
Documenta Math. 181

Edmonds, Matching

and the Birth of Polyhedral Combinatorics

William R. Pulleyblank

2010 Mathematics Subject Classification: 05C70, 05C85, 90C10,
90C27, 68R10, 68W40
Keywords and Phrases: Matchings, factors, polyhedral combinatorics,
nonbipartite matching, integer programming

1 Summer of 1961, a Workshop at RAND

In the summer of 1961, Jack Edmonds, a twenty-seven year old mathemati-
cian, was attending a high powered workshop on combinatorics at the Rand
Corporation in Santa Monica, California. His participation had been arranged
by Alan Goldman, his manager at the National Bureau of Standards (now
NIST), supported by Edmonds’ Princeton mentor, A.W. Tucker. It seemed to
Edmonds that every senior academician doing combinatorics was there. This
included such luminaries as George Dantzig, Alan Hoffman, Ray Fulkerson,
Claude Berge and Bill Tutte. The only “kids” participating were Michel Balin-
ski, Larry Brown, Chris Witzgall, and Edmonds, who shared an office during
the workshop.
Edmonds was scheduled to give a talk on his research ideas. At that time, he

was working on some big questions. He had become intrigued by the possibility
of defining a class of algorithms which could be proven to run more efficiently
than exhaustive enumeration, and by showing that such algorithms existed.
This was a novel idea. At this time, people were generally satisfied with al-
gorithms whose running times could be proved to be finite, such as Dantzig’s
Simplex Algorithm for linear programming. In 1958, Ralph Gomory [14], [15]
had developed an analogue of the Simplex Algorithm that he showed solved
integer programs in finite time, similar to the Simplex Algorithm. Many peo-
ple in the Operations Research community viewed a problem as “solved” if it
could be formulated as an integer programming problem. However, unlike the
Simplex Algorithm, Gomory’s integer programming algorithm seemed to take
so long on some problems that it was often unusable in practice.
At this time, the combinatorics community was not very interested in al-

gorithms. Generally, graphs considered were finite and so most problems had

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

182 William R. Pulleyblank

Jack Edmonds 1957 (courtesy Jeff Edmonds)

trivial finite solution methods. In 1963, Herb Ryser [23] published his mono-
graph which noted that there were two general types of problems appearing
in the combinatorics literature: existence problems (establish conditions char-
acterising whether a desired structure exists) and enumeration problems (if a
structure exists, determine how many of them there are). (A decade later, in
1972, Ryser, speaking at a conference on graph theory, added a third type of
problem: develop an efficient algorithm to determine whether a desired object
exists.)

Earlier, in 1954, Dantzig, Fulkerson and Selmer Johnson [4] had published
what proved to be a ground breaking paper. They showed that a traveling
salesman problem, looking for a shortest tour visiting the District of Columbia
plus a selected major city in each of the (then) 48 states, could be solved to
provable optimality by combining the ideas of linear and integer programming.
They did not make any claims as to the efficiency of their solution method.
What they did show was that it was possible to present an optimal solution to
an instance of a combinatorial optimization problem, and a proof of optimality,
that required much less time to check than it would have taken to try all possible
solutions.

Through the 1950s, the world was seeing rapid development in the power and
availability of digital computers. This provided another impetus to algorithmic
development. Many combinatorial optimization problems were recognized as
having practical applications. However even with the speed of the “high per-
formance” computers of the day, it was recognized that improved algorithms
were needed if problems of realistic size were to be solved in practice.

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

The Birth of Polyhedral Combinatorics 183

What Edmonds wanted was a specific concrete open example for which he
could produce a better than finite algorithm and thereby illustrate the power
and importance of his ideas.
The perfect matching problem in a graph G = (V,E) is to determine whether

there exists a set of edges meeting each node exactly once. If the graph is bipar-
tite – its nodes can be partitioned into V1∪V2 and every edge joins a node in V1

to a node of V2 – then a rich theory had already been developed which not only
characterized those bipartite graphs which had perfect matchings (Hall, [17]),
but showed that this problem could be formulated as a small linear program.
However, the more general case of nonbipartite graphs, graphs that contain
odd cardinality cycles, seemed different. A necessary condition was that the
number of nodes had to be even, but that was far from sufficient. Tutte [25]
in 1947 had proved a generalization of Hall’s theorem to nonbipartite graphs.
However, it did not seem to lead to an algorithm more efficient than simply
trying all possible subsets of the edges in hope that one would be a perfect
matching.
A matching M in a graph G is a set of edges which meets each node at most

once. M is perfect if it meets every node. Let U be the set of nodes not met
by edges in M . An augmenting path with respect to M in G is a simple path
joining two nodes of U whose edges are alternately not in M and in M . If an
augmenting path exists, then a matching can be made larger – just remove the
edges of the path that are in M and add to M the edges of the path not in M .
In 1957 Claude Berge [1] showed that this characterized maximum matchings.

Theorem 1 (Berge’s augmenting path theorem). A matching M in a graph G
is of maximum size if and only if there exists no augmenting path.

