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When Kuhn and Tucker proved the Kuhn–Tucker theorem in 1950 they launched the theory of non-
linear programming. However, in a sense this theorem had been proven already: In 1939 by W. Karush
in a master’s thesis, which was unpublished; in 1948 by F. John in a paper that was at first rejected
by theDuke Mathematical Journal; and possibly earlier by Ostrogradsky and Farkas. The questions
of whether the Kuhn-Tucker theorem can be seen as a multiple discovery and why the different oc-
curences of the theorem were so differently received by the mathematical communities are discussed
on the basis of a contextualized historical analysis of these works. The significance of the contexts both
mathematically and socially for these questions is discussed, including the role played by the military
in the shape of Office of Naval Research (ONR) and operations research (OR).C© 2000 Academic Press

En démontrant, en 1950, le th´eorème qui porte aujourd’hui leur nom, Kuhn et Tucker ont donn´e
naissance `a la théorie de la programmation non-lin´eaire. Cependant, en un sens, ce th´eorème avait ´eté
démontré auparavant, d’abord par W. Karush en 1939 dans un m´emoire de maˆıtrise inédit, par la suite par
F. John en 1948 dans un article qui avait d’abord ´eté rejeté par leDuke Mathematical Journal, et peut-être
même plus tˆot par Ostrogradsky et aussi par Farkas. Le pr´esent article cherche `aélucider deux questions:
Peut-on consid´erer le théorème Kuhn–Tucker comme un exemple de d´ecouverte multiple? Et pourquoi
le théorème a-t-il été reçu si différemment dans les diverses communaut´es math´ematiques? Notre
discussion se base sur une analyse historique contextuelle des diff´erents ouvrages. Nous examinons
ici l’importance du contexte, tant du point de vue des math´ematiques que du point de vue social, y
compris le rôle joué par le secteur militaire dans le cadre de l’Office of Naval Research et de la recherche
opérationnelle. C© 2000 Academic Press
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1. INTRODUCTION

In the summer of 1950 at the Second Berkeley Symposium on Mathematical Statistics and
Probability, held in Berkeley, California, a mathematician from Princeton, Albert W. Tucker,
who was generally known as a topologist, gave a talk with the title ‘Nonlinear Programming.’
It was based on a joint work of Tucker and a young mathematician, Harold W. Kuhn, who
had just finished his Ph.D. study at Princeton University. The talks were published in a
conference proceedings, and for the first time the name “nonlinear programming”—the
title Kuhn and Tucker chose for their paper—appeared in the mathematical literature [Kuhn
and Tucker, 1950]. In the paper Kuhn and Tucker introduced a nonlinear programming
problem (to be explained below) and proved the main theorem of the theory—the so-called
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“Kuhn–Tucker theorem.” This theorem, which gives necessary conditions for the existence
of an optimal solution to a nonlinear programming problem, launched the mathematical
theory of nonlinear programming.

The result is famous, and not long after its publication people began to talk about it as the
Kuhn–Tucker theorem, but apparently Kuhn and Tucker were not the first mathematicians
to prove it. In modern textbooks on nonlinear programming there will often be a footnote
telling that William Karush proved the theorem in 1939 in his master’s thesis from the
University of Chicago, and that Fritz John derived (almost) the same result in a paper
published in 1948 in an essay collection for Richard Courant’s 60th birthday. Today one
often sees the theorem referred to as the ‘Karush–Kuhn–Tucker theorem’ to acknowledge
the work of Karush. But when he handed in his master’s thesis in December 1939 nothing
happened: the work was not published, nobody encouraged him to publish his result, and
apparently it was not very interesting. Fritz John’s paper came out only two years before
Kuhn and Tucker’s paper; again nobody noticed it. In fact John tried to get it published
earlier in theDuke Mathematics Journalbut they rejected the paper! It is striking that
only two years later when Kuhn and Tucker derived the result, it became famous almost
instantaneously and caused the launching of a new mathematical research area.

