Strong duality, Karush—Kuhn—Tucker theorem

Peter Hajnal

2024. Fall

Reminder

Reminder

The optimal value of the primal problem is denoted by p^* , and the optimal value of the dual problem is denoted by d^* $(d^*, p^* \in \mathbb{R} \cup \{-\infty, \infty\})$. The following is true (**Weak Duality Theorem**): $d^* \leq p^*$.

• We talk about strong duality when we can guarantee $d^* = p^*$ under certain conditions.

Reminder

- We talk about strong duality when we can guarantee $d^* = p^*$ under certain conditions.
- There are various options for these *certain* conditions.

Reminder

- We talk about strong duality when we can guarantee $d^* = p^*$ under certain conditions.
- There are various options for these *certain* conditions.
- An entire *industry* has developed around the development of such conditions.

Reminder

- We talk about strong duality when we can guarantee $d^* = p^*$ under certain conditions.
- There are various options for these *certain* conditions.
- An entire *industry* has developed around the development of such conditions. We only discuss one possibility.

Slater's Theorem

Consider the following optimization problem:

Minimize	c(x),-t	
subject to	$f_i(x) \leq 0$	$i=1,\ldots,k$
	$g_i(x)=0$	$i=1,\ldots \ell$

Slater's Theorem

Consider the following optimization problem:

0 1	•	
Minimize	c(x),-t	
subject to	$f_i(x) \leq 0 i = 1, \ldots, k$	
	$g_i(x) = 0 i = 1, \dots \ell$	

Suppose that

(1) The problem is convex. Thus, c and f_i are convex functions, and g_i are affine functions. This means that the $g_i(x) = 0$ $(i = 1, ..., \ell)$ constraints can be written in the following form: Ax - b = 0, where

$$A \in \mathbb{R}^{\ell \times n}$$
 and $b \in \mathbb{R}^{\ell}$.

Slater's Theorem

Consider the following optimization problem:

Minimize	c(x),-t	
subject to	$f_i(x) \leq 0$	$i=1,\ldots,k$
	$g_i(x)=0$	$i=1,\ldots \ell$

Suppose that

- (1) The problem is convex. Thus, c and f_i are convex functions, and g_i are affine functions. This means that the $g_i(x) = 0$ $(i = 1, ..., \ell)$ constraints can be written in the following form: Ax b = 0, where $A \in \mathbb{R}^{\ell \times n}$ and $b \in \mathbb{R}^{\ell}$.
- (S) There exists $s \in \mathcal{D}$ such that

Slater's Theorem

Consider the following optimization problem:

	P	
Minimize	c(x),-t	
subject to	$f_i(x) \leq 0$	$i=1,\ldots,k$
	$g_i(x)=0$	$i=1,\ldots \ell$

Suppose that

- (1) The problem is convex. Thus, c and f_i are convex functions, and g_i are affine functions. This means that the $g_i(x)=0$ $(i=1,\ldots,\ell)$ constraints can be written in the following form: Ax-b=0, where $A\in\mathbb{R}^{\ell\times n}$ and $b\in\mathbb{R}^\ell$.
- (S) There exists $s \in \mathcal{D}$ such that (i) $f_i(s) < 0$ (i = 1, ..., k) and $g_i(s) = 0$ ($i = 1, ..., \ell$). Specifically, $s \in \mathcal{L}$.

Slater's Theorem

Consider the following optimization problem:

	P	
Minimize	c(x),-t	
subject to	$f_i(x) \leq 0$	$i=1,\ldots,k$
	$g_i(x)=0$	$i=1,\ldots \ell$

Suppose that

- (1) The problem is convex. Thus, c and f_i are convex functions, and g_i are affine functions. This means that the $g_i(x)=0$ $(i=1,\ldots,\ell)$ constraints can be written in the following form: Ax-b=0, where $A\in\mathbb{R}^{\ell\times n}$ and $b\in\mathbb{R}^\ell$.
- (S) There exists $s \in \mathcal{D}$ such that (i) $f_i(s) < 0$ (i = 1, ..., k) and $g_i(s) = 0$ ($i = 1, ..., \ell$). Specifically, $s \in \mathcal{L}$. (ii) Moreover, $s \in \text{int } \mathcal{D} = \{x : \exists r > 0 \ B(x, r) \subset \mathcal{D}\}$, the set of interior points of \mathcal{D} , where B(x, r) is the ball centered at x with radius r.

Slater's Theorem

Consider the following optimization problem:

	P	
Minimize	c(x),-t	
subject to	$f_i(x) \leq 0$	$i=1,\ldots,k$
	$g_i(x)=0$	$i=1,\ldots \ell$

Suppose that

- (1) The problem is convex. Thus, c and f_i are convex functions, and g_i are affine functions. This means that the $g_i(x)=0$ $(i=1,\ldots,\ell)$ constraints can be written in the following form: Ax-b=0, where $A\in\mathbb{R}^{\ell\times n}$ and $b\in\mathbb{R}^\ell$.
- (S) There exists $s \in \mathcal{D}$ such that (i) $f_i(s) < 0$ (i = 1, ..., k) and $g_i(s) = 0$ ($i = 1, ..., \ell$). Specifically, $s \in \mathcal{L}$. (ii) Moreover, $s \in \text{int } \mathcal{D} = \{x : \exists r > 0 \ B(x, r) \subset \mathcal{D}\}$, the set of interior points of \mathcal{D} , where B(x, r) is the ball centered at x with radius r.

Then, strong duality holds, i.e., $d^* = p^*$.

• We call (S) Slater's condition.

- We call (S) Slater's condition.
- Points satisfying condition (S) are called Slater points.

- We call (S) Slater's condition.
- Points satisfying condition (S) are called Slater points.
- (S)(i) and (S)(ii) can be weakened.

- We call (S) Slater's condition.
- Points satisfying condition (S) are called Slater points.
- \bullet (S)(i) and (S)(ii) can be weakened. The statement of the theorem remains true under the following (weakened) conditions:
- (S) (i)₀ We only require from the Slater point s that $f_i(s) < 0$ if f_i is not affine, and $f_i(s) \le 0$ if it is affine.

