R}^{n}: A x \preceq 0\right\}$ be a polyhedral/cone.
Let $\mathcal{T}=\langle\operatorname{ext}(\mathcal{P})\rangle_{\text {conv }}$ be a finitely generated convex set/polytope.

Refinement of Minkowski-Weyl Theorem

- Let \mathcal{P} be a polyhedron, i.e., for some $A \in \mathbb{R}^{k \times n}, b \in \mathbb{R}^{k}$, $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$.
- If \mathcal{P} is not nice, it's easy to recognize this based on linear algebraic knowledge. Moreover, we can decompose it into the sum of an affine space and a nice polyhedron. We can assume that our polyhedron is nice.

Theorem

Let $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \preceq b\right\}$ be an arbitrary nice polyhedron.
Let $\mathcal{C}=\left\{x \in \mathbb{R}^{n}: A x \preceq 0\right\}$ be a polyhedral/cone.
Let $\mathcal{T}=\langle\operatorname{ext}(\mathcal{P})\rangle_{\text {conv }}$ be a finitely generated convex set/polytope.
Then

$$
\mathcal{P}=\mathcal{T}+\mathcal{C}
$$

Break Time

LP Geometrically

- The fundamental task of LP is to minimize a linear function, $c^{\top} x$, over a polyhedron.

LP Geometrically

- The fundamental task of LP is to minimize a linear function, $c^{\top} x$, over a polyhedron.
- The level sets of $c^{\top} x$ are hyperplanes.

LP Geometrically

- The fundamental task of LP is to minimize a linear function, $c^{\top} x$, over a polyhedron.
- The level sets of $c^{\top} x$ are hyperplanes.
- A lower bound, λ, on the objective function over a non-empty polytope \mathcal{P} means that the half-space $\left\{x: c^{\top} x \geq \lambda\right\}$ contains the polyhedron \mathcal{P}.

LP Geometrically

- The fundamental task of LP is to minimize a linear function, $c^{\top} x$, over a polyhedron.
- The level sets of $c^{\top} x$ are hyperplanes.
- A lower bound, λ, on the objective function over a non-empty polytope \mathcal{P} means that the half-space $\left\{x: c^{\top} x \geq \lambda\right\}$ contains the polyhedron \mathcal{P}.
- The half-space $c^{\top} x=\lambda$ lies on one side of \mathcal{P}.

LP Geometrically

- The fundamental task of LP is to minimize a linear function, $c^{\top} x$, over a polyhedron.
- The level sets of $c^{\top} x$ are hyperplanes.
- A lower bound, λ, on the objective function over a non-empty polytope \mathcal{P} means that the half-space $\left\{x: c^{\top} x \geq \lambda\right\}$ contains the polyhedron \mathcal{P}.
- The half-space $c^{\top} x=\lambda$ lies on one side of \mathcal{P}.
- The minimal objective value is attained when λ is increased (pushing the hyperplane towards \mathcal{P}) until the moving hyperplane touches \mathcal{P}.

LP Geometrically

- The fundamental task of LP is to minimize a linear function, $c^{\top} x$, over a polyhedron.
- The level sets of $c^{\top} x$ are hyperplanes.
- A lower bound, λ, on the objective function over a non-empty polytope \mathcal{P} means that the half-space $\left\{x: c^{\top} x \geq \lambda\right\}$ contains the polyhedron \mathcal{P}.
- The half-space $c^{\top} x=\lambda$ lies on one side of \mathcal{P}.
- The minimal objective value is attained when λ is increased (pushing the hyperplane towards \mathcal{P}) until the moving hyperplane touches \mathcal{P}.
- Then \mathcal{P} supports the hyperplane. The supporting points are the optimal points.

Optimal Points and Vertices

Optimal Points and Vertices

Theorem

Let $\mathcal{P}=\{x: A x \preceq b\}$ be a non-empty nice polyhedron.

Optimal Points and Vertices

Theorem

Let $\mathcal{P}=\{x: A x \preceq b\}$ be a non-empty nice polyhedron. Consider the

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x \preceq b$,

LP problems (where c varies).

Optimal Points and Vertices

Theorem

Let $\mathcal{P}=\{x: A x \preceq b\}$ be a non-empty nice polyhedron. Consider the

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x \preceq b$,

LP problems (where c varies).
Then

Optimal Points and Vertices

Theorem

Let $\mathcal{P}=\{x: A x \preceq b\}$ be a non-empty nice polyhedron. Consider the

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x \preceq b$,

LP problems (where c varies).
Then
(i) For every $c \in \mathbb{R}^{n}$, either $p^{*}=-\infty$ or there exists $x \in \operatorname{ext}(\mathcal{P})$ as an optimal point.

Optimal Points and Vertices

Theorem

Let $\mathcal{P}=\{x: A x \preceq b\}$ be a non-empty nice polyhedron. Consider the

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x \preceq b$,

LP problems (where c varies).
Then
(i) For every $c \in \mathbb{R}^{n}$, either $p^{*}=-\infty$ or there exists $x \in \operatorname{ext}(\mathcal{P})$ as an optimal point.
(ii) For every $x \in \operatorname{ext}(\mathcal{P})$, there exists c such that x is the unique optimal point.
(i)

Proof

(i) We know that $P=\mathcal{T}+\mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.
(i) We know that $P=\mathcal{T}+\mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.

- Assume $p^{*} \neq-\infty$.