These historical facts leads to the following questions. Was it really the same result they
had derived? Is it fair here to talk about a multiple discovery, and in what sense is it or
is it not a multiple discovery? Why were the reactions of the mathematical community so
different in the three cases? Why did nothing happen the first two times? Or, maybe more
interesting, why did Kuhn and Tucker’s work have such an enormous impact?

This paper is centered on these questions. They will be addressed and discussed on the
basis of a contextualized historical analysis of the work of John, Karush, Kuhn, and Tucker.
Both mathematical and social contexts will be considered, and the paper will end with a
discussion of the role played by the military through the Office of Naval Research (ONR)
and operations research (OR).

1.1. Mathematical Prerequisites

Let me very briefly explain what is to be understood by the concept of a nonlinear
programming problem and state more precisely the Kuhn–Tucker theorem. A nonlinear
programming problem is an optimization problem of the following type:

Minimize f (x)

subject to the constraints gi (x) ≤ 0 for i = 1, . . . ,m

x ∈ X.

Here X is a subset ofRn, the functions f, g1, . . . , gm are defined onX, and x is an
n-dimensional vector (x1, . . . , xn).1

Thus a nonlinear programming problem is a finite-dimensional optimization problem
where the variables have to fulfil some inequality constraints. A variable,x ∈ Rn, which
satisfies all the constraints is said to be “feasible.”

1 For an exposition on the mathematical theory of nonlinear programming see, for example, [Bazaraaet al.,
1979, 1993; Luenberger, 1973; Peressiniet al., 1988].
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THE KUHN–TUCKERTHEOREM. Suppose X is a nonempty open set inRn. Letx̄ be feasible
and the functions f , g1, . . . , gm differentiable atx̄. Suppose the gradient vectors5gi (x̄)
for the binding—or active—constraints, i.e., the constraints gi for which gi (x̄) = 0, are
linearly independent. Then the following will be true:

Necessary conditions for f(x̄) to be a minimum for the nonlinear programming problem
above are that there exist scalars (multipliers) u1, . . . ,um such that

∇ f (x̄)+
m∑

i=1

ui∇gi (x̄) = 0, (1)

ui gi (x̄) = 0 i = 1, . . . ,m, (2)

ui ≥ 0 i = 1, . . . ,m.

These necessary conditions are called “the Kuhn–Tucker conditions.”

The first of these conditions, (1), is recognizable as saying that the corresponding
Lagrangian function,φ(x, u) = f (x)+∑m

i ui gi (x), has a critical point in (̄x, u). The sec-
ond condition, (2), ensures that ifgi (x̄) 6= 0, that is, ifgi is not active inx̄, then the corre-
sponding multiplierui is equal to 0.

2. THE THEOREM OF KARUSH: A RESULT IN THE CALCULUS OF VARIATIONS

In December 1939 William Karush received a master’s degree in mathematics from the
University of Chicago. His master’s thesis had the title “Minima of Functions of Several
Variables with Inequalities as Side Conditions” [Karush, 1939].2 Today we would say that
such an optimization problem subject to inequality constraints belongs to the domain of
nonlinear programming. But since the latter did not exist at that time, we need to take a
closer look at Karush’s thesis in order to determine the field of mathematics to which it
was considered a contribution. This student project was proposed by Karush’s supervisor
Lawrence M. Graves [Karush, 1975]; so how did it fit in with the activities in the Department
of Mathematics at Chicago at the time? Why was this problem interesting and what was
Karush trying to do?