- We call (S) Slater's condition.
- Points satisfying condition (S) are called Slater points.
- \bullet (S)(i) and (S)(ii) can be weakened. The statement of the theorem remains true under the following (weakened) conditions:
- (S) (i)₀ We only require from the Slater point s that $f_i(s) < 0$ if f_i is not affine, and $f_i(s) \le 0$ if it is affine.
- (S) (ii)₀ $s \in \text{relint } \mathcal{D} = \mathcal{D} \text{ relative interior } \mathcal{D} \text{ in the affine hull of } \mathcal{D} \text{ (int } \mathcal{D} \subset \text{relint } \mathcal{D}).$

- We call (S) Slater's condition.
- Points satisfying condition (S) are called Slater points.
- \bullet (S)(i) and (S)(ii) can be weakened. The statement of the theorem remains true under the following (weakened) conditions:
- (S) (i)₀ We only require from the Slater point s that $f_i(s) < 0$ if f_i is not affine, and $f_i(s) \le 0$ if it is affine.
- (S) (ii)₀ $s \in \text{relint } \mathcal{D} = \mathcal{D} \text{ relative interior } \mathcal{D} \text{ in the affine hull of } \mathcal{D} \text{ (int } \mathcal{D} \subset \text{relint } \mathcal{D}).$
- ullet Below, we present the proof under an important assumption: A (the matrix of equality and affine constraints) has full row rank.

- We call (S) Slater's condition.
- Points satisfying condition (S) are called Slater points.
- \bullet (S)(i) and (S)(ii) can be weakened. The statement of the theorem remains true under the following (weakened) conditions:
- (S) (i)₀ We only require from the Slater point s that $f_i(s) < 0$ if f_i is not affine, and $f_i(s) \le 0$ if it is affine.
- (S) (ii)₀ $s \in \text{relint } \mathcal{D} = \mathcal{D} \text{ relative interior } \mathcal{D} \text{ in the affine hull of } \mathcal{D} \text{ (int } \mathcal{D} \subset \text{relint } \mathcal{D}).$
- Below, we present the proof under an important assumption: *A* (the matrix of equality and affine constraints) has full row rank.
- Without this assumption, the essence of the proof remains, with only a few technical complications making it lengthier.

1st Observation

We can assume that

$$p^* \in \mathbb{R}$$
.

1st Observation

We can assume that

$$p^* \in \mathbb{R}$$
.

• From (S), it follows that $\mathcal{L} \neq \emptyset$, implying $p^* < \infty$.

1st Observation

We can assume that

$$p^* \in \mathbb{R}$$
.

- From (S), it follows that $\mathcal{L} \neq \emptyset$, implying $p^* < \infty$.
- Moreover, from weak duality, it follows that strong duality holds if $p^* = -\infty$. Thus, we can assume $p^* > -\infty$. Combining these, we conclude

Let

Let

$$\mathcal{E} = \{(arphi_1, arphi_2, \dots, arphi_k, \gamma_1, \gamma_2, \dots, \gamma_\ell, au) \in \mathbb{R}^k imes \mathbb{R}^\ell imes \mathbb{R} : \ \exists x \in \mathcal{D}, ext{ such that} \ arphi_i \geq f_i(x) \ i = 1, \dots, k \ \gamma_i = g_i(x) \ i = 1, \dots, \ell \ au \geq c(x) \}, \ \mathcal{F} = \{(0, 0, \dots, 0, au) \in \mathbb{R}^k imes \mathbb{R}^\ell imes \mathbb{R} : \ au < p^* \}.$$

Let

$$\mathcal{E} = \{(\varphi_1, \varphi_2, \dots, \varphi_k, \gamma_1, \gamma_2, \dots, \gamma_\ell, \tau) \in \mathbb{R}^k \times \mathbb{R}^\ell \times \mathbb{R} : \exists x \in \mathcal{D}, \text{ such that}$$

$$\varphi_i \geq f_i(x) \ i = 1, \dots, k$$

$$\gamma_i = g_i(x) \ i = 1, \dots, \ell$$

$$\tau \geq c(x)\},$$

$$\mathcal{F} = \{(0, 0, \dots, 0, \tau) \in \mathbb{R}^k \times \mathbb{R}^\ell \times \mathbb{R} : \tau < p^*\}.$$

2nd Observation

 ${\mathcal E}$ and ${\mathcal F}$ are convex sets.

Let

$$\mathcal{E} = \{(\varphi_1, \varphi_2, \dots, \varphi_k, \gamma_1, \gamma_2, \dots, \gamma_\ell, \tau) \in \mathbb{R}^k \times \mathbb{R}^\ell \times \mathbb{R} : \exists x \in \mathcal{D}, \text{ such that}$$

$$\varphi_i \geq f_i(x) \ i = 1, \dots, k$$

$$\gamma_i = g_i(x) \ i = 1, \dots, \ell$$

$$\tau \geq c(x)\},$$

$$\mathcal{F} = \{(0, 0, \dots, 0, \tau) \in \mathbb{R}^k \times \mathbb{R}^\ell \times \mathbb{R} : \tau < p^*\}.$$

2nd Observation

 ${\mathcal E}$ and ${\mathcal F}$ are convex sets.

3rd Observation

 \mathcal{E} is closed under increasing the coordinates φ_i and τ .

Lemma

Lemma

$$\mathcal{E} \cap \mathcal{F} = \emptyset$$
.

Lemma

Lemma

$$\mathcal{E} \cap \mathcal{F} = \emptyset$$
.

• We will prove this indirectly.

Lemma

Lemma

$$\mathcal{E} \cap \mathcal{F} = \emptyset$$
.

- We will prove this indirectly.
- Assume $v \in \mathcal{E} \cap \mathcal{F}$, i.e., $v \in \mathcal{E}$ and $v \in \mathcal{F}$.

Lemma

Lemma

$$\mathcal{E} \cap \mathcal{F} = \emptyset$$
.

- We will prove this indirectly.
- Assume $v \in \mathcal{E} \cap \mathcal{F}$, i.e., $v \in \mathcal{E}$ and $v \in \mathcal{F}$.
- $v \in \mathcal{F}$ implies $v = (0, ..., 0, \tau)$, where $\tau < p^*$.