This result was not only simple to prove, but also applied both to bipartite
and nonbipartite graphs. However, whereas there were efficient methods for
finding such augmenting paths, if they existed, in bipartite graphs, no such
algorithms were known for nonbipartite graphs.
The night before his scheduled talk, Edmonds had an inspiration with pro-

found consequences. A graph is nonbipartite if and only if it has an odd cycle.
It seemed that it was the presence of these odd cycles that confounded the
search for augmenting paths. But if an odd cycle was found in the course of
searching for an augmenting path in a nonbipartite graph, the cycle could be
shrunk to form a pseudonode. Thereby the problem caused by that odd cycle
could be eliminated, at least temporarily. This simple and elegant idea was the
key to developing an efficient algorithm for determining whether a nonbipartite
graph had a perfect matching. Equally important, it gave Edmonds a concrete
specific example of a problem that could illustrate the richness and the power of
the general foundations of complexity that he was developing. This became the
focal point of his talk the next day which launched some of the most significant
research into algorithms and complexity over the next two decades.
Alan Hoffman recounted an exchange during the discussion period following

Edmonds’ lecture. Tutte’s published proof of his characterization of nonbipar-

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

184 William R. Pulleyblank

tite graphs having perfect matchings was an ingenious application of matrix
theory. Responding to a question, Edmonds ended a sentence by saying “using
methods known only to Tutte and God”. Tutte rarely made comments at the
end of another person’s lecture. There was a pause, at which point it was ap-
propriate for Tutte to say something, but he said nothing. Hoffman intervened,
asking “Would either of those authors care to comment?” Tutte did respond.

2 Context I: Bipartite graphs and the Hungarian method

The problem of determining whether a bipartite graph had a perfect matching
had already been encountered in many different guises, and there were several
equivalent characterizations of bipartite graphs having perfect matchings. See
Schriver [24].
A node cover is a set C of nodes such that each edge is incident with at least

one member of C. Each edge in any matching M will have to be incident with
at least one member of C, and no member of C can be incident with more
than one member of M . Therefore, the size of a largest matching provides a
lower bound on the size of a smallest node cover. In 1931, Dénes Kőnig [18]
had published a min-max theorem showing that these values are equal.

Theorem 2 (Kőnig’s Bipartite Matching Theorem). The maximum size of a
matching in a bipartite graph G = (V,E) equals the minimum size of a node
cover.

In 1935, in the context of transversals of families of sets, Phillip Hall [17]
proved the following:

Theorem 3 (Hall’s Bipartite matching Theorem). A bipartite graph G =
(V,E) has a perfect matching if and only if, for every X ⊆ V , the number
of isolated nodes in G−X is at most |X|.

These two theorems are equivalent, in that each can be easily deduced from
the other. (Deducing Hall’s Theorem from Kőnig’s Theorem is easier than
going the other direction.)
If a bipartite graph G has no perfect matching, then either of these provides

a guaranteed simple way of showing that this is the case. We can exhibit a
node cover of size less than |V |/2 or exhibit a set X ⊆ V such that G−X has
at least |X|+ 1 isolated nodes. (For now, do not worry about the time that it
takes to find the cover or the set X.)
Note how these contrast with Berge’s augmenting path theorem. Berge’s

theorem does suggest an approach for constructing a perfect matching if one
exists, but if we wanted to use it to show that G had no perfect matching, we
would have to start with a less-than-perfect matching in G and somehow prove
that no augmenting path existed. How could this be done?
In 1931, Jenő Egerváry [12] published an alternate proof and a weighted

generalization of Kőnig’s theorem. (See [24].) Suppose that we have a bipartite

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

The Birth of Polyhedral Combinatorics 185

graph G = (V,E) and a real edge weight cj for each j ∈ E. The weight of a
matching is the sum of the weights of its edges. He proved a min-max theorem
characterizing the maximum possible weight of a matching in G by showing
that it was equal to the minimum weight of a weighted node cover of the edges
of G.

Theorem 4 (Egerváry’s Theorem). Let G = (V,E) be a bipartite graph and let
(cj : j ∈ E) be a vector of edge weights. The maximum weight of a matching in
G equals the minimum of

∑
v∈V yv, where y = (yv : v ∈ V) satisfies yu+yv ≥ cj

for every j = {u, v} ∈ E.

This implied that the existence of a perfect matching in a bipartite graph
G = (V,E) could be determined by solving a linear system. For each edge
j ∈ E, define a variable xj . Then x = (xj : j ∈ E) is a real vector indexed by
the edges of G.
Consider the following system of linear equations and (trivial) inequalities:

∑
(xj : j ∈ E incident with v) = 1 for each node v ∈ V, (1)

xj ≥ 0 for each j ∈ E. (2)

If G has a perfect matching M , we can define x̂j = 1 for j ∈ M and x̂j = 0
for j ∈ E\M . Then x̂ is a feasible solution to this linear system. Conversely, if
we have an integer solution to this linear system, all variables will have value
0 or 1 and the edges with value 1 will correspond to the edges belonging to a
perfect matching of G.

Theorem 5. A bipartite graph G = (V,E) has a perfect matching if and only
if the linear system (1), (2) has an integer valued solution.