Proof

(i) We know that $P=\mathcal{T}+\mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.

- Assume $p^{*} \neq-\infty$.
- Let o be an optimal point: $o \in \mathcal{P}=\mathcal{T}+\mathcal{C}$,

Proof

(i) We know that $P=\mathcal{T}+\mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.

- Assume $p^{*} \neq-\infty$.
- Let o be an optimal point: $o \in \mathcal{P}=\mathcal{T}+\mathcal{C}$, i.e., $o=t+k$, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.

Proof

(i) We know that $P=\mathcal{T}+\mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.

- Assume $p^{*} \neq-\infty$.
- Let o be an optimal point: $o \in \mathcal{P}=\mathcal{T}+\mathcal{C}$, i.e., $o=t+k$, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^{\top} k \geq 0$.

Proof

(i) We know that $P=\mathcal{T}+\mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.

- Assume $p^{*} \neq-\infty$.
- Let o be an optimal point: $o \in \mathcal{P}=\mathcal{T}+\mathcal{C}$, i.e., $o=t+k$, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^{\top} k \geq 0$.
- Indeed.

Proof

(i) We know that $P=\mathcal{T}+\mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.

- Assume $p^{*} \neq-\infty$.
- Let o be an optimal point: $o \in \mathcal{P}=\mathcal{T}+\mathcal{C}$, i.e., $o=t+k$, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^{\top} k \geq 0$.
- Indeed. For $\alpha \geq 0, \alpha k \in \mathcal{C}$, so $t+\alpha k \in \mathcal{P}$.

Proof

(i) We know that $P=\mathcal{T}+\mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.

- Assume $p^{*} \neq-\infty$.
- Let o be an optimal point: $o \in \mathcal{P}=\mathcal{T}+\mathcal{C}$, i.e., $o=t+k$, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^{\top} k \geq 0$.
- Indeed. For $\alpha \geq 0, \alpha k \in \mathcal{C}$, so $t+\alpha k \in \mathcal{P}$. If $c^{\top} k<0$, then the objective function can take arbitrarily small values.

Proof

(i) We know that $P=\mathcal{T}+\mathcal{C}$, where \mathcal{T} is a polytope and \mathcal{C} is a cone.

- Assume $p^{*} \neq-\infty$.
- Let o be an optimal point: $o \in \mathcal{P}=\mathcal{T}+\mathcal{C}$, i.e., $o=t+k$, where $t \in \mathcal{T}$ and $k \in \mathcal{C}$.
- Firstly, $c^{\top} k \geq 0$.
- Indeed. For $\alpha \geq 0, \alpha k \in \mathcal{C}$, so $t+\alpha k \in \mathcal{P}$. If $c^{\top} k<0$, then the objective function can take arbitrarily small values.
- If $c^{\top} k \geq 0$, we can assume $k=0$, i.e., o falls into the polytope part of our polyhedron.

Proof (continued)

Proof (continued)

- Then o is a convex combination of $\operatorname{ext}(\mathcal{T})$ points.

Proof (continued)

- Then o is a convex combination of $\operatorname{ext}(\mathcal{T})$ points.
- Thus $c^{\top} o$ is a convex combination of $c^{\top} e$ values $(e \in \operatorname{ext}(\mathcal{C}))$.

Proof (continued)

- Then o is a convex combination of $\operatorname{ext}(\mathcal{T})$ points.
- Thus $c^{\top} o$ is a convex combination of $c^{\top} e$ values $(e \in \operatorname{ext}(\mathcal{C}))$. In particular,

$$
c^{\top} o \geq \min \left\{c^{\top} e: e \in \operatorname{ext}(\mathcal{T})\right\}
$$

Proof (continued)

- Then o is a convex combination of $\operatorname{ext}(\mathcal{T})$ points.
- Thus $c^{\top} o$ is a convex combination of $c^{\top} e$ values $(e \in \operatorname{ext}(\mathcal{C}))$. In particular,

$$
c^{\top} o \geq \min \left\{c^{\top} e: e \in \operatorname{ext}(\mathcal{T})\right\}
$$

This proves the statement.

Proof (continued)

- Then o is a convex combination of $\operatorname{ext}(\mathcal{T})$ points.
- Thus $c^{\top} o$ is a convex combination of $c^{\top} e$ values $(e \in \operatorname{ext}(\mathcal{C}))$. In particular,

$$
c^{\top} o \geq \min \left\{c^{\top} e: e \in \operatorname{ext}(\mathcal{T})\right\}
$$

This proves the statement.
(ii)

Proof (continued)

- Then o is a convex combination of $\operatorname{ext}(\mathcal{T})$ points.
- Thus $c^{\top} o$ is a convex combination of $c^{\top} e$ values $(e \in \operatorname{ext}(\mathcal{C}))$. In particular,

$$
c^{\top} o \geq \min \left\{c^{\top} e: e \in \operatorname{ext}(\mathcal{T})\right\}
$$

This proves the statement.
(ii) Consider a supporting hyperplane $\left(\left\{x: \nu^{\top} x \geq b\right\}\right)$, where $\left\{x: \nu^{\top} x=b\right\} \cap \mathcal{P}=\{x\}$.