Proof: Lemma

Lemma

Lemma

$$\mathcal{E} \cap \mathcal{F} = \emptyset$$
.

- We will prove this indirectly.
- Assume $v \in \mathcal{E} \cap \mathcal{F}$, i.e., $v \in \mathcal{E}$ and $v \in \mathcal{F}$.
- $v \in \mathcal{F}$ implies $v = (0, ..., 0, \tau)$, where $\tau < p^*$.
- $v \in \mathcal{E}$ implies that there exists $x \in \mathcal{D}$ such that $f_i(x) \leq 0$, $g_i(x) = 0$, and $\tau \geq c(x)$.

Proof: Lemma

Lemma

Lemma

$$\mathcal{E} \cap \mathcal{F} = \emptyset$$
.

- We will prove this indirectly.
- Assume $v \in \mathcal{E} \cap \mathcal{F}$, i.e., $v \in \mathcal{E}$ and $v \in \mathcal{F}$.
- $v \in \mathcal{F}$ implies $v = (0, ..., 0, \tau)$, where $\tau < p^*$.
- $v \in \mathcal{E}$ implies that there exists $x \in \mathcal{D}$ such that $f_i(x) \leq 0$, $g_i(x) = 0$, and $\tau \geq c(x)$.
- Hence, $x \in \mathcal{L}$, and $c(x) \le \tau < p^*$, which is a contradiction.

Separation theorem for convex sets \approx Farkas' Lemma

K, L convex sets and $K \cap L = \emptyset$ then there exists a hyperplane H, which separates the two sets.

Separation theorem for convex sets \approx Farkas' Lemma

K,L convex sets and $K \cap L = \emptyset$ then there exists a hyperplane H, which separates the two sets.

That is, it divides the space into closed half-spaces H^{\leq} and H^{\geq} , such that $H^{\leq} \supset K$ and $H^{\geq} \supset L$.

Separation theorem for convex sets ≈ Farkas' Lemma

K, L convex sets and $K \cap L = \emptyset$ then there exists a hyperplane H, which separates the two sets.

That is, it divides the space into closed half-spaces H^{\leq} and H^{\geq} , such that $H^{\leq} \supset K$ and $H^{\geq} \supset L$.

• From the theorem and Lemma 2, it follows that there exists an $n=(\lambda_1,\lambda_2,\ldots,\lambda_k,\mu_1,\ldots,\mu_\ell,\nu)$ $(n\in\mathbb{R}^{k+\ell+1}=R^k\times\mathbb{R}^\ell\times\mathbb{R})$ nonzero vector and a real number α , such that the hyperplane $H_{n,\alpha}=\{x\in\mathbb{R}^{k+\ell+1},n^\top x=\alpha\}$ divides into two half-spaces:

Separation theorem for convex sets ≈ Farkas' Lemma

K,L convex sets and $K \cap L = \emptyset$ then there exists a hyperplane H, which separates the two sets.

That is, it divides the space into closed half-spaces H^{\leq} and H^{\geq} , such that $H^{\leq} \supset K$ and $H^{\geq} \supset L$.

• From the theorem and Lemma 2, it follows that there exists an $n=(\lambda_1,\lambda_2,\ldots,\lambda_k,\mu_1,\ldots,\mu_\ell,\nu)$ $(n\in\mathbb{R}^{k+\ell+1}=R^k\times\mathbb{R}^\ell\times\mathbb{R})$ nonzero vector and a real number α , such that the hyperplane $H_{n,\alpha}=\{x\in\mathbb{R}^{k+\ell+1},n^\top x=\alpha\}$ divides into two half-spaces:

$$H_{n,\alpha}^{\geq} = \{ x \in \mathbb{R}^{k+\ell+1} : n^{\top} x \geq \alpha \} \supseteq \mathcal{E},$$

Separation theorem for convex sets ≈ Farkas' Lemma

K, L convex sets and $K \cap L = \emptyset$ then there exists a hyperplane H, which separates the two sets.

That is, it divides the space into closed half-spaces H^{\leq} and H^{\geq} , such that $H^{\leq} \supset K$ and $H^{\geq} \supset L$.

• From the theorem and Lemma 2, it follows that there exists an $n=(\lambda_1,\lambda_2,\ldots,\lambda_k,\mu_1,\ldots,\mu_\ell,\nu)$ $(n\in\mathbb{R}^{k+\ell+1}=R^k\times\mathbb{R}^\ell\times\mathbb{R})$ nonzero vector and a real number α , such that the hyperplane $H_{n,\alpha}=\{x\in\mathbb{R}^{k+\ell+1},n^\top x=\alpha\}$ divides into two half-spaces:

$$H_{n,\alpha}^{\geq} = \{ x \in \mathbb{R}^{k+\ell+1} : n^{\top} x \geq \alpha \} \supseteq \mathcal{E},$$

$$H_{n,\alpha}^{\leq} = \{ x \in \mathbb{R}^{k+\ell+1} : n^{\top} x \leq \alpha \} \supseteq \mathcal{F}.$$

• From Observation 3, we know that by increasing the first k and last coordinates, we remain in \mathcal{E} and thus in H^{\geq} .

• From Observation 3, we know that by increasing the first k and last coordinates, we remain in \mathcal{E} and thus in H^{\geq} .

Observation 4

 $\lambda \succeq 0$ and $\nu \geq 0$.

• From Observation 3, we know that by increasing the first k and last coordinates, we remain in \mathcal{E} and thus in H^{\geq} .

Observation 4

 $\lambda \succeq 0$ and $\nu \geq 0$.

• $(0,0,p^*-\epsilon) \in \mathcal{F}$, which implies $(0,0,p^*-\epsilon) \in H^{\leq}$, thus $\nu(p^*-\epsilon) \leq \alpha$. Since $\epsilon > 0$ is arbitrary, we get limit transitions, yielding

• From Observation 3, we know that by increasing the first k and last coordinates, we remain in \mathcal{E} and thus in H^{\geq} .

Observation 4

 $\lambda \succeq 0$ and $\nu \geq 0$.

• $(0,0,p^*-\epsilon) \in \mathcal{F}$, which implies $(0,0,p^*-\epsilon) \in H^{\leq}$, thus $\nu(p^*-\epsilon) \leq \alpha$. Since $\epsilon > 0$ is arbitrary, we get limit transitions, yielding

Observation 5

 $\nu p^* \leq \alpha$.