However, in general there also exist fractional solutions to this system. Could
there exist fractional solutions to this linear system but no integer valued solu-
tions? In this case, the solution to the linear system might not tell us whether
the graph had a perfect matching. Egerváry’s Theorem showed that this was
not the case.
Egerváry’s Theorem is not true in general for nonbipartite graphs. It already

fails for K3. In this case, the linear system has a solution obtained by setting
xj = 1/2 for all three edges, but there is no integer valued solution. (The
conditions of Hall’s and Kőnig’s Theorems also fail to be satisfied for K3.)

Egerváry’s Theorem showed that the maximum weight matching problem for
bipartite graphs could be solved by solving the linear program of maximizing∑

(xj · cj : j ∈ E) subject to (1), (2). The dual linear program is to minimize∑
v∈V yv, where y = (yv : v ∈ V) satisfies yu+yv ≥ cj for every j = {u, v} ∈ E.

His proof showed how to find an integer x and (possibly) fractional y which
were optimal primal and dual solutions.
In 1955, Harold Kuhn [19] turned Egerváry’s proof of his theorem into an

algorithm which would find a maximum weight matching in a bipartite graph.

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

186 William R. Pulleyblank

The algorithm was guaranteed to stop in finite time. In 1957, James Munkres
[20] showed that this algorithm, called “The Hungarian Method”, would ter-
minate in time O(n4) for a simple bipartite graph with n vertices.

3 Context II: Tutte’s theorem and the Tutte–Berge formula

In 1947, William Tutte [25] had generalized Hall’s theorem to nonbipartite
graphs. He proved that replacing “isolated nodes” by “odd cardinality com-
ponents” yielded a characterization of which nonbipartite graphs have perfect
matchings.

Theorem 6 (Tutte’s matching Theorem). A (nonbipartite or bipartite) graph
G = (V,E) has a perfect matching if and only if, for every X ⊆ V , the number
of odd cardinality components of G−X is at most |X|.

As in the case of Hall’s Theorem, the necessity of the condition is straightfor-
ward. If there exists a perfect matching M , then an edge of M must join some
node of each odd component of G−X to a node of X, since it is impossible to
pair off all the nodes of an odd component K using only edges with both ends
in K. The important part of the theorem is the sufficiency, which asserts that
if G does not have a perfect matching, then there exists an X whose removal
creates more than |X| odd cardinality components.

Hall’s Theorem does strengthen Tutte’s theorem in the bipartite case as
follows. It shows that, in this case, we can restrict our attention to components
of G − X which consist of single nodes, rather than having to consider all
possible components. But Tutte’s theorem works for all graphs. For example,
whereas Hall’s condition is not violated for K3, Tutte’s Theorem shows that
no perfect matching exists, by taking X = ∅.

In 1958, Berge [2] noted that Tutte’s theorem implied a min-max theorem
for ν(G), the size of a largest matching in a graph G = (V,E). For any X ⊆ V ,
we let odd(X) be the number of odd cardinality components of G−X.

Theorem 7 (Tutte–Berge Formula). For any graph G = V,E,

ν(G) =
1

2
(|V | −min(odd(X)− |X| : X ⊆ V)).

The formula shows that the smallest number of nodes which must be left
unmet by any matching equals the largest possible difference between odd(X)
and |X|.

Here then were the challenges: Could the notion of “efficient” be made precise
mathematically? Was it possible to develop an efficient algorithm for determin-
ing whether an arbitrary graph had a perfect matching? Given an arbitrary
graph G = (V,E), could you either find a perfect matching or find a set X ⊆ V
for which |X| < odd(X)?

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

The Birth of Polyhedral Combinatorics 187

4 Paths, Trees and Flowers; P and NP

Edmonds’ landmark paper [5], Paths, Trees and Flowers, evolved from the talk
that he presented at Rand in 1961. His algorithm for determining whether a
nonbipartite graph G = (V,E) has a perfect matching can be summarized as
follows.
Start with any matching M . If M is perfect, then the algorithm is done. If

not, some node r is not met by any edge of M . In this case, grow an alternating
search tree T rooted at r which will either find an augmenting path, enabling
the matching to be made larger, or find a set X ⊆ V for which |X| < odd(X).
The search tree initially consists of just the root node r. Each node v of T

is classified as even or odd based on the parity of the length of the (unique)
path in T from r to v. The algorithm looks for an edge j of G that joins an
even node u of T to a node w which is not already an odd node of T . If such
a j exists, there are three possibilities.

1. Grow Tree: If w is met by an edge k of M , then T is grown by adding
j, k and their end nodes to T .

2. Augment M : If w is not met by an edge of M , then we have found
an augmenting path from r to w. We augment M using this path, as
proposed by Berge, and select a new r if the matching is not perfect.

3. Shrink: If w is an even node of T , then adding j to T creates a unique
odd cycle C. Shrink C by combining its nodes to form a pseudonode.
The pseudonode C will be an even node of the tree created by identifying
the nodes of G belonging to C.