Proof (continued)

- Then o is a convex combination of $\operatorname{ext}(\mathcal{T})$ points.
- Thus $c^{\top} o$ is a convex combination of $c^{\top} e$ values $(e \in \operatorname{ext}(\mathcal{C}))$. In particular,

$$
c^{\top} o \geq \min \left\{c^{\top} e: e \in \operatorname{ext}(\mathcal{T})\right\}
$$

This proves the statement.
(ii) Consider a supporting hyperplane $\left(\left\{x: \nu^{\top} x \geq b\right\}\right)$, where $\left\{x: \nu^{\top} x=b\right\} \cap \mathcal{P}=\{x\}$.

- Obviously, $c=\nu$ is a good choice.

Rational Optimal Points

Rational Optimal Points

Theorem

For the

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x \preceq b$

LP problem, assume that $A \in \mathbb{Q}^{k \times n}, b \in \mathbb{Q}^{k}$.

Rational Optimal Points

Theorem

For the

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x \preceq b$

LP problem, assume that $A \in \mathbb{Q}^{k \times n}, b \in \mathbb{Q}^{k}$. Moreover, assume that $\{x: A x \preceq b\}$ is a nice polyhedron.

Rational Optimal Points

Theorem

For the

Minimize	$c^{\top} x-\mathrm{t}$
subject to	$A x \preceq b$

LP problem, assume that $A \in \mathbb{Q}^{k \times n}, b \in \mathbb{Q}^{k}$. Moreover, assume that $\{x: A x \preceq b\}$ is a nice polyhedron.
If $p^{*} \in \mathbb{R}$, then there exists $x \in \mathbb{Q}^{n}$ as an optimal point.

- If $p^{*} \in \mathbb{R}$, then we can choose $e \in \operatorname{ext}(\mathcal{P})$ as an optimal point.
- If $p^{*} \in \mathbb{R}$, then we can choose $e \in \operatorname{ext}(\mathcal{P})$ as an optimal point.
- Then the inequalities $a_{i}^{\top} x \leq b_{i}$ satisfied by e are such that the corresponding a_{i} vectors span \mathbb{R}^{n}.

Proof

- If $p^{*} \in \mathbb{R}$, then we can choose $e \in \operatorname{ext}(\mathcal{P})$ as an optimal point.
- Then the inequalities $a_{i}^{\top} x \leq b_{i}$ satisfied by e are such that the corresponding a_{i} vectors span \mathbb{R}^{n}.
- Specifically, we can write a system of n equations, whose matrix is a submatrix of A, constants are the components of b, and e is the unique solution.
- If $p^{*} \in \mathbb{R}$, then we can choose $e \in \operatorname{ext}(\mathcal{P})$ as an optimal point.
- Then the inequalities $a_{i}^{\top} x \leq b_{i}$ satisfied by e are such that the corresponding a_{i} vectors span \mathbb{R}^{n}.
- Specifically, we can write a system of n equations, whose matrix is a submatrix of A, constants are the components of b, and e is the unique solution.
- By Cramer's rule, the components of e are the ratio of the determinants of two matrices containing rational numbers,
- If $p^{*} \in \mathbb{R}$, then we can choose $e \in \operatorname{ext}(\mathcal{P})$ as an optimal point.
- Then the inequalities $a_{i}^{\top} x \leq b_{i}$ satisfied by e are such that the corresponding a_{i} vectors span \mathbb{R}^{n}.
- Specifically, we can write a system of n equations, whose matrix is a submatrix of A, constants are the components of b, and e is the unique solution.
- By Cramer's rule, the components of e are the ratio of the determinants of two matrices containing rational numbers, specifically rational.

Break Time

Farkas' Lemma: First Alternative Form

Farkas' Lemma, First Alternative Form

Let $A x \preceq b$ be a system of equations, where $A \in \mathbb{R}^{k \times n}$,
$x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$, and $b \in \mathbb{R}^{k}$. Then exactly one of the following two
statements holds:
(i) The system of equations is solvable, i.e., there exists $x_{0} \in \mathbb{R}^{n}$ such that $A x_{0} \preceq b$.
(ii) There exists $0 \preceq \lambda \in \mathbb{R}^{k}$ such that $\lambda^{\top} A=0^{\top}$ and $\lambda^{\top} b=-1$.

Second Alternative Form

Farkas' Lemma, Second Alternative Form

Consider the system of equations $\left\{\begin{array}{l}A x=b \\ x \succeq 0\end{array}\right.$, where $A \in \mathbb{R}^{\ell \times n}$, $x=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)$, and $b \in \mathbb{R}^{\ell}$. Then exactly one of the following two
statements holds:
(i) The system of equations is solvable, i.e., there exists $0 \preceq x_{0} \in \mathbb{R}^{n}$ such that $A x_{0}=b$.
(ii) There exists $\lambda \in \mathbb{R}^{\ell}$ such that $\lambda^{\top} A \succeq 0^{\top}$ and $\lambda^{\top} b=-1$.

Farkas' Lemma: Geometric Form

Farkas' Lemma: Geometric Form

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$
\mathcal{C}=\left\{G \lambda: 0 \preceq \lambda \in \mathbb{R}^{k}\right\} .
$$

Farkas' Lemma: Geometric Form

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$
\mathcal{C}=\left\{G \lambda: 0 \preceq \lambda \in \mathbb{R}^{k}\right\} .
$$

The columns of G are the generators of the cone.

Farkas' Lemma: Geometric Form

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$
\mathcal{C}=\left\{G \lambda: 0 \preceq \lambda \in \mathbb{R}^{k}\right\} .
$$

The columns of G are the generators of the cone.