In the introduction to his thesis Karush stated the purpose of his work, and he also gave
a hint where to look for the motivation behind the proposal of the problem. He wrote:

The problem of determining necessary conditions and sufficient conditions for a relative minimum of
a function f (x1, . . . , xn) in the class of pointsx = (x1, . . . , xn) satisfying the equationsgα(x) = 0
(α = 1, . . . ,m), where the functionsf andgα have continuous derivatives of at least the second order,
has been satisfactorily treated [1]. This paper [Karush’s thesis] proposes to take up the corresponding
problem in the class of pointsx satisfying the inequalities

gα(x) ≥ 0 (α = 1, 2, . . . ,m),

wherem may be less than, equal to, or greater thann. [Karush, 1939, p. 1]

The reference ‘[1]’ in the above quotation is to a paper titled ‘Normality and Abnormality
in the Calculus of Variations’ [Bliss, 1938]. It had been published just the year before by

2 I am very grateful to the late Professor W. Karush for providing me with a copy of his thesis.
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Gilbert Ames Bliss, who was the head of the department at Chicago. The problem that
Karush’s supervisor proposed for the thesis originated from this paper by Bliss. So the roots
of the problem Karush set out to work on was buried in the calculus of variations, a field in
mathematics that had a special connection to the department.

2.1. The Chicago School in the Calculus of Variations

The mathematical department at the University of Chicago was founded with the opening
of the university in 1892. The first leader of the department was Eliakim H. Moore (1862–
1932), who in cooperation with the two Germans Oskar Bolza (1857–1936) and Heinrich
Maschke (1853–1903) created a mathematical environnement that soon became the leading
department of mathematics in the USA [Parshall and Rowe, 1994].

It was Bolza who introduced the calculus of variations as a major research field at the
department. His own interest in the topic stemmed from Weierstrass’s famous lectures in
1879, and Bolza taught the subject to graduate students at Chicago. From 1901 Bolza
also turned his own research toward the calculus of variations. This indicated a shift in
research direction, caused by a series of talks Bolza gave at the third American Mathematical
Society (AMS) symposium. The purpose of these AMS meetings was to give an overview
of selected mathematical topics for a broader audience of mathematicians and thereby
suggest directions for new research. Chosen as one of the main speakers for the 1901
meeting, Bolza was asked to talk about hyperelliptic functions; but instead he chose to
give talks on the calculus of variations. Interesting unsolved problems became visible, and
from then on Bolza was deeply involved in research in that field [Parshall and Rowe, 1994,
p. 394].

Bolza was very popular as a thesis advisor, often guiding his students to work in the field
in which he was currently doing research himself. The result was that he created a solid
foundations for research in the calculus of variations at Chicago—the so-called Chicago
School of the calculus of variations [Parshall and Rowe, 1994, p. 393].

In 1908 Maschke died, and two years later Bolza returned to Germany. Chicago thus lost
two of its leading mathematicans, and from 1910 on there seems to have been a decline in
the reputation of the mathematics department. According to some Chicago mathematicians,
this decline was caused by a too narrow focus on the calculus of variations.3 The “new team”
at Chicago consisted of Bliss, Dickson, and Wliczynski. It was Bliss who, as a student of
Bolza, continued the calculus of variations tradition.

Bliss was head of the department from 1927 to 1941 and this period in the life of the
institute was characterized by intensive research in the calculus of variations. In the 10-year
period from 1927 to 1937 the department produced 117 Ph.D. theses. Bliss supervised 35
of these, and 34 fell within the calculus of variations [MacLane, 1989, p. 138]. Several
mathematicians connected with Chicago later held a very critical view of Bliss’s program
in the calculus of variations. They seem to share the following view put forward by A. L.
Duren, who himself was a student of Bliss and wrote a Ph.D. in this field:

The subject itself had come to be too narrowly defined as the study of local, interior minimum points
for certain prescribed functionals given by integrals of a special form. Generalization came only at the
cost of excessive notational and analytical complications. It was like defining the ordinary calculus to
consist exclusively of the chapter on maxima and minima [Duren, 1976, p. 245].