If no such j exists, then let X be the set of odd nodes of T . Each even node
w of T will correspond to an odd cardinality component of G − X. If w is a
node of G, then the component consists of the singleton w. If w was formed by
shrinking, then the set of all nodes of G shrunk to form w will induce an odd
component of G.
If G is bipartite, then the Shrink step will not occur and the algorithm

reduces to a previously known matching algorithm for bipartite graphs.
One point we skipped over is what happens to an augmenting path when it

passes through a pseudo-node. It can be shown that by choosing an appropri-
ate path through the odd cycle, an augmenting path in a graph obtained by
shrinking can be extended to an augmenting path in the original graph. See
Edmonds [5] or Cook et al [3] for details.
Edmonds [5] presents his algorithm for the closely related problem of finding

a maximum cardinality matching in an arbitrary graph. If the above algorithm
terminates without finding a perfect matching, then he calls the search tree T
Hungarian. He lets G′ be the graph obtained from G by deleting all vertices
in T or contained in pseudonodes of T . He shows that a maximum matching
of G′, combined with a maximum matching of the subgraph of G induced by

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

188 William R. Pulleyblank

the nodes belonging to T or contained in pseudonodes of T , forms a maximum
matching of G.

The second section of Edmonds [5] is entitled “Digression”. This section
began by arguing that finiteness for an algorithm was not enough. He defined
a good algorithm as one whose worse case runtime is bounded by a polynomial
function of the size of the input. This criteria is robust, it is independent
of the actual computing platform on which the algorithm was run. Also, it
has the attractive feature that good algorithms can use other good algorithms
as subroutines and still be good. He stressed that this idea could be made
mathematically rigorous.

The maximum matching algorithm, which Edmonds (conservatively) showed
had run time O(|V |4), provided an initial case study. This was the first known
algorithm for maximum matching in nonbipartite graphs with a running time
asymptotically better than trying all possible subsets. The bound on the run-
ning time was about the same as the bound on solving the matching problem
for a bipartite graph.

One concern raised about Edmonds’ notion of a good algorithm was that a
good algorithm with a high degree polynomial bound on its run times could
still take too long to be practical. Edmonds stressed that his goal was to de-
velop a mathematically precise measure of running times for algorithms that
would capture the idea of “better than finite”. A second concern arose from
the simplex algorithm for linear programming. This algorithm was proving
itself to be very effective for solving large (at the time) linear programs, but
no polynomial bound could be proved on its running time. (It would be al-
most two decades later that a good algorithm would be developed for linear
programming.) So the concept of “good algorithm” was neither necessary nor
sufficient to characterize “efficient in practice”. But there was a high degree
of correlation, and this concept had the desired precision and concreteness to
form a foundation for a study of worst case performance of algorithms.

Part of the reason for the lasting significance of [5] is that the paper promoted
an elegant idea – the concept of a good (polynomially bounded) algorithm. It
also gave the first known such algorithm for the matching problem in nonbipar-
tite graphs, a fundamental problem in graph theory. Edmonds also raised the
question of whether the existence of theorems like Tutte’s Theorem or Hall’s
Theorem – min-max theorems or theorems characterizing the existence of an
object (a perfect matching in a bipartite graph) by prohibiting the existence of
an obstacle (a set X ⊂ V for which G−X has at least |X|+1 isolated nodes)
– could enable the construction of efficient algorithms for finding the objects
if they existed. He had shown how this worked in the case of matchings in
bipartite graphs and his algorithm had extended this to nonbipartite graphs.
He called these sorts of theorems good characterizations.

Some people argued that nobody could possibly check all subsets X and see
how many isolated nodes existed in G − X. There were simply too many of
them; the number grew exponentially with the size of G. What did this have
to do with answering the original question?

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

The Birth of Polyhedral Combinatorics 189

But here was the point. Consider the question: does G have a perfect match-
ing? If the answer is “Yes”, we can prove this by exhibiting a perfect matching
M . If the answer is “No”, then we can prove this by exhibiting a single X ⊆ V
for which G−X has at least |X|+1 isolated nodes. This has not yet described
an effective method for finding M or X, but at least it provided a polynomi-
ally bounded proof for either alternatives. It gave a stopping criterion for an
algorithm.
A decade later, these concepts were essential ideas embodied in the classes P

andNP . The question Edmonds asked relating the existence of good character-
izations to the existence of good algorithms became what is now recognized as
the most important open question in theoretical computer science: Is P = NP?