• From Observation 3, we know that by increasing the first k and last coordinates, we remain in \mathcal{E} and thus in H^{\geq} .

Observation 4

 $\lambda \succeq 0$ and $\nu \geq 0$.

• $(0,0,p^*-\epsilon) \in \mathcal{F}$, which implies $(0,0,p^*-\epsilon) \in H^{\leq}$, thus $\nu(p^*-\epsilon) \leq \alpha$. Since $\epsilon > 0$ is arbitrary, we get limit transitions, yielding

Observation 5

 $\nu p^* \leq \alpha$.

• For $x \in \mathcal{D}$, $(f(x), g(x), c(x)) \in \mathcal{E}$,

• From Observation 3, we know that by increasing the first k and last coordinates, we remain in \mathcal{E} and thus in H^{\geq} .

Observation 4

 $\lambda \succeq 0$ and $\nu \geq 0$.

• $(0,0,p^*-\epsilon) \in \mathcal{F}$, which implies $(0,0,p^*-\epsilon) \in H^{\leq}$, thus $\nu(p^*-\epsilon) \leq \alpha$. Since $\epsilon > 0$ is arbitrary, we get limit transitions, yielding

Observation 5

 $\nu p^* \leq \alpha$.

• For $x \in \mathcal{D}$, $(f(x), g(x), c(x)) \in \mathcal{E}$, specifically in H^{\geq} .

• From Observation 3, we know that by increasing the first k and last coordinates, we remain in \mathcal{E} and thus in H^{\geq} .

Observation 4

$$\lambda \succeq 0$$
 and $\nu \geq 0$.

• $(0,0,p^*-\epsilon) \in \mathcal{F}$, which implies $(0,0,p^*-\epsilon) \in H^{\leq}$, thus $\nu(p^*-\epsilon) \leq \alpha$. Since $\epsilon > 0$ is arbitrary, we get limit transitions, yielding

Observation 5

$$\nu p^* \leq \alpha$$
.

• For $x \in \mathcal{D}$, $(f(x), g(x), c(x)) \in \mathcal{E}$, specifically in H^{\geq} .

Observation 6

For every $x \in \mathcal{D}$:

$$\sum_{i=1}^k \lambda_i f_i(x) + \sum_{i=1}^\ell \mu_i g_i(x) + \nu c(x) \ge \alpha.$$

• Then for every $x \in \mathcal{D}$,

$$L\left(\frac{\lambda_i}{\nu},\frac{\mu_i}{\nu},x\right) = \sum_{i=1}^k \frac{\lambda_i}{\nu} f_i(x) + \frac{\mu_i}{\nu} g_i(x) + c(x) \geq \frac{\alpha}{\nu}.$$

• Then for every $x \in \mathcal{D}$,

$$L\left(\frac{\lambda_i}{\nu},\frac{\mu_i}{\nu},x\right) = \sum_{i=1}^k \frac{\lambda_i}{\nu} f_i(x) + \frac{\mu_i}{\nu} g_i(x) + c(x) \geq \frac{\alpha}{\nu}.$$

This yields

$$\widetilde{c}\left(\frac{\lambda_i}{\nu},\frac{\mu_i}{\nu}\right)\geq \frac{\alpha}{\nu}\geq p^*.$$

 $\left(\frac{\lambda_i}{\nu}\right)_{i=1}^k$ are the feasible solutions of the dual optimization problem.

• Then for every $x \in \mathcal{D}$,

$$L\left(\frac{\lambda_i}{\nu},\frac{\mu_i}{\nu},x\right)=\sum_{i=1}^k\frac{\lambda_i}{\nu}f_i(x)+\frac{\mu_i}{\nu}g_i(x)+c(x)\geq\frac{\alpha}{\nu}.$$

This yields

$$\widetilde{c}\left(\frac{\lambda_i}{\nu},\frac{\mu_i}{\nu}\right) \geq \frac{\alpha}{\nu} \geq p^*.$$

 $\left(\frac{\lambda_i}{\nu}\right)_{i=1}^k$ are the feasible solutions of the dual optimization problem.

• From this and the previous inequality, it follows that

$$d^* \geq \widetilde{c}\left(\frac{\lambda_i}{\nu}, \frac{\mu_i}{\nu}\right) \geq p^*.$$

• Then for every $x \in \mathcal{D}$,

$$L\left(\frac{\lambda_i}{\nu},\frac{\mu_i}{\nu},x\right)=\sum_{i=1}^k\frac{\lambda_i}{\nu}f_i(x)+\frac{\mu_i}{\nu}g_i(x)+c(x)\geq\frac{\alpha}{\nu}.$$

This yields

$$\widetilde{c}\left(\frac{\lambda_i}{\nu},\frac{\mu_i}{\nu}\right)\geq \frac{\alpha}{\nu}\geq p^*.$$

 $\left(\frac{\lambda_i}{\nu}\right)_{i=1}^k$ are the feasible solutions of the dual optimization problem.

• From this and the previous inequality, it follows that

$$d^* \geq \widetilde{c}\left(\frac{\lambda_i}{\nu}, \frac{\mu_i}{\nu}\right) \geq p^*.$$

• Comparing with weak duality, we obtain strong duality.

• In this case, $\sum_{i=1}^k \lambda_i f_i(x) + \sum_{i=1}^\ell \mu_i g_i(x) \ge \alpha \ge \nu p^* = 0$ for all $x \in \mathcal{D}$.

- In this case, $\sum_{i=1}^k \lambda_i f_i(x) + \sum_{i=1}^\ell \mu_i g_i(x) \ge \alpha \ge \nu p^* = 0$ for all $x \in \mathcal{D}$.
- Write the inequality for x = s, where s is a Slater point.

$$\sum_{i=1}^k \lambda_i f_i(s) + \sum_{i=1}^\ell \mu_i g_i(s) \geq 0, \quad \text{where} \quad \lambda_i \geq 0, f_i(s) < 0 \text{ and } g_i(s) = 0.$$

- In this case, $\sum_{i=1}^k \lambda_i f_i(x) + \sum_{i=1}^\ell \mu_i g_i(x) \ge \alpha \ge \nu p^* = 0$ for all $x \in \mathcal{D}$.
- Write the inequality for x = s, where s is a Slater point.

$$\sum_{i=1}^k \lambda_i f_i(s) + \sum_{i=1}^\ell \mu_i g_i(s) \geq 0, \quad \text{where} \quad \lambda_i \geq 0, f_i(s) < 0 \text{ and } g_i(s) = 0.$$

• Then each λ_i must be zero.