3 See for example [MacLane, 1989; Browder, 1989; Stone, 1989; Duren, 1976].
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This is of course a characterization of the Chicago School under Bliss with hindsight,
but it tells something about how extensive the research in the field was in the department at
the time, and that it was quite narrowly defined there. As a student in Chicago Karush was
a product of this tradition, and his master’s thesis must be analyzed and discussed within
that context.4

2.2. Karush’s Master’s Thesis

The purpose of Karush’s work was to determine necessary and sufficient conditions for
a relative minimum of a functionf (x1, . . . , xn) in the class of pointsx = (x1, . . . , xn)
satisfying the inequalitiesgα(x) ≥ 0 for (α = 1, 2, . . . ,m), where the functionsf and
gα are subject to various continuity and differentiability conditions. He carried out this
work in 1939 at a time when the research in Chicago was centered on variational calculus
problems withinequalitiesas side conditions. Viewed in that context, Karush’s problem
can be interpreted as a finite-dimensional version of such a problem.

At first sight it can seem a little strange to have asked Karush—who was a promising
student—to work on a finite-dimensional version of the real focus of attention, which lay
in infinite dimensions. Karush did not explain the importance of his work in a broader
perspective, but from his introduction it is clear that he viewed it as an extension of the
work of Bliss, mentioned above, from the year before. From the mid-1930s Bliss had been
interested in some properties called “normality” and “abnormality” for the minimizing arc
of anequality-constrained problem in the calculus of variations. The purpose of the paper
by Bliss which Karush took as point of departure was to

[. . .] analyze, more explicitly than has been done before, the meaning of normality and abnormality for
the calculus of variations. To do this I have emphasized in§1 below the meaning of normality for the
problem of a relative minimum of a function of a finite number of variables. [Bliss, 1938, p. 365]

Because as Bliss wrote,

The significance of the notion of abnormality in the calculus of variations can be indicated by a study
of the theory of the simpler [finite-dimensional] problem. [Bliss, 1938, p. 367]

Hence, Bliss’s idea was that valuable insight into the general more complicated cases could
be obtained through a thorough study of the finite-dimensional case. In the light of this it
is reasonable to presume that the same would hold true for theinequality-constrained case.
This shows that even though the problem proposed for Karush’s thesis did not fell directly
in the main research area in the calculus of variations at the department, it would still have
made sense to examine it.

The theorem which relates to the Kuhn–Tucker theorem appears in the third section of the
thesis. Here Karush examined the minimum problem under the condition that the functions
f andgα, that is, the objective function and the contrained functions, are C1-functions near
a pointx0.

Before he proved the theorem which is now recognized as the Kuhn–Tucker theorem he
showed its less restricted version:

4 For more information on the mathematical institute at Chicago under the leadership of Moore see [Parshall
and Rowe, 1994; Duren, 1989]. For the history of the calculus of variations see [Fraser, 1992, 1994].
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THEOREM 3.1. If f (x0) is a minimum then there exist multipliers l0, lα not all zero such that the
derivatives Fxi of the function

F(x) = l0 f (x)+ lαgα(x)

all vanish at x0. [Karush, 1939, pp. 12–13]5

Note that there is no sign restriction on the multipliers in these first necessary conditions.
Also, the multiplierl0 associated with the objective functionf can take the value zero, in
which casex0 is called an “abnormal” point. In order to avoid the abnormal case some kind
of regularity conditions or “constraint qualification,” as Kuhn and Tucker later called it, is
needed.

The concepts which Karush introduced to construct such a regularity condition were
“admissible direction,” “admissible curve,” and “normal point.” By an admissible direction
Karush understood a nonzero vectorλ = (λ1, λ2, . . . , λn) that solved the inequality system

n∑
i=1

∂gα
∂xi

(x0)λi ≥ 0

[Karush, 1939, p. 11]. In other words, he considered a direction admissible if the directional
derivatives of the constrained functionsgα in the direction ofλare nonnegative, which means
that “you stay” in the feasible area if “you walk” fromx0 in the direction ofλ. He called a
regular arcxi (t) (i = 1, 2, . . . ,n; 0≤ t ≤ t0) an admissible arc if

gα(x(t)) ≥ 0 for all α andt

[Karush, 1939, p. 11]. This means that a regular arc is admissible if “you stay” feasible
when “you move” along the arc. Finally, he called a pointx0 normal if the Jacobian matrix
for g has rankm at x0, that is, if the gradients