- Alternatively, $b \in \mathcal{C}_{G}$ if and only if $\left\{\begin{array}{l}G x=b, \\ 0 \preceq x\end{array} \quad\right.$ is solvable.

Farkas' Lemma: Geometric Form

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$
\mathcal{C}=\left\{G \lambda: 0 \preceq \lambda \in \mathbb{R}^{k}\right\} .
$$

The columns of G are the generators of the cone.

- Alternatively, $b \in \mathcal{C}_{G}$ if and only if $\left\{\begin{array}{l}G x=b, \\ 0 \preceq x\end{array} \quad\right.$ is solvable.
- The infeasibility of such a system of inequalities is precisely one alternative of Farkas' Lemma.

Farkas' Lemma: Geometric Form

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a finitely generated cone. That is, there exists a matrix $G \in \mathbb{R}^{n \times k}$ such that

$$
\mathcal{C}=\left\{G \lambda: 0 \preceq \lambda \in \mathbb{R}^{k}\right\} .
$$

The columns of G are the generators of the cone.

- Alternatively, $b \in \mathcal{C}_{G}$ if and only if $\left\{\begin{array}{l}G x=b, \\ 0 \preceq x\end{array} \quad\right.$ is solvable.
- The infeasibility of such a system of inequalities is precisely one alternative of Farkas' Lemma. What is the other alternative?

Farkas' Lemma: Geometric Form (continued)

- According to Farkas' Lemma, the infeasibility of $\left\{\begin{array}{l}G x=b, \\ 0 \preceq x\end{array}\right.$ is equivalent to the existence of a vector $\lambda \in \mathbb{R}^{n}$ such that

$$
\lambda^{\top} G \succeq 0 \text { and } \lambda^{\top} b=-1 .
$$

Farkas' Lemma: Geometric Form (continued)

- According to Farkas' Lemma, the infeasibility of $\left\{\begin{array}{l}G x=b, \\ 0 \preceq x\end{array}\right.$ is equivalent to the existence of a vector $\lambda \in \mathbb{R}^{n}$ such that

$$
\lambda^{\top} G \succeq 0 \text { and } \lambda^{\top} b=-1
$$

- In other words, the hyperplane $\mathcal{H}: \lambda^{\top} x=0$ passing through the origin separates the cone and the point b, where one side $\mathcal{F} \geq: \lambda^{\top} x \geq 0$ contains the cone \mathcal{C}, while the other side $\mathcal{F} \leq: \lambda^{\top} x \leq 0$ contains b.

Farkas' Lemma: Geometric Form (continued)

- According to Farkas' Lemma, the infeasibility of $\left\{\begin{array}{l}G x=b, \\ 0 \preceq x\end{array}\right.$ is equivalent to the existence of a vector $\lambda \in \mathbb{R}^{n}$ such that

$$
\lambda^{\top} G \succeq 0 \text { and } \lambda^{\top} b=-1
$$

- In other words, the hyperplane $\mathcal{H}: \lambda^{\top} x=0$ passing through the origin separates the cone and the point b, where one side $\mathcal{F} \geq: \lambda^{\top} x \geq 0$ contains the cone \mathcal{C}, while the other side $\mathcal{F} \leq: \lambda^{\top} x \leq 0$ contains b.

Farkas' Lemma: Geometric Form

Let $\mathcal{C} \subset \mathbb{R}^{n}$ be a finitely generated cone, $b \notin \mathcal{C}$. Then there exists a hyperplane $\mathcal{H}: \lambda^{\top} x=0$ that separates the cone and b.

Proof of Weyl's Theorem: If a cone is finitely generated,

 then it's polyhedral
Proof of Weyl's Theorem: If a cone is finitely generated,

 then it's polyhedralLet $\mathcal{G}=\{G \lambda: 0 \preceq \lambda\}$ be a finitely generated cone.

Proof of Weyl's Theorem: If a cone is finitely generated,

 then it's polyhedralLet $\mathcal{G}=\{G \lambda: 0 \preceq \lambda\}$ be a finitely generated cone.
Let

$$
\widehat{\mathcal{G}}=\left\{\binom{\lambda}{y}: y=G \lambda, 0 \preceq \lambda\right\} .
$$

Proof of Weyl's Theorem: If a cone is finitely generated,

 then it's polyhedralLet $\mathcal{G}=\{G \lambda: 0 \preceq \lambda\}$ be a finitely generated cone.
Let

$$
\widehat{\mathcal{G}}=\left\{\binom{\lambda}{y}: y=G \lambda, 0 \preceq \lambda\right\} .
$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.

Proof of Weyl's Theorem: If a cone is finitely generated,

 then it's polyhedralLet $\mathcal{G}=\{G \lambda: 0 \preceq \lambda\}$ be a finitely generated cone.
Let

$$
\widehat{\mathcal{G}}=\left\{\binom{\lambda}{y}: y=G \lambda, 0 \preceq \lambda\right\} .
$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.
Obviously, \mathcal{G} can be obtained from the projections of $\widehat{\mathcal{G}}$.

Proof of Weyl's Theorem: If a cone is finitely generated,

 then it's polyhedralLet $\mathcal{G}=\{G \lambda: 0 \preceq \lambda\}$ be a finitely generated cone.
Let

$$
\widehat{\mathcal{G}}=\left\{\binom{\lambda}{y}: y=G \lambda, 0 \preceq \lambda\right\} .
$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.
Obviously, \mathcal{G} can be obtained from the projections of $\widehat{\mathcal{G}}$.