- In this case, $\sum_{i=1}^k \lambda_i f_i(x) + \sum_{i=1}^\ell \mu_i g_i(x) \ge \alpha \ge \nu p^* = 0$ for all $x \in \mathcal{D}$.
- Write the inequality for x = s, where s is a Slater point.

$$\sum_{i=1}^k \lambda_i f_i(s) + \sum_{i=1}^\ell \mu_i g_i(s) \geq 0, \quad \text{where} \quad \lambda_i \geq 0, f_i(s) < 0 \text{ and } g_i(s) = 0.$$

- Then each λ_i must be zero.
- Our initial inequality simplifies to:

$$\sum_{i=1}^{\ell} \mu_i \mathsf{g}_i(\mathsf{x}) \geq 0,$$

which rewritten becomes $\mu^{\top}(Ax - b) \ge 0$ for all $x \in \mathcal{D}$.

• Let $x = s + \delta$, where $\delta \in \mathbb{R}^{k+\ell+1}$ and $|\delta| < r_0$, with r_0 so small that $B(s, r_0) \subset \mathcal{D}$.

$$\mu^{\top}(A(s+\delta)-b) = \mu^{\top}(As+A\delta-b) = \mu^{\top}(b+A\delta-b)$$
$$=\mu^{\top}A\delta = \sum_{i=1}^{\ell}(\mu^{\top}A)_{i}\delta_{i} \geq 0.$$

• Let $x = s + \delta$, where $\delta \in \mathbb{R}^{k+\ell+1}$ and $|\delta| < r_0$, with r_0 so small that $B(s, r_0) \subset \mathcal{D}$.

$$\mu^{\top}(A(s+\delta)-b) = \mu^{\top}(As+A\delta-b) = \mu^{\top}(b+A\delta-b)$$
$$=\mu^{\top}A\delta = \sum_{i=1}^{\ell}(\mu^{\top}A)_{i}\delta_{i} \geq 0.$$

ullet This holds for $-\delta$ as well, implying $\mu^{\top}A=0$.

• Let $x = s + \delta$, where $\delta \in \mathbb{R}^{k+\ell+1}$ and $|\delta| < r_0$, with r_0 so small that $B(s, r_0) \subset \mathcal{D}$.

$$\mu^{\top}(A(s+\delta)-b) = \mu^{\top}(As+A\delta-b) = \mu^{\top}(b+A\delta-b)$$
$$=\mu^{\top}A\delta = \sum_{i=1}^{\ell}(\mu^{\top}A)_{i}\delta_{i} \geq 0.$$

- This holds for $-\delta$ as well, implying $\mu^{\top} A = 0$.
- Due to our initial assumption (full row rank of A), $\mu = 0$.

• Let $x = s + \delta$, where $\delta \in \mathbb{R}^{k+\ell+1}$ and $|\delta| < r_0$, with r_0 so small that $B(s, r_0) \subset \mathcal{D}$.

$$\mu^{\top}(A(s+\delta)-b) = \mu^{\top}(As+A\delta-b) = \mu^{\top}(b+A\delta-b)$$
$$=\mu^{\top}A\delta = \sum_{i=1}^{\ell}(\mu^{\top}A)_{i}\delta_{i} \geq 0.$$

- This holds for $-\delta$ as well, implying $\mu^{\top} A = 0$.
- Due to our initial assumption (full row rank of A), $\mu = 0$.
- Thus $n = (\lambda, \mu, \nu) = 0$, which is a contradiction.

Break

Notation

Let $x \in \mathcal{L}$. We say that the *i*-th inequality constraint is slack at x if

$$f_i(x) < 0.$$

Notation

Let $x \in \mathcal{L}$. We say that the *i*-th inequality constraint is slack at x if

$$f_i(x) < 0.$$

• Let x^* be a primal optimal point and (λ^*, μ^*) be a dual optimal point. Specifically, $\lambda^* \succeq 0$.

Notation

Let $x \in \mathcal{L}$. We say that the *i*-th inequality constraint is slack at x if

$$f_i(x) < 0.$$

- Let x^* be a primal optimal point and (λ^*, μ^*) be a dual optimal point. Specifically, $\lambda^* \succeq 0$.
- The weak duality is summarized.

Slack Conditions, Weak Duality Reminder

Notation

Let $x \in \mathcal{L}$. We say that the *i*-th inequality constraint is slack at x if

$$f_i(x) < 0.$$

- Let x^* be a primal optimal point and (λ^*, μ^*) be a dual optimal point. Specifically, $\lambda^* \succeq 0$.
- The weak duality is summarized.
- Let $L(\lambda, \mu, x) = c(x) + \lambda^{\top} f(x) + \mu^{\top} g(x)$.

Slack Conditions, Weak Duality Reminder

Notation

Let $x \in \mathcal{L}$. We say that the *i*-th inequality constraint is slack at x if

$$f_i(x) < 0.$$

- Let x^* be a primal optimal point and (λ^*, μ^*) be a dual optimal point. Specifically, $\lambda^* \succeq 0$.
- The weak duality is summarized.
- Let $L(\lambda, \mu, x) = c(x) + \lambda^{\top} f(x) + \mu^{\top} g(x)$.
- Then

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$< c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) < c(x^*) = p^*.$$

Slack Conditions, Weak Duality Reminder

Notation

Let $x \in \mathcal{L}$. We say that the *i*-th inequality constraint is slack at x if

$$f_i(x) < 0.$$

- Let x^* be a primal optimal point and (λ^*, μ^*) be a dual optimal point. Specifically, $\lambda^* \succeq 0$.
- The weak duality is summarized.
- Let $L(\lambda, \mu, x) = c(x) + \lambda^{\top} f(x) + \mu^{\top} g(x)$.
- Then

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = \rho^*.$$

• If strong duality holds, then equality holds throughout

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

Definition

Definition Let x_0 be a primal feasible solution, i.e., $f_i(x_0) \leq 0$, $g_i(x_0) = 0$. Let (λ_0, μ_0) be a dual feasible solution, i.e., $(\lambda_0)_i \geq 0$. This solution pair exhibits *complementary slackness* if

- (i) $f_i(x_0) < 0$ implies $(\lambda_0)_i = 0$.
- (ii) $(\lambda_0)_i > 0$ implies $f_i(x_0) = 0$.