∇g1(x0), ∇g2(x0), . . . ,∇gm(x0)

are linearly independent.
Karush then formulated the “Kuhn–Tucker theorem” in the following way:

THEOREM 3.2. Suppose that for each admissible directionλ there is an admissible arc issuing from
x0 in the directionλ. Then a first necessary condition for f(x0) to be a minimum is that there exist
multipliers lα ≤ 0 such that the derivatives Fxi of the function

F = f + lαgα

all vanish at x0. [Karush, 1939, p. 13]

By a curvexi (t) (0≤ t ≤ t0), “issuing fromx0 in the directionλ” he meant thatxi (0)= x0
i

andx′i (0)= λi [Karush, 1939, p. 13].

5 Karush used the Einstein summation symbolism: i.e.,F(x) = l0 f (x)+ lαgα(x) meansF(x) = l0 f (x)+∑m
α=1 lαgα(x).
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His idea was to use Farkas’s lemma6 to guarantee the existence of nonpositive multipliers
lα, and the assumptions in the theorem—the regularity condition—ensure precisly that this
lemma can be brought into action.

2.3. The Acknowledgment of Karush’s Thesis in Nonlinear Programming

Karush’s theorem looks indeed very much like the version of the Kuhn–Tucker theorem
shown in the Introduction. That is, there should exist multipliers (lα) such that the Lagrangian
function F has a critical point atx0, (lα). The conditionlαgα(x0) = 0 is missing because
Karush only considered the active constraints, i.e., constraints for whichgα(x0) = 0.

In 1975 Harold Kuhn wrote a letter to Karush saying:

First let me say that you have clear priority on the results known as the Kuhn–Tucker conditions (including
the constraint qualification). I intend to set the record as straight as I can in my talk. [Kuhn, 1975a]

Kuhn was referring to a talk that he had been asked to give on the history of nonlin-
ear programming at an AMS symposium. He became aware of the work of Karush through
Takayama’s book “Mathematical Economics” [Takayama, 1974]; [Kuhn, 1976, p. 10]. Dur-
ing the research for the AMS talk Kuhn made contact with Karush and offered a partial
publication of the master’s thesis as an appendix to Kuhn’s historical paper in the AMS pro-
ceedings that was to be published after the meeting. In this paper Kuhn announced Karush’s
thesis as an unpublished classic in the field of nonlinear programming [Kuhn, 1976].

Just looking at Karush’s result independent of the context of discovery, one can only
agree with Kuhn and say that Karush actually had the later Kuhn–Tucker theorem. In the
light of its later importance one is then naturally led to the questions: Why was Karush’s
result not valued at the time? Why was it not published?

As we have seen, the main interest in Chicago at the time was variational calculus
with inequality contraints, and if Karush’s work is evaluated in this context then it was
only a minor, finite-dimensional result, some “cleaning up” in a research direction where
variational calculus with inequality constraints was the main field. Neither the posed problem
nor the result was special. The interesting questions in this field were different from those
that were to be important and later guided the research in nonlinear programming.

The letter from Kuhn to Karush quoted above also suggests how important the theorem
was considered to be in the community of mathematicians working in nonlinear program-
ming. Kuhn tells in the letter that Richard Cottle, who was among the organizers of the
AMS symposium, made the following remark about Karush when he heard about Kuhn’s
intentions of “setting the record straight”:

“you must be a saint” not to complain about the absence of recognition. [Kuhn, 1975a]

Kuhn also writes about Tucker’s reaction when he learned of the result in Karush’s thesis.
Tucker was truly amazed that Karush had never told him about his work when they met
at the RAND Coperation [Kuhn, 1975a].7 Richard Bellman wrote the following to Kuhn
when he learned about Kuhn’s forthcoming talk:

6 For a short historical account of Farkas’s lemma see [Brentjes, 1976a]. To consult Farkas’s own work see
[Farkas, 1901].