5 Weighty matters

Edmonds quickly generalized his nonbipartite matching algorithm to the cor-
responding edge weighted problem (Edmonds [6]). (Recall, each edge j is given
a cost cj and the algorithm constructs a matching M for which

∑
(cj : j ∈ M)

is maximum.) He did this by an elegant extension of Egerváry’s approach that
had worked for bipartite graphs. He showed how to use the primal-dual method
for linear programming and the operation of shrinking to extend the cardinality
case to the weighted case.
Edmonds began by formulating the maximum weight matching problem as

a linear programming problem:

Maximize
∑

(cjxj : j ∈ E)

subject to
∑

(xj : j ∈ E incident with v) ≤ 1 for each node v ∈ V, (3)
∑

j∈E

(xj : j has both ends in S) ≤ (|S| − 1)/2 for each S ⊆ V

such that |S| ≥ 3 is odd,
(4)

xj ≥ 0 for each j ∈ E. (5)

This was really an audacious idea. The number of inequalities (4) grows ex-
ponentially with the number of nodes of G. No available linear programming
code could read and store the set of constraints for a moderate sized weighted
matching problem, let alone solve the problem. However Edmonds’ idea was
this: the real value of linear programming for a problem like weighted matching
is not the simplex algorithm. It is that linear duality theory provides a method
of giving a short proof of optimality.
His algorithm constructed a vector x = (xj : j ∈ E) which was the (0-1)-

incidence vector of a matching in G. It also constructed a feasible solution to the
dual linear program to maximizing c · x subject to (3), (4) and (5). Moreover,
x and the dual solution would satisfy the complementary slackness conditions
of linear programming which established their optimality.

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

190 William R. Pulleyblank

The algorithm had essentially the same bound on its run time as the maxi-
mum cardinality algorithm. There was a minor complication. The bound had
to take into account the complexity of arithmetic operations on the costs cj .
These operations were addition, subtraction, comparison and division by 2.
This required either the introduction in the bound of a factor

∑
j∈E log(cj) or

else a “fixed word” assumption that all costs were within some bounded range.

6 Generality and extensions

Soon after this, Ellis L. Johnson, a recent Berkeley PhD student of Dantzig,
began to work with Edmonds. They wanted to see how much they could
generalize this theory of matchings in general graphs, in the context of linear
and integer programming. They extended the algorithm to accommodate the
following extensions (see [8]):

6.1 General degree constraints

Generalize the constraints (3) to

∑
(xj : j ∈ E incident with v) ≤ bv for each node v ∈ V, (6)

where, for each v ∈ V , bv is a nonnegative integer. This extends the graph
theoretic idea of a matching to a vector x = (xj : j ∈ E) of nonnegative
integers such that, for each v ∈ V , the sum of the xj on the edges j is at most
bv. Such a vector x is called a b-matching. If bv = 1 for all v ∈ V , then a
b-matching is the incidence vector of a matching. Let b(V) denote

∑
v∈V bv.

Tutte [26] had already shown that this problem could be transformed into a
matching problem in which bv = 1 for all v ∈ V by replacing each vertex for
which bv > 1 by |bv| new vertices, and each edge j = {u, v} with a complete
bipartite graph joining the sets of new vertices corresponding to u and v. For
a b matching x, the deficiency d(x, v) of x at vertex v is defined as bv −

∑
(xj :

j ∈ E, j incident with v). The deficiency D(x) of x is defined as
∑

v∈V d(x, v).
The Tutte–Berge Formula generalizes to b-matchings as follows: For each

X ⊆ V , let K0(X) be the nodes belonging to one node components of G−X;
let odd(X) be the number of components K of G − X having at least three
nodes for which

∑
i∈V (K) bi is odd.

Theorem 8 (Tutte–Berge Formula for b-matchings). For any graph G = V,E
and any vector b = (bv : v ∈ V) of nonnegative integers,

min (D(x) : x is a b−matching of G)

= max(
∑

v∈K0(X)

bv + odd(X)−
∑

v∈X

bv : X ⊆ V).

Edmonds’ matching algorithm, described in Section 4, generalized to a di-
rect algorithm for finding a maximum weight b-matching. It used a similar

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

The Birth of Polyhedral Combinatorics 191

primal/dual framework to reduce the weighted problem to a cardinality prob-
lem. It started with an arbitrary b-matching x̄ and defined a node v to be
unsaturated if

∑
(x̄j : j ∈ E incident with v) < bv. Now an augmenting path

became a path in G joining two unsaturated nodes such that for each even edge
j in the path, x̄j > 0. This would enable an augmentation to be made by in-
creasing x̄j for the odd edges in the path and decreasing x̄j for the even edges.
Similar to before, the algorithm grew an alternating search tree T rooted at an
unsaturated node r. If it found an unsaturated even node of T other than r, it
augmented the b-matching. If an edge j was found joining two even nodes of
T , then it had found an odd cycle which it shrunk. But in this case any nodes
of the tree joined to the odd cycle by paths in the tree for which every edge j
had x̄j > 0 were also shrunk with the odd cycle. Set bv = 1 for the resulting
pseudonode v.

Let x̄ be the initial b-matching. This algorithm had worst case running time
of O(D(x̄) · |V |2). The bound came from the fact that each augmentation
reduced the sum of the deficiencies by at least 2, and the time taken to find an
augmentation, if one existed, was O(|V |2). If we started with x̄ = 0, then the
bound was O(b(V) · |V |2).

This created a potential problem. The length of a binary encoding of the in-
put was polynomial in |V | and

∑
v∈V log bv. However, b(V) grows exponentially

with
∑

v∈V log bv and so the bound on the run time was growing exponentially
with the size of a “natural” encoding of the input. How could it be made into
a good algorithm?