Theorem

The projection of a polyhedron is also a polyhedron.

Proof of Weyl's Theorem: If a cone is finitely generated,

 then it's polyhedralLet $\mathcal{G}=\{G \lambda: 0 \preceq \lambda\}$ be a finitely generated cone.
Let

$$
\widehat{\mathcal{G}}=\left\{\binom{\lambda}{y}: y=G \lambda, 0 \preceq \lambda\right\} .
$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.
Obviously, \mathcal{G} can be obtained from the projections of $\widehat{\mathcal{G}}$.

Theorem

The projection of a polyhedron is also a polyhedron.
We know that \mathcal{G} is both a polyhedron and a cone. then it's polyhedral

Let $\mathcal{G}=\{G \lambda: 0 \preceq \lambda\}$ be a finitely generated cone.
Let

$$
\widehat{\mathcal{G}}=\left\{\binom{\lambda}{y}: y=G \lambda, 0 \preceq \lambda\right\} .
$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.
Obviously, \mathcal{G} can be obtained from the projections of $\widehat{\mathcal{G}}$.

Theorem

The projection of a polyhedron is also a polyhedron.
We know that \mathcal{G} is both a polyhedron and a cone.

Lemma

We know that \mathcal{C} is both a polyhedron and a cone. then it's polyhedral

Let $\mathcal{G}=\{G \lambda: 0 \preceq \lambda\}$ be a finitely generated cone.
Let

$$
\widehat{\mathcal{G}}=\left\{\binom{\lambda}{y}: y=G \lambda, 0 \preceq \lambda\right\} .
$$

Clearly, $\widehat{\mathcal{G}}$ is a polyhedron.
Obviously, \mathcal{G} can be obtained from the projections of $\widehat{\mathcal{G}}$.

Theorem

The projection of a polyhedron is also a polyhedron.
We know that \mathcal{G} is both a polyhedron and a cone.

Lemma

We know that \mathcal{C} is both a polyhedron and a cone. Then \mathcal{C} is a polyhedral cone.

Suppose that

$$
\{x: A x \preceq 0\}=\{G \lambda: 0 \preceq \lambda\} .
$$

Lemma
Suppose that

$$
\{x: A x \preceq 0\}=\{G \lambda: 0 \preceq \lambda\} .
$$

Then

$$
\left\{x: G^{\top} x \preceq 0\right\}=\left\{A^{\top} \lambda: 0 \preceq \lambda\right\} .
$$

Lemma

Suppose that

$$
\{x: A x \preceq 0\}=\{G \lambda: 0 \preceq \lambda\} .
$$

Then

$$
\left\{x: G^{\top} x \preceq 0\right\}=\left\{A^{\top} \lambda: 0 \preceq \lambda\right\} .
$$

- We can interpret the condition of the lemma as two containment relations:

Lemma

Suppose that

$$
\{x: A x \preceq 0\}=\{G \lambda: 0 \preceq \lambda\} .
$$

Then

$$
\left\{x: G^{\top} x \preceq 0\right\}=\left\{A^{\top} \lambda: 0 \preceq \lambda\right\} .
$$

- We can interpret the condition of the lemma as two containment relations:

$$
\{x: A x \preceq 0\} \supset\{G \lambda: 0 \preceq \lambda\} .
$$

Lemma

Suppose that

$$
\{x: A x \preceq 0\}=\{G \lambda: 0 \preceq \lambda\} .
$$

Then

$$
\left\{x: G^{\top} x \preceq 0\right\}=\left\{A^{\top} \lambda: 0 \preceq \lambda\right\} .
$$

- We can interpret the condition of the lemma as two containment relations:

$$
\begin{aligned}
& \{x: A x \preceq 0\} \supset\{G \lambda: 0 \preceq \lambda\} . \\
& \{x: A x \preceq 0\} \subset\{G \lambda: 0 \preceq \lambda\} .
\end{aligned}
$$

$$
\{x: A x \preceq 0\} \supset\{G \lambda: 0 \preceq \lambda\} .
$$

Minkowski's Lemma: The First Condition

$$
\{x: A x \preceq 0\} \supset\{G \lambda: 0 \preceq \lambda\} .
$$

- The elements on the left side are cone combinations of the columns of G.

Minkowski's Lemma: The First Condition

$$
\{x: A x \preceq 0\} \supset\{G \lambda: 0 \preceq \lambda\} .
$$

- The elements on the left side are cone combinations of the columns of G. By containment, each of these vectors is contained in the left-hand set.

Minkowski's Lemma: The First Condition

$$
\{x: A x \preceq 0\} \supset\{G \lambda: 0 \preceq \lambda\} .
$$

- The elements on the left side are cone combinations of the columns of G. By containment, each of these vectors is contained in the left-hand set.
- This is equivalent to saying that the columns of G are contained in the left-hand set.

Minkowski's Lemma: The First Condition

$$
\{x: A x \preceq 0\} \supset\{G \lambda: 0 \preceq \lambda\} .
$$

- The elements on the left side are cone combinations of the columns of G. By containment, each of these vectors is contained in the left-hand set.
- This is equivalent to saying that the columns of G are contained in the left-hand set.
- This is equivalent to saying that
the elements of $A G$ are all non-positive.

$$
\{x: A x \preceq 0\} \subset\{G \lambda: 0 \preceq \lambda\} .
$$

$$
\{x: A x \preceq 0\} \subset\{G \lambda: 0 \preceq \lambda\} .
$$

- An element b from the left side is also in the right side.