7 Project RAND emerged just after the Second World War with the purpose of continuing the cooperation
between researchers in academia and in industry and the military which took place during the war. For further
information see [Smith, 1969; Hourshell, 1997].
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I understand from Will Karush that you will try and set the record straight on the famous Kuhn–Tucker
condition. I applaud your effort. Fortunately, there is enough credit for everybody. It would certainly
be wonderful if you wrote it as the Kuhn–Tucker–Karush condition. Like many important results, it is
not difficult to establish, once observed. That does not distract from the importance of the condition.
[Bellman, 1975]

Also the mathematician Phil Wolfe informed Kuhn how pleased he was that Karush’s work
would now be recognized [Kuhn, 1975b].

From the letters it is clear that the mathematicians working in the field were truly amazed
that Karush had not come forward to claim if not priority then at least recognition. To this
Karush himself gave the following explanation:

That does not answer the question of why I did not point to my work in later years when nonlinear
programming took hold and flourished. The thought of doing this did occur to me from time to time, but
I felt rather diffident about that early work and I don’t think I have a strong necessity to be “recognized.”
In any case, the master’s thesis lay buried until a few years ago when Hestenes urged me to look at it
again to see if it shouldn’t receive its proper place in history. . .. So I did look at the thesis again, and
I looked again at your work with Tucker. I concluded that you two had exploited and developed the
subject so much further than I, that there was no justification for my announcing to the world, “Look
what I did, first.” [Karush, 1975]

From the point of view of the history of mathematics I think Karush is right here. He did
derive a result that was comparable to the Kuhn–Tucker theorem, but he did not explore the
subject further, and his work wasnotnonlinear programming but occurred in a completely
different context. The department at Chicago had became under Bliss a place with focus on
a very narrowly defined calculus of variations research programme, and within this research
direction nobody was interested in exploring the possibilities for applications of Karush’s
result.

3. THE THEOREM OF FRITZ JOHN: A CONTRIBUTION TO THE THEORY
OF CONVEXITY

Fritz John’s version of the Kuhn–Tucker theorem appeared in his essay “Extremum
Problems with Inequalities as Subsidiary Conditions,” which was published in 1948 in the
Courant anniversary volume [John, 1948].

John was a student of Richard Courant in G¨ottingen, where he received a Ph.D. in 1933. He
had Jewish ancestors, and Courant worked hard to find him a position outside of Germany.
In 1934 he succeeded in getting John a research scholarship at Cambridge, England. John
moved to the United States a year later, where he received an offer from the University
of Kentucky. He worked there until 1943, and after some years of war-related work at the
Ballistic Research Laboratory at Aberdeen Proving Ground, he returned “home” to Courant
at his institute at New York University [Reid, 1976, pp. 131–132, 154–155].

Fritz John was a world-class mathematician. His list of publications counts 101 mathemat-
ical texts, papers as well as monographs, and he has received many prizes and fellowships.
Today he is probably most recognized for his work on partial differential equations, but
he has also made important contributions in the fields of geometry, analysis, and nonlin-
ear elasticity. At the time when the Courant anniversary volume was published John had
mostly been working within the theory of convexity—more than half of his mathematical
publications until this one of 1948 were in that field, and quite a few are now considered
“classics” in the theory of convexity [G˚arding, 1985; Moser, 1985].
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3.1. John’s Paper

What was John’s intention in this paper? In the Introduction he wrote:

This paper deals with an extension of Lagrange’s multiplier rule to the case, where the subsidiary
conditions are inequalites instead of equations. Only extrema of differentiable functions of a finite
number of variables will be considered. [John, 1948, p. 187]