Creating a good algorithm for finding a maximum (or minimum) weight

perfect b-matching required three ideas. First, for each v ∈ V , let b̂v be the
largest even integer no greater than bv. The resulting b̂-matching problem can
be transformed into a network flow problem in a bipartite directed graph G′

having 2|V | nodes. For each node v ∈ V , create two nodes v′ and v′′ in G′ and
for each edge {u, v} in G, create two directed arcs (u′, v′′) and (v′, u′′) in G′.
Let b′v = bv/2 and let b′′v = −bv/2. Edmonds and Richard Karp [11] created a
good algorithm for finding a maximum flow in G′ having maximum cost. By
adding together the flows in the arcs (u′, v′′) and (v′, u′′) for each edge {u, v}

of G, we get a b̂-matching x̄ of G having minimum deficiency with respect to b̂.

Second, use x̄ as a starting matching to find a maximum weight b-matching
in G.

The third idea was to show that the deficiency of x̄ cannot be too large. let
R be the set of nodes v for which bv is odd. By the Tutte-Berge formula for
b-matchings, if the deficiency of x̄ is greater than |R|, then G does not have a
perfect b-matching. Otherwise, the weighted b-matching algorithm performs at
most |R| augmentations, so the bound on the running time becomes O(|R|·|V |2)
and we have a good algorithm.

See Gerards [13].

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

192 William R. Pulleyblank

6.2 Edge capacities

For each edge j ∈ E, let uj be an integral upper bound and let lj be an integral
lower bound on the value of xj for the edge j. That is, the inequalities (5) are
replaced with

lj ≤ xj ≤ uj for each j ∈ E. (7)

The constraints (3) and (5) of the original weighted matching problem forced
every edge j to have a value 0 or 1. However we now permit xj to be any integer
in the range [lj , uj]. If we add this to the b-matching problem, we obtain the
capacitated b-matching problem.

In the special case that lj = 0 and uj = 1 for all j ∈ E, we obtain a factor
problem. Now we want to find a maximum weight subset of the edges that
meet each vertex v at most bv times. We have now gone to a significantly more
general set of linear constraints on our problem.
The case bv = 2 for all v ∈ V and cj = 1 for all j ∈ E is particularly

interesting. This is the maximum 2-factor problem – find a set of vertex disjoint
cycles in a graph that contain the maximum possible number of vertices.

6.3 Bidirected graphs

Edmonds and Johnson recognized that they could develop a unified model
that included matching in general undirected graphs as well as network flow
problems in directed graphs by introducing the idea of bidirected graphs. Each
edge of the graph will have one or two ends. Each end will be either a head
or a tail. Some edges will have a head and a tail. These are called directed
edges. Some will have two heads or two tails. These are called links. An edge
with one end is called a slack and that end can be either a head or a tail. The
constraints (6) are now changed to the following:

∑
(xj : j ∈ E, j has a head incident with v)

−
∑

(xj : j ∈ E, j has a tail incident with v) = bv for every node v ∈ V.

If all edges are links with both ends heads, then this becomes the capacitated
b-matching problem. If all edges are directed, then this becomes a network
flow problem. However, allowing a mixture of links, slacks and arcs provides a
mixture of the two models, plus more. Note that by allowing slacks, all degree
constraints can be turned into equations.
Combining these extensions, Edmonds and Johnson had developed a good

algorithm for integer programming problems,

maximize cx

subject to

Ax = b

l ≤ x ≤ u

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

The Birth of Polyhedral Combinatorics 193

where b, l, and u are integral, A is a matrix all of whose entries are 0, 1,−1, 2,−2
and, for each column of A, the sum of the absolute values of the entries is at
most 2.

6.4 Parity constraints

Edmonds and Johnson [9] also extended the idea of capacitated b-matching to
allow so called parity constraints at the nodes. For each v ∈ V, bv = 0 or 1.
The constraints (6) became:

∑
(xj : j ∈ E incident with v) ≡ bv mod 2 for each node v ∈ V.

This enabled the so-called Chinese Postman Problem or T -join problem to be
formulated as a capacitated b-matching problem. They provided both a direct
algorithm and a reduction to this problem. See also Grötschel and Yuan [16].
At this time, Edmonds, Johnson and Scott Lockhart [10] developed a FOR-

TRAN computer code for the weighted capacitated b-matching problem in
bidirected graphs. This showed convincingly that this algorithm was a prac-
tical way to solve very large matching problems. It also provided a concrete
instantiation of the algorithm which enabled precise calculation of an upper
bound on its running time as a function of the input size.
Part of the motivation for doing this appeared in Section 2 of [5]. The de-

scribed FORTRAN machine was an alternative to a Turing machine, a widely
adopted model of computation for theoretical computing science. The FOR-
TRAN machine was very close to the machine architectures of the day, and
there existed a good algorithm for a FORTRAN machine if and only if there
existed a good algorithm for a Turing machine. Also, the upper bound of the
run time on a FORTRAN machine was much lower than for a Turing machine.

Edmonds and Johnson [8] also described reductions that enabled these ex-
tensions to be transformed to weighted matching problems in larger graphs.