Minkowski's Lemma: The Second Condition

$$
\{x: A x \preceq 0\} \subset\{G \lambda: 0 \preceq \lambda\} .
$$

- An element b from the left side is also in the right side. That is,
if $A b \preceq 0$, then the system $\left\{\begin{array}{l}G \lambda=b \\ 0 \preceq \lambda\end{array} \quad\right.$ is solvable.

$$
\{x: A x \preceq 0\} \subset\{G \lambda: 0 \preceq \lambda\} .
$$

- An element b from the left side is also in the right side. That is,
if $A b \preceq 0$, then the system $\left\{\begin{array}{l}G \lambda=b \\ 0 \preceq \lambda\end{array} \quad\right.$ is solvable.
- By Farkas' Lemma, this can be reformulated as:

$$
\{x: A x \preceq 0\} \subset\{G \lambda: 0 \preceq \lambda\} .
$$

- An element b from the left side is also in the right side. That is,
if $A b \preceq 0$, then the system $\left\{\begin{array}{l}G \lambda=b \\ 0 \preceq \lambda\end{array} \quad\right.$ is solvable.
- By Farkas' Lemma, this can be reformulated as: The system
$\left\{\begin{array}{l}A b \preceq 0 \\ \mu^{\top} G \preceq 0 \quad \text { has no solution. } \\ \mu^{\top} b=1\end{array}\right.$

Minkowski's Lemma: The Conditions

- Based on the above, the conditions are
the elements of $A G$ are all non-positive and $\left\{\begin{array}{l}A b \preceq 0 \\ \mu^{\top} G \preceq 0 \\ \mu^{\top} b=1\end{array}\right.$ has no sol

Minkowski's Lemma: The Conditions

- Based on the above, the conditions are
the elements of $A G$ are all non-positive and $\left\{\begin{array}{l}A b \preceq 0 \\ \mu^{\top} G \preceq 0 \\ \mu^{\top} b=1\end{array}\right.$ has no sol
- Alternatively,
the elements of $G^{\top} A^{\top}$ are all non-positive and $\left\{\begin{array}{l}G^{\top} \mu \preceq 0 \\ b^{\top} A^{\top} \preceq 0 \\ b^{\top} \mu=1\end{array}\right.$ has no

Minkowski's Lemma: The Conditions

- Based on the above, the conditions are
the elements of $A G$ are all non-positive and $\left\{\begin{array}{l}A b \preceq 0 \\ \mu^{\top} G \preceq 0 \\ \mu^{\top} b=1\end{array}\right.$ has no sol
- Alternatively,
the elements of $G^{\top} A^{\top}$ are all non-positive and $\left\{\begin{array}{l}G^{\top} \mu \preceq 0 \\ b^{\top} A^{\top} \preceq 0 \\ b^{\top} \mu=1\end{array}\right.$ has no
- These are equivalent to the proposition to be proven.

Polytopes

Polytopes

Definition

A polyhedron $\mathcal{P} \subset \mathbb{R}^{n}$ is called a polytope if it is bounded.

Polytopes

Definition

A polyhedron $\mathcal{P} \subset \mathbb{R}^{n}$ is called a polytope if it is bounded.

- Bounded polyhedra/polytopes play an important role in understanding polyhedra.

Polytopes

Definition

A polyhedron $\mathcal{P} \subset \mathbb{R}^{n}$ is called a polytope if it is bounded.

- Bounded polyhedra/polytopes play an important role in understanding polyhedra.

Fundamental Theorem of Convex Polytopes

Fundamental Theorem of Convex Polytopes

Theorem

Let $\mathcal{P} \subset \mathbb{R}^{d}$. Then the following are equivalent:
(i) \mathcal{P} is a bounded polyhedron.
(ii) \mathcal{P} is the convex hull of finitely many points in \mathbb{R}^{d}.

Polyhedra: Coning, Homogenization

Let \mathcal{P} be a polyhedron, i.e.,

$$
\mathcal{P}=\{x: A x \preceq b\} \subset \mathbb{R}^{d} .
$$

Polyhedra: Coning, Homogenization

Let \mathcal{P} be a polyhedron, i.e.,

$$
\mathcal{P}=\{x: A x \preceq b\} \subset \mathbb{R}^{d} .
$$

Define
$\widehat{\mathcal{P}}=\left\{\binom{x}{\lambda}: x \in \mathbb{R}^{d}, \lambda \in \mathbb{R}, A x \preceq \lambda b, 0 \leq \lambda\right\} \subset \mathbb{R}^{d} \times \mathbb{R}_{+} \subset \mathbb{R}^{d+1}$.