Like Karush, John only looked at the finite-dimensional case; so, judging from the title
and the Introduction, it sounds very much as if John was interested in the same kind of
questions as Karush. This impression is reinforced later in the introduction where John
pointed to further directions of research on the problem:

from the point of view of applications it would seem desirable to extend the method used here to cases,
where the functions involved. . .do not depend on a finite number of independent variables. [John, 1948,
p. 187]

This extension of the problem clearly belonged to the calculus of variations; but if John
considered his work as a contribution to this field, it would seem unlikely that he did not
know the work of the Chicago School in the calculus of variations—well known at the
time—who had already carried out this work for the general case.

However, apparently John did not know the Chicago work; there is no reference to the
calculus of variations in his paper. What was his real interest, then? In the following I will
scrutinize his paper to seewhathe actually did andhowhe did it.

The paper is divided into two parts; the first is concerned with the question of necessary
and sufficient conditions for the existence of a minimum and the second is devoted to two
geometrical applications of the theoretical result in part one.

John formulated the result that later was acknowledged as a version of the Kuhn–Tucker
theorem in the following way:

Let R be a set of pointsx in Rn,8 andF(x) a real-valued function defined inR. We consider a subset
R′ of R, which is described by a system of inequalities with parametery:

G(x, y) ≥ 0,

whereG is a function defined for allx in R and all “values” of the parametery. . . .we assume that the
“values” of the parametery vary over a set of pointsS in a spaceH . . . .We are interested in conditions
a pointx0 of R′ has to satisfy in order that

M = F(x0) = min
x∈R′

F(x).

[John, 1948, p. 187–188]

Under some further continuity and differentiability conditions John was able to prove the
following theorem:

THEOREM I. Let x0 be an interior point of R, and belong to the set R′ of all points x of R, which
satisfy the contraints G(x, y) ≥ 0 for all y ∈ S. Let

F(x0) = min
x∈R′

F(x).

8 Instead ofRn John wrote. . . in a space E, but in the following he restricted himself to the case where the space
E containing the setR is then-dimensional Euclidean space, which I have calledRn [John, 1948, p. 188].
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Then there exists a finite set of points y1, . . . , ys, in S and numbersλ0, λ1, . . . , λs, which do not all
vanish, such that

G(x0, yr ) = 0 for r = 1, . . . , s

λ0 ≥ 0, λ1 > 0, . . . , λs > 0,

0≤ s ≤ n,

the function

φ(x) = λ0F(x)−
s∑

r=1

λr G(x, yr )

has a critical point at x0 i.e., the partial derivatives are zero at x0:

φi (x
0) = 0 for i = 1, . . . ,n.

(See [John, 1948, pp. 188–189])

John’s way of attacking the problem was the same one Karush used, but where Karush
invoked Farkas’s lemma as his main tool John used other similar results from the theory of
convexity, with which he was familiar through various recent works (for example [Dines,
1936; Stokes, 1931]).

John’s formulation of the theorem looks a little different from Karush’s, but the stated
conditions are the Kuhn–Tucker conditions. The differences are the appearance of the
parametery in the parameter setS, and that the multiplierλ0 associated with the objective
functionF can become zero as in Karush’s first theorem. The latter difference is caused by
the fact that John did not have the constraint qualification, as Kuhn and Tucker called it, or
the normality condition, as Karush would have said.

3.2. The Two Geometrical Applications

From reading the second part of the paper, which is concerned with the two geometrical
applications, it becomes clear why John chose this construction with the parametery and a
parameter setS. It also explains why John did not touch upon the problem of abnormality
and thereby did not consider the problem of constraint qualification.

More than half of the paper is devoted to these geometrical applications. The first is
“Application to Minimum Sphere Containing a Set” and the second concerns the ellipsoid
of least volume containing a setSin Rm [John, 1948, p. 193]. In the first one John considered
the following problem:

Let S be a bounded set inRm. Find the sphere of least positive radius enclosingS. [John, 1948,
p. 193–194]

John was not interested in theexistenceof such a sphere. If the assumption is made that the
bounded setScontains at least two distinct points, it is quite clear that such a sphere exists
[John, 1948, p. 194].