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

Definition

Definition Let x_0 be a primal feasible solution, i.e., $f_i(x_0) \leq 0$, $g_i(x_0) = 0$. Let (λ_0, μ_0) be a dual feasible solution, i.e., $(\lambda_0)_i \geq 0$. This solution pair exhibits *complementary slackness* if

- (i) $f_i(x_0) < 0$ implies $(\lambda_0)_i = 0$.
- (ii) $(\lambda_0)_i > 0$ implies $f_i(x_0) = 0$.

Observation

In the second inequality, equality holds if and only if x^* and (λ^*, μ^*) exhibit complementary slackness.

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

Observation

If the first inequality is an equality, then $c(x) + (\lambda^*)^{\top} f(x) + (\mu^*)^{\top} g(x)$ functions attains a minimum at x^* .

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

Observation

If the first inequality is an equality, then $c(x) + (\lambda^*)^{\top} f(x) + (\mu^*)^{\top} g(x)$ functions attains a minimum at x^* . Suppose c and f_i functions are differentiable.

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

Observation

If the first inequality is an equality, then $c(x) + (\lambda^*)^{\top} f(x) + (\mu^*)^{\top} g(x)$ functions attains a minimum at x^* . Suppose c and f_i functions are differentiable. Then

$$\nabla c(x^*) + (\lambda^*)^\top \nabla f(x^*) + (\mu^*)^\top \nabla g(x^*) = 0.$$

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

Observation

If the first inequality is an equality, then $c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x)$ functions attains a minimum at x^* . Suppose c and f_i functions are differentiable. Then

$$\nabla c(x^*) + (\lambda^*)^\top \nabla f(x^*) + (\mu^*)^\top \nabla g(x^*) = 0.$$

Suppose c, f_i are convex and g_i are affine.

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

Observation

If the first inequality is an equality, then $c(x) + (\lambda^*)^{\top} f(x) + (\mu^*)^{\top} g(x)$ functions attains a minimum at x^* . Suppose c and f_i functions are differentiable. Then

$$\nabla c(x^*) + (\lambda^*)^\top \nabla f(x^*) + (\mu^*)^\top \nabla g(x^*) = 0.$$

Suppose c, f_i are convex and g_i are affine. Then $c(x) + (\lambda^*)^{\top} f(x) + (\mu^*)^{\top} g(x)$ is also convex $(\lambda^* \succeq 0)$.

$$d^* = \widetilde{c}(\lambda^*, \mu^*) = \inf L(\lambda^*, \mu^*, x) = \inf_{x \in \mathcal{D}} (c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x))$$

$$\leq c(x^*) + (\lambda^*)^\top f(x^*) + (\mu^*)^\top g(x^*) \leq c(x^*) = p^*.$$

Observation

If the first inequality is an equality, then $c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x)$ functions attains a minimum at x^* . Suppose c and f_i functions are differentiable. Then

$$\nabla c(x^*) + (\lambda^*)^{\top} \nabla f(x^*) + (\mu^*)^{\top} \nabla g(x^*) = 0.$$

Suppose c, f_i are convex and g_i are affine. Then $c(x) + (\lambda^*)^\top f(x) + (\mu^*)^\top g(x)$ is also convex $(\lambda^* \succeq 0)$. In this case, the above condition is both necessary and sufficient for the equality in the second inequality to hold.

• The theorem was Karush's master's thesis in the 1930s.

- The theorem was Karush's master's thesis in the 1930s.
- Later, Kuhn and Tucker discovered the theorem and made it known in the 1950s.

- The theorem was Karush's master's thesis in the 1930s.
- Later, Kuhn and Tucker discovered the theorem and made it known in the 1950s.

Assume that c, f_i , g_j are differentiable. Moreover, c, f_i are convex, and g_j are affine.

- The theorem was Karush's master's thesis in the 1930s.
- Later, Kuhn and Tucker discovered the theorem and made it known in the 1950s.

Assume that c, f_i , g_j are differentiable. Moreover, c, f_i are convex, and g_j are affine.

Definition: Karush—Kuhn—Tucker Conditions

For $x^* \in \mathbb{R}^n$, $(\lambda^*, \mu^*) \in \mathbb{R}^k \times \mathbb{R}^\ell$, the conditions are

(KKT1) $f_i(x^*) \le 0$ and $g_i(x^*) = 0$, i.e., x is primal feasible.

(KKT2) $\lambda_i^* \geq 0$, i.e., (λ^*, μ^*) is dual feasible.

(KKT3) x^* and (λ^*, μ^*) exhibit complementary slackness.

$$(KKT4) (\nabla c)(x^*) + (\lambda^*)^{\top} \nabla f(x^*) + (\mu^*)^{\top} \nabla g(x^*) = 0.$$

KKT Theorem

Suppose g_i are affine functions, c, f_i are convex and differentiable functions.

KKT Theorem

Suppose g_i are affine functions, c, f_i are convex and differentiable functions.

If strong duality holds with optimal points, then there exist x_0 and (λ_0, μ_0) that satisfy the (KKT1), (KKT2), (KKT3), (KKT4) conditions.

KKT Theorem

Suppose g_i are affine functions, c, f_i are convex and differentiable functions.

If strong duality holds with optimal points, then there exist x_0 and (λ_0, μ_0) that satisfy the (KKT1), (KKT2), (KKT3), (KKT4) conditions.

Conversely, if there exist x_0 , (λ_0, μ_0) , satisfying the (KKT1), (KKT2), (KKT3), (KKT4) conditions, then strong duality holds and these are primal and dual optimal points.