Polyhedra: Coning, Homogenization

Let \mathcal{P} be a polyhedron, i.e.,

$$
\mathcal{P}=\{x: A x \preceq b\} \subset \mathbb{R}^{d} .
$$

Define

$$
\widehat{\mathcal{P}}=\left\{\binom{x}{\lambda}: x \in \mathbb{R}^{d}, \lambda \in \mathbb{R}, A x \preceq \lambda b, 0 \leq \lambda\right\} \subset \mathbb{R}^{d} \times \mathbb{R}_{+} \subset \mathbb{R}^{d+1}
$$

Example

$$
\mathcal{P}=\left\{(x, y)^{\top}: x \leq 0, y \leq 0\right\} \subset \mathbb{R}^{2}
$$

Polyhedra: Coning, Homogenization

Let \mathcal{P} be a polyhedron, i.e.,

$$
\mathcal{P}=\{x: A x \preceq b\} \subset \mathbb{R}^{d}
$$

Define
$\widehat{\mathcal{P}}=\left\{\binom{x}{\lambda}: x \in \mathbb{R}^{d}, \lambda \in \mathbb{R}, A x \preceq \lambda b, 0 \leq \lambda\right\} \subset \mathbb{R}^{d} \times \mathbb{R}_{+} \subset \mathbb{R}^{d+1}$.

Example

$$
\begin{gathered}
\mathcal{P}=\left\{(x, y)^{\top}: x \leq 0, y \leq 0\right\} \subset \mathbb{R}^{2} \\
\widehat{\mathcal{P}}=\left\{(x, y, \lambda)^{\top}: x \leq 0, y \leq 0, \lambda \geq 0\right\} \subset \mathbb{R}^{2} \times \mathbb{R}_{+} \subset \mathbb{R}^{3} .
\end{gathered}
$$

Coning of Polyhedra: The Observation

Coning of Polyhedra: The Observation

Observation
(i) $x \in \mathcal{P}$ if and only if $\binom{x}{1} \in \widehat{\mathcal{P}}$.
(ii) $\widehat{\mathcal{P}}$ is a polyhedral cone.

Fundamental Theorem of Convex Polytopes: Proof

 (i) \Rightarrow (ii)
Fundamental Theorem of Convex Polytopes: Proof

(i) \Rightarrow (ii)

- Since \mathcal{P} is bounded, the polyhedral cone $\widehat{\mathcal{P}}$ contains only 0 from the hyperplane $\lambda=0$.

Fundamental Theorem of Convex Polytopes: Proof

(i) \Rightarrow (ii)

- Since \mathcal{P} is bounded, the polyhedral cone $\widehat{\mathcal{P}}$ contains only 0 from the hyperplane $\lambda=0$.
- By Weyl's theorem,

$$
\widehat{\mathcal{P}}=\left\langle\widehat{g}_{1}, \widehat{g}_{2}, \ldots, \widehat{g}_{k}\right\rangle_{\text {cone }}=\left\langle\binom{ g_{1}}{1},\binom{g_{2}}{1}, \ldots,\binom{g_{k}}{1}\right\rangle_{\text {cone }}
$$

Fundamental Theorem of Convex Polytopes: Proof

(i) \Rightarrow (ii)

- Since \mathcal{P} is bounded, the polyhedral cone $\widehat{\mathcal{P}}$ contains only 0 from the hyperplane $\lambda=0$.
- By Weyl's theorem,

$$
\widehat{\mathcal{P}}=\left\langle\widehat{g}_{1}, \widehat{g}_{2}, \ldots, \widehat{g}_{k}\right\rangle_{\text {cone }}=\left\langle\binom{ g_{1}}{1},\binom{g_{2}}{1}, \ldots,\binom{g_{k}}{1}\right\rangle_{\text {cone }}
$$

- Thus,

$$
\binom{g}{1} \in \widehat{\mathcal{P}}
$$

if and only if

$$
g \in\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle_{\text {convex }}
$$

Fundamental Theorem of Convex Polytopes: Proof

 (ii) \Rightarrow (i)
Fundamental Theorem of Convex Polytopes: Proof

(ii) \Rightarrow (i)

Assume $\mathcal{P}=\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle_{\text {convex }}$.

Fundamental Theorem of Convex Polytopes: Proof

(ii) \Rightarrow (i)

Assume $\mathcal{P}=\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle_{\text {convex }}$. Clearly, \mathcal{P} is bounded.
Let

$$
\widehat{\mathcal{P}}=\left\langle\binom{ g_{1}}{1},\binom{g_{2}}{1}, \ldots,\binom{g_{k}}{1}\right\rangle_{\text {cone }}
$$

a finitely generated polyhedral cone.

Fundamental Theorem of Convex Polytopes: Proof

(ii) \Rightarrow (i)

Assume $\mathcal{P}=\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle_{\text {convex }}$. Clearly, \mathcal{P} is bounded.
Let

$$
\widehat{\mathcal{P}}=\left\langle\binom{ g_{1}}{1},\binom{g_{2}}{1}, \ldots,\binom{g_{k}}{1}\right\rangle_{\text {cone }}
$$

a finitely generated polyhedral cone.
By Weyl's theorem, there exists a matrix $(A \mid-b)$ such that

$$
\widehat{\mathcal{P}}=\left\{\binom{x}{\lambda}:(A \mid-b)\binom{x}{\lambda} \preceq 0\right\} .
$$

Fundamental Theorem of Convex Polytopes: Proof

(ii) \Rightarrow (i)

Assume $\mathcal{P}=\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle_{\text {convex }}$. Clearly, \mathcal{P} is bounded.
Let

$$
\widehat{\mathcal{P}}=\left\langle\binom{ g_{1}}{1},\binom{g_{2}}{1}, \ldots,\binom{g_{k}}{1}\right\rangle_{\text {cone }}
$$

a finitely generated polyhedral cone.
By Weyl's theorem, there exists a matrix $(A \mid-b)$ such that

$$
\widehat{\mathcal{P}}=\left\{\binom{x}{\lambda}:(A \mid-b)\binom{x}{\lambda} \preceq 0\right\} .
$$

Then

$$
\mathcal{P}=\{x: A x \preceq b\}
$$

i.e., \mathcal{P} is a polyhedron.