7 Combinatorial polyhedra

In the early 1960s, it was recognized that a great many combinatorial opti-
mization problems could be formulated as integer linear programs. It was
also known that an integer linear program could be transformed into a linear
program by adding a sufficient set of additional inequalities, called cuts, that
trimmed the polyhedron of feasible solutions so that all vertices were integer
valued, without removing any feasible integer solutions. Gomory’s algorithm
for integer programming gave a finite procedure for solving any integer pro-
gram by successively adding cuts and re-solving until an optimum solution was
found which was integer valued. His algorithm seemed to be a simple extension
of the simplex algorithm for linear programming. However it had already been
observed empirically that whereas the simplex algorithm was very successful
for linear programs, Gomory’s algorithm often failed to obtain a solution to an

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

194 William R. Pulleyblank

integer program in an acceptable amount of time. The only bound on the num-
ber of cuts that might be generated was exponential. This supported Edmonds’
view that “finite was not good enough”.

There were classes of integer programs for which no cuts needed to be added,
for example, network flow problems and maximum weighted matching in bi-
partite graphs. Most of these classes of problems had total unimodularity at
the core. A matrix A = (aij : i ∈ I, j ∈ J) is totally unimodular if for any
square submatrix M of A, det(M) = 0, 1, or − 1. Note that this implies that
all entries of A have value 0, 1, or − 1. Suppose that A is totally unimodular
and b is integral valued. It follows directly from Cramer’s rule that, for any c,
if the linear program maximize cx subject to Ax = b, x ≥ 0 has an optimum
solution, then it has one that is integer valued. It was well known that if G
was a bipartite graph, then the matrix A defined by (1) is totally unimodular,
so a maximum matching in a bipartite graph could be obtained by solving the
linear program of maximizing cx subject to (3) and (2). If A was the node-arc
incidence matrix of a directed graph, then the maximum flow problem could
be formulated as a linear program with a totally unimodular matrix implying
that if the node demands and arc capacities were integral, then there existed
an integral optimal flow. See Cook et al [3].

It was well known that the weighted matching problem could be formulated
as the integer linear programming problem of maximizing

∑
(cjxj : j ∈ E)

subject to (3) and xj ≥ 0, integer for all j ∈ E. Edmonds had shown that the
weighted matching algorithm correctly solved the problem by showing that it
gave an integer valued optimum solution to the linear programming problem
of maximizing

∑
(cjxj : j ∈ E) subject to (3), (4) and (5). That is, he had

shown that the integrality constraint could be replaced by adding the cuts (4).

This was the first known example of a general combinatorial problem which
could be formulated as a linear programming problem by adding an explicitly
given set of cuts to a natural integer programming formulation. Dantzig et
al [4] had shown that a particular instance of a traveling salesman problem
could be solved starting from an integer programming formulation by adding
a small set of cuts. What Edmonds had shown was that for any maximum
weight matching problem, by adding the cuts (4), the integer program could
be transformed to a linear program. He and Johnson had also shown for all
the extensions in the previous section that the same paradigm worked. They
gave explicit sets of cuts that, when added, transformed the problem to a linear
programming problem.

This motivated further research on other problems amenable to this ap-
proach. It worked in many cases (for example, matroid optimization, matroid
intersection, optimum branchings, triangle-free 2-matchings) but there are still
many natural problems for which no explicit set of cuts is known.

The matching polyhedron M(G) is the convex hull of the incidence vectors of
the matchings of a graphG = (V,E). Edmonds showed thatM(G) = {x ∈ ℜE :
x satisfies (3), (4) and (5)}. This problem of finding a linear system sufficient
to define a polyhedron defined by a combinatorial optimization problem – or

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

The Birth of Polyhedral Combinatorics 195

equivalently, formulating the problem as a linear program – became a very
active area of research through the 1970s, building on the successes obtained
with matching problems.
The fundamental role of shrinking in solving nonbipartite matching problems

had another interesting consequence. In general, not all constraints (4) are
necessary to obtain a linear system sufficient to define M(G). For example, if
|S| is odd, but G[S], the subgraph of G induced by S, is not connected, then
the constraint (4) corresponding to S is unnecessary. It is implied by these
constraints for the nodesets of the odd cardinality connected components of
G[S]. Edmonds and Pulleyblank [22] showed that the essential constraints (4)
for M(G) correspond to those sets S ⊆ V for which G[S] is 2-connected and is
shrinkable. Shrinkable means that G[S] will be reduced to a single pseudonode
if the maximum matching algorithm is applied to it. Equivalently, a graph
G[S] is shrinkable if and only if G[S] has no perfect matching, but for every
node v ∈ S, the graph obtained from G[S] by deleting v and all incident edges
does have a perfect matching. The generalizations to b-matching appeared in
Pulleyblank’s PhD thesis [21], prepared under the supervision of Edmonds.

The problem of determining the essential inequalities to convert an inte-
ger program to a linear program is called facet determination. This became
an active research area over the 1970s and 1980s – determining the facets of
combinatorially defined polyhedra.