KKT Theorem

Suppose g_i are affine functions, c, f_i are convex and differentiable functions.

If strong duality holds with optimal points, then there exist x_0 and (λ_0, μ_0) that satisfy the (KKT1), (KKT2), (KKT3), (KKT4) conditions.

Conversely, if there exist x_0 , (λ_0, μ_0) , satisfying the (KKT1), (KKT2), (KKT3), (KKT4) conditions, then strong duality holds and these are primal and dual optimal points.

• We have already seen the first part of the theorem.

$$\begin{split} \widetilde{c}(\lambda_0, \mu_0) &= \inf(c(x) + \lambda_0^\top f(x) + \mu_0^\top g(x)) \\ &= \underset{(\mathsf{KKT4})}{=} c(x_0) + \lambda_0^\top f(x_0) + \mu_0^\top g(x) \\ &= \underset{(\mathsf{KKT3})}{=} c(x_0). \end{split}$$

$$\widetilde{c}(\lambda_0, \mu_0) = \inf(c(x) + \lambda_0^{\top} f(x) + \mu_0^{\top} g(x))$$

$$= c(x_0) + \lambda_0^{\top} f(x_0) + \mu_0^{\top} g(x)$$

$$= c(x_0).$$
(KKT3)

Since KKT4 is necessary and sufficient for x_0 to be an optimum point.

$$\begin{split} \widetilde{c}(\lambda_0, \mu_0) &= \inf(c(x) + \lambda_0^\top f(x) + \mu_0^\top g(x)) \\ &= \underset{(\mathsf{KKT4})}{=} c(x_0) + \lambda_0^\top f(x_0) + \mu_0^\top g(x) \\ &= \underset{(\mathsf{KKT3})}{=} c(x_0). \end{split}$$

Since KKT4 is necessary and sufficient for x_0 to be an optimum point.

Then

$$d^* \underset{(\mathsf{KKT2})}{\geq} \widetilde{c}(\lambda_0, \mu_0) = c(x_0) \underset{(\mathsf{KKT1})}{\geq} p^* \underset{\mathsf{weak duality}}{\geq} d^*.$$

$$\begin{split} \widetilde{c}(\lambda_0, \mu_0) &= \inf(c(x) + \lambda_0^\top f(x) + \mu_0^\top g(x)) \\ &= \underset{(\mathsf{KKT4})}{=} c(x_0) + \lambda_0^\top f(x_0) + \mu_0^\top g(x) \\ &= \underset{(\mathsf{KKT3})}{=} c(x_0). \end{split}$$

Since KKT4 is necessary and sufficient for x_0 to be an optimum point.

Then

$$d^* \underset{(\mathsf{KKT2})}{\geq} \widetilde{c}\big(\lambda_0, \mu_0\big) = c\big(x_0\big) \underset{(\mathsf{KKT1})}{\geq} p^* \underset{\mathsf{weak \ duality}}{\geq} d^*.$$

From the chain of inequalities, it is evident that equality holds throughout, i.e., strong duality holds, x_0 is a primal optimal point, and (λ_0, μ_0) is a dual optimal point.

Minimize	$\frac{1}{2}x^{\top}Px + q^{\top}x + r\text{-t}$
subject to	Ax = b,

where $P \in \mathcal{S}^n_+$.

Minimize	$\frac{1}{2}x^{\top}Px + q^{\top}x + r\text{-t}$
subject to	Ax = b,

where $P \in \mathcal{S}_{+}^{n}$.

• c(x) is convex (since $P \in \mathcal{S}^n_+$) and differentiable, hence KKT theorem can be applied.

Minimize	$\frac{1}{2}x^{\top}Px + q^{\top}x + r\text{-t}$
subject to	Ax = b,

where $P \in \mathcal{S}_{+}^{n}$.

- c(x) is convex (since $P \in \mathcal{S}^n_+$) and differentiable, hence KKT theorem can be applied.
- ullet We need to find x_0, μ_0 that satisfy all four Karush—Kuhn-Tucker conditions:

Minimize	$\frac{1}{2}x^{\top}Px + q^{\top}x + r\text{-t}$
subject to	Ax = b,

where $P \in \mathcal{S}_{+}^{n}$.

- c(x) is convex (since $P \in \mathcal{S}^n_+$) and differentiable, hence KKT theorem can be applied.
- We need to find x_0 , μ_0 that satisfy all four Karush—Kuhn-Tucker conditions:

(KKT1):
$$Ax_0 = b$$
.

I	Minimize	$\frac{1}{2}x^{\top}Px + q^{\top}x + r\text{-t}$
9	subject to	Ax = b,

where $P \in \mathcal{S}_{+}^{n}$.

- c(x) is convex (since $P \in \mathcal{S}^n_+$) and differentiable, hence KKT theorem can be applied.
- ullet We need to find x_0, μ_0 that satisfy all four Karush—Kuhn-Tucker conditions:

(KKT1): $Ax_0 = b$.

(KKT2): ∅.

Minimize	$\frac{1}{2}x^{\top}Px + q^{\top}x + r\text{-t}$
subject to	Ax = b,

where $P \in \mathcal{S}_{+}^{n}$.

- c(x) is convex (since $P \in \mathcal{S}^n_+$) and differentiable, hence KKT theorem can be applied.
- ullet We need to find x_0, μ_0 that satisfy all four Karush—Kuhn-Tucker conditions:

(KKT1): $Ax_0 = b$.

(KKT2): ∅.

(KKT3): ∅.

Minimize	$\frac{1}{2}x^{\top}Px + q^{\top}x + r\text{-t}$
subject to	Ax = b,

where $P \in \mathcal{S}_{+}^{n}$.

- c(x) is convex (since $P \in \mathcal{S}^n_+$) and differentiable, hence KKT theorem can be applied.
- ullet We need to find x_0, μ_0 that satisfy all four Karush—Kuhn-Tucker conditions:

(KKT1):
$$Ax_0 = b$$
.

(KKT2): ∅.

(KKT3): ∅.