Combining Geometric Sets

Combining Geometric Sets

Definition

Let $A, B \subset \mathbb{R}^{d}$. Then

$$
A+B=\{a+b: a \in A, b \in B\}
$$

is called the direct or Minkowski sum of sets A and B.

Minkowski-Weyl Theorem

Minkowski-Weyl Theorem

(i) Let \mathcal{P} be any polyhedron. Then there exist finitely generated convex sets/polytopes \mathcal{T} and \mathcal{C}

$$
\mathcal{P}=\mathcal{T}+\mathcal{C}
$$

Minkowski-Weyl Theorem

Minkowski-Weyl Theorem

(i) Let \mathcal{P} be any polyhedron. Then there exist finitely generated convex sets/polytopes \mathcal{T} and \mathcal{C}

$$
\mathcal{P}=\mathcal{T}+\mathcal{C}
$$

(ii) Let \mathcal{T} be a finitely generated convex set/polytope and \mathcal{C} be a finitely generated cone. Then $\mathcal{T}+\mathcal{C}$ is a polyhedron.

- For \mathcal{P}, we defined a $\widehat{\mathcal{P}}$ polyhedral cone.

Minkowski-Weyl Theorem: Proof: (i)

- For \mathcal{P}, we defined a $\widehat{\mathcal{P}}$ polyhedral cone.
- By Weyl's theorem,

$$
\widehat{\mathcal{P}}=\left\langle\binom{ g_{1}}{1},\binom{g_{2}}{1}, \ldots,\binom{g_{k}}{1},\binom{h_{1}}{0},\binom{h_{2}}{0}, \ldots,\binom{h_{\ell}}{0}\right\rangle_{\text {cone }}
$$

Minkowski-Weyl Theorem: Proof: (i)

- For \mathcal{P}, we defined a $\widehat{\mathcal{P}}$ polyhedral cone.
- By Weyl's theorem,

$$
\widehat{\mathcal{P}}=\left\langle\binom{ g_{1}}{1},\binom{g_{2}}{1}, \ldots,\binom{g_{k}}{1},\binom{h_{1}}{0},\binom{h_{2}}{0}, \ldots,\binom{h_{\ell}}{0}\right\rangle_{\text {cone }}
$$

- Then

$$
\mathcal{P}=\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle_{\text {convex }}+\left\langle h_{1}, h_{2}, \ldots, h_{\ell}\right\rangle_{\text {cone }}
$$

Minkowski-Weyl Theorem: Proof: (ii)

Assume $\mathcal{P}=\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle_{\text {convex }}+\left\langle h_{1}, h_{2}, \ldots, h_{\ell}\right\rangle_{\text {cone }}$. Let

$$
\widehat{\mathcal{P}}=\left\langle\binom{ g_{1}}{1},\binom{g_{2}}{1}, \ldots,\binom{g_{k}}{1},\binom{h_{1}}{0},\binom{h_{2}}{0}, \ldots,\binom{h_{\ell}}{0}\right\rangle_{\text {cone }}
$$

a finitely generated cone.

Minkowski-Weyl Theorem: Proof: (ii)

Assume $\mathcal{P}=\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle_{\text {convex }}+\left\langle h_{1}, h_{2}, \ldots, h_{\ell}\right\rangle_{\text {cone }}$. Let

$$
\widehat{\mathcal{P}}=\left\langle\binom{ g_{1}}{1},\binom{g_{2}}{1}, \ldots,\binom{g_{k}}{1},\binom{h_{1}}{0},\binom{h_{2}}{0}, \ldots,\binom{h_{\ell}}{0}\right\rangle_{\text {cone }},
$$

a finitely generated cone.
By Weyl's theorem, there exists a matrix $(A \mid-b)$ such that

$$
\widehat{\mathcal{P}}=\left\{\binom{x}{\lambda}:(A \mid-b)\binom{x}{\lambda} \preceq 0\right\} .
$$

Assume $\mathcal{P}=\left\langle g_{1}, g_{2}, \ldots, g_{k}\right\rangle_{\text {convex }}+\left\langle h_{1}, h_{2}, \ldots, h_{\ell}\right\rangle_{\text {cone }}$. Let

$$
\widehat{\mathcal{P}}=\left\langle\binom{ g_{1}}{1},\binom{g_{2}}{1}, \ldots,\binom{g_{k}}{1},\binom{h_{1}}{0},\binom{h_{2}}{0}, \ldots,\binom{h_{\ell}}{0}\right\rangle_{\text {cone }},
$$

a finitely generated cone.
By Weyl's theorem, there exists a matrix $(A \mid-b)$ such that

$$
\widehat{\mathcal{P}}=\left\{\binom{x}{\lambda}:(A \mid-b)\binom{x}{\lambda} \preceq 0\right\} .
$$

Then

$$
\mathcal{P}=\{x: A x \preceq b\}
$$

i.e., \mathcal{P} is a polyhedron.

Thank you for your attention!