Acknowledgements. I am grateful to Kathie Cameron, Bill Cunningham,
Alan Hoffman and, especially, Jack Edmonds for assistance with the primary
source research for this chapter.

References

[1] C. Berge, Two theorems in graph theory, Proc. Nat. Academy of Sciences
(U.S.A.) 43 (1957) 842–844.

[2] C. Berge, Sur le couplage maximum d’un graphe, Comptes Rendu de
l’Académie des Sciences Paris, series 1, Mathématique 247 (1958), 258–
259.

[3] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank and A. Schrijver, Com-
binatorial Optimization, Wiley-Interscience (1998).

[4] G. Dantzig, D.R, Fulkerson and S. Johnson, Solution of a large scale trav-
eling salesman problem, Operations Reserach 2 (1954) 393–410.

[5] J. Edmonds, Paths, trees and flowers, Canadian J. of Math. 17 (1965)
449–467.

[6] J. Edmonds, Maximum matching and a polyhedron with 0,1 vertices, J.
Res. Nat’l. Bureau of Standards 69B (1965) 125–130.

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

196 William R. Pulleyblank

[7] J. Edmonds, A glimpse of heaven, in History of Mathematical Program-
ming: A collection of Personal Reminiscences (J.K. Lenstra, A.H.G. Rin-
noy Kan and A. Schrijver eds.), North-Holland (1991), pp. 32–54.

[8] J. Edmonds and E.L. Johnson, Matchings: a well solved class of integer
linear programs, in Combinatorial Structures and their Applications (R.K.
Guy, H. Hanani, N. Sauer and J. Schönheim eds.), Gordon and Breach,
New York (1970), pp. 89–92.

[9] J. Edmonds and E.L. Johnson, Matchings, Euler tours and the Chinese
Postman, Mathematical Programming 5 (1973) 88–124.

[10] J. Edmonds, E.L. Johnson and S.C. Lockhart, Blossom I, a code for match-
ing, unpublished report, IBM T.J. Watson Research Center, Yorktown
Heights, New York (1969)

[11] J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic ef-
ficiency for network flow problems, J. of the ACM 19 (1972) 248–264.

[12] J. Egerváry, Matrixok kombinatorius tulajdonságairól, (in Humgarian)(On
combinatorial properties of matrices), Matematikai és Fizikai Lapok 38
(1931) 16–28.

[13] A.M.H. Gerards, Matching, Chapter 3 in M.O. Ball et al eds., Handbooks
in OR and MS Vol. 7 (1995) pp. 135–224.

[14] R.E. Gomory, Outline of an algorithm for integer solutions to linear pro-
grams, Bulletin of the American Mathematical Society 64 (1958), 275–278.

[15] R.E. Gomory, Solving linear programming problems in integers, in Com-
binatorial Analysis (R. Bellman and M. Hall Jr. eds.), American Mathe-
matical Society (1960), pp. 211–215.

[16] M. Grötschel and Ya-Xiang Yuan, Euler, Mei-Ko Kwan, Königsberg, and
a Chinese Postman, this volume, Chapter 7 (2012).

[17] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935),
26–30.

[18] D. Kőnig, Graphok és matrixok, Matematikai és Fizikai Lapok 38 (1931)
116–119.

[19] H.W. Kuhn, The Hungarian method for the assignment problem, Naval
Research Logistics Quarterly 2 (1955) 83–97.

[20] J. Munkres, Algorithms for the assignment and transportation problems,
J. of Soc. for Industrial and Applied Mathematics 5 (1957) 32–38.

[21] W.R. Pulleyblank, Faces of Matching Polyhedra, PhD Thesis, University
of Waterloo (1973).

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

The Birth of Polyhedral Combinatorics 197

[22] W.R. Pulleyblank and J. Edmonds, Facets of 1-matching polyhedra, in
Hypergraph Seminar (C. Berge and D. Ray-Chaudhuri, eds.) Springer,
Berlin (1974) pp. 214–242.

[23] H.J. Ryser, Combinatorial Mathematics, Math. Assoc. of America, John
Wiley and Sons, Inc. (1963).

[24] A. Schrijver, Combinatorial Optimization, Springer Verlag (2003).

[25] W.T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22
(1947) 107–111.

[26] W.T. Tutte, A short proof of the factor theorem for finite graphs, Canadian
J. of Math. 6 (1954) 347–352.

William R. Pulleyblank
Department of
Mathematical Sciences

United States Military
Academy, West Point

West Point, NY 10996, USA
William.Pulleyblank@usma.edu

Documenta Mathematica · Extra Volume ISMP (2012) 181–197

mailto:William.Pulleyblank@usma.edu

198

Documenta Mathematica · Extra Volume ISMP (2012)

	Summer of 1961, a Workshop at RAND
	Context I: Bipartite graphs and the Hungarian method
	Context II: Tutte's theorem and the Tutte–Berge formula
	Paths, Trees and Flowers; P and NP
	Weighty matters
	Generality and extensions
	General degree constraints
	Edge capacities
	Bidirected graphs
	Parity constraints

	Combinatorial polyhedra