(KKT4):
$$\nabla c(x_0) + \mu_0^{\top} \nabla (Ax - b)|_{x=x_0} = 0$$
, i.e.,

$$Px_0 + q + A^{\mathsf{T}}\mu_0 = 0.$$

• Summarizing the properties of the sought x_0, μ_0 :

• Summarizing the properties of the sought x_0, μ_0 :

$$\begin{pmatrix} P_{n\times n} & A_{n\times k}^{\top} \\ A_{k\times n} & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ \mu_0 \end{pmatrix} = \begin{pmatrix} -q \\ b \end{pmatrix}.$$

• Summarizing the properties of the sought x_0, μ_0 :

$$\begin{pmatrix} P_{n\times n} & A_{n\times k}^{\top} \\ A_{k\times n} & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ \mu_0 \end{pmatrix} = \begin{pmatrix} -q \\ b \end{pmatrix}.$$

• The discussion of the solvability of this system of equations, and finding the solution in case of solvability, is a straightforward linear algebraic task.

Example

Example

Minimize
$$2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$$
-t subject to
$$x_1^2 + x_2^2 \le 5,$$

$$3x_1 + x_2 \le 6.$$

Example

Example

Minimize
$$2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$$
-t subject to $x_1^2 + x_2^2 \le 5$, $3x_1 + x_2 \le 6$.

• In our case, $\mathcal{D} = \mathbb{R}^2$.

Example

Example

Minimize
$$2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$$
-t subject to $x_1^2 + x_2^2 \le 5$, $3x_1 + x_2 \le 6$.

- In our case, $\mathcal{D} = \mathbb{R}^2$.
- It can be easily verified that the objective function is convex, and the inequality constraints f_i are also convex functions.

Example

Example

Minimize
$$2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2$$
-t subject to $x_1^2 + x_2^2 \le 5$, $3x_1 + x_2 \le 6$.

- In our case, $\mathcal{D} = \mathbb{R}^2$.
- It can be easily verified that the objective function is convex, and the inequality constraints f_i are also convex functions.
- All occurring functions are differentiable.

• The KKT searches for primal/dual $x_1, x_2, \lambda_1, \lambda_2$ instead, satisfying the primal/dual conditions ((KKT1) and (KKT2)):

$$x_1^2 + x_2^2 \le 5$$
, $3x_1 + x_2 \le 6$, $\lambda_1 \ge 0$, $\lambda_2 \ge 0$.

• The KKT searches for primal/dual $x_1, x_2, \lambda_1, \lambda_2$ instead, satisfying the primal/dual conditions ((KKT1) and (KKT2)):

$$x_1^2 + x_2^2 \le 5$$
, $3x_1 + x_2 \le 6$, $\lambda_1 \ge 0$, $\lambda_2 \ge 0$.

• (KKT4) is crucial to find the optimal place. For this:

$$\nabla(2x_1^2+2x_1x_2+x_2^2-10x_1-10x_2)=\begin{pmatrix}4x_1+2x_2-10\\2x_1+2x_2-10\end{pmatrix},$$

• The KKT searches for primal/dual $x_1, x_2, \lambda_1, \lambda_2$ instead, satisfying the primal/dual conditions ((KKT1) and (KKT2)):

$$x_1^2 + x_2^2 \le 5$$
, $3x_1 + x_2 \le 6$, $\lambda_1 \ge 0$, $\lambda_2 \ge 0$.

• (KKT4) is crucial to find the optimal place. For this:

$$\nabla(2x_1^2+2x_1x_2+x_2^2-10x_1-10x_2)=\begin{pmatrix}4x_1+2x_2-10\\2x_1+2x_2-10\end{pmatrix},$$

$$\nabla(x_1^2 + x_2^2 - 5) = \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix}, \nabla(3x_1 + x_2 - 6) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$$

• The KKT searches for primal/dual $x_1, x_2, \lambda_1, \lambda_2$ instead, satisfying the primal/dual conditions ((KKT1) and (KKT2)):

$$x_1^2 + x_2^2 \le 5$$
, $3x_1 + x_2 \le 6$, $\lambda_1 \ge 0$, $\lambda_2 \ge 0$.

• (KKT4) is crucial to find the optimal place. For this:

$$\nabla(2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2) = \begin{pmatrix} 4x_1 + 2x_2 - 10 \\ 2x_1 + 2x_2 - 10 \end{pmatrix},$$

$$\nabla(x_1^2 + x_2^2 - 5) = \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix}, \nabla(3x_1 + x_2 - 6) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$$

Hence, expressing the satisfaction of (KKT4):

$$4x_1 + 2x_2 - 10 + 2\lambda_1 x_1 + 3\lambda_2 = 0, \qquad 2x_1 + 2x_2 - 10 + 2\lambda_1 x_2 + \lambda_2 = 0.$$

• What our number four should also know is the complementary slackness property.

- What our number four should also know is the complementary slackness property.
- This can be fulfilled in four different ways:

$$I: \quad x_1^2 + x_2^2 = 5 \text{ and } \lambda_1 \ge 0, \quad 3x_1 + x_2 = 6 \text{ and } \lambda_2 \ge 0.$$

$$II: \quad x_1^2 + x_2^2 < 5 \text{ and } \lambda_1 = 0, \quad 3x_1 + x_2 < 6 \text{ and } \lambda_2 = 0.$$

III:
$$x_1^2 + x_2^2 < 5$$
 and $\lambda_1 = 0$, $3x_1 + x_2 = 6$ and $\lambda_2 \ge 0$.

IV:
$$x_1^2 + x_2^2 = 5$$
 and $\lambda_1 \ge 0$, $3x_1 + x_2 < 6$ and $\lambda_2 = 0$.

• By elementary methods, it can be determined that I, II, and III do not lead to appropriate quadruples.

- By elementary methods, it can be determined that I, II, and III do not lead to appropriate quadruples.
- The possibility IV, however, leads to the

$$x_1 = 1, x_2 = 2, \lambda_1 = 1, \lambda_2 = 0$$

solution.

- By elementary methods, it can be determined that I, II, and III do not lead to appropriate quadruples.
- The possibility IV, however, leads to the

$$x_1 = 1, x_2 = 2, \lambda_1 = 1, \lambda_2 = 0$$

solution.

 \bullet From this, it follows that (1,2) is a primal optimal solution, (1,0) is a dual optimal solution. Furthermore, strong duality holds.

This is the End!

Thank you for your attention!