To be able to use his theorem derived in the first part of the paper John characterized
spheres inRm as points inRm+1,

x = (x1, . . . , xm+1),
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where (x1, . . . , xm) are the coordinates of its center andxm+1 the square of its radius. He
could then rewrite the problem as an optimization problem subject to inequality constraints:

Minimize the functionF(x) = xm+1 subject to the constraints

G(x, y) = xm+1−
m∑

i=1

(xi − yi )
2 ≥ 0 for all y ∈ S.

The constraints ensure that the minimum is only sought among spheres containingS.
John used a similar procedure in the second application about the ellipsoid. In both cases

he knew that a minimum,x0, existed, so the necessary conditions of the theorem were
fulfilled. He then used these conditions to derive significant properties of the minimum
sphere and the minimum ellipsoid. From this he also derived several general properties of
closed convex sets [John, 1948, pp. 201–202].

3.3. The Link to the Theory of Convexity

In the application part of John’s paper and especially in the last one it becomes clear
that his main interest was in the results about closed convex sets that he developed through
the applications of his theoretical result: the extension of Lagrange’s multiplier method
to problems with inequality constraints. In connection with Kuhn’s talk on the history of
nonlinear programming Kuhn also had a brief correspondence with John.9 According to
Kuhn, John should have revealed that he was led to the theorem when he was

trying to prove the theorem. . . that asserts that the boundary of a compact convex setS in Rn lies
between two homothetic ellipsoids of ratio≤n, and that the outer ellipsoid can be the ellipsoid of least
volume containingS. [Kuhn, 1976, p. 15]

Even though in his title and introduction John gives the impression that he is concerned
with problems in the calculus of variations, it is my opinion that his paper rather should be
viewed as a contribution to the theory of convexity, to which he had made fine contributions.
All the references in the paper are either to the theory of convexity or to less general works—
by John and others—on the two applications.10 In considering the applications it becomes
quite clear that they have a justification in themselves, for they serve a deeper purpose
than just as illustrations of the theoretical result. The conclusion must be that the guiding
questions—the important issues for John—were the applications and the results he could
derive from these.

3.4. The Status of the Theorem

In Karush’s work the theorem was important in itself. The whole purpose of his work
was to derive these necessary conditions for the existence of a minimum or maximum. In
John’s work, on the other hand, the theorem was only derived as a tool for deriving general
results about convex sets. The applications guided the formulation of the theorem, which
explains John’s contruction of the “parameter set” which clearly is dictated by the applica-
tions.

9 This correspondence is apparently lost.
10 [John, 1936, 1942; Behrend, 1937, 1938; Ader, 1938].
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Another difference between Karush’s and John’s work is the “normality” condition, as
Karush called it, or the “constraint qualification,” as Kuhn and Tucker will call it; John does
not touch upon that feature. This can also be explained from the fact that both applications
are actually examples of the normal case.

In his paper on the history of nonlinear programming Kuhn wrote about John’s work that
it “very nearly joined the ranks of unpublished classics in our subject” [Kuhn, 1976, p. 15].
But John himself apparently did not view this work in this way, and he never came forward
with priority claims.

4. THE THEOREM OF KUHN AND TUCKER: AN EXTENSION
OF LINEAR PROGRAMMING

Albert W. Tucker was born in Canada in 1905 and died in Princeton, New Jersey, in
1995. He received a bachelor’s degree in mathematics from the University of Toronto in
1928, and a year later began Ph.D. study at Princeton University. This turned out to be the
beginning of a lifelong connection to the Mathematics Department at Princeton. In 1932 he
received the Ph.D. on a thesis in the field of topology, and two years later he was appointed
assistant professor. In 1938 he became associate professor, and then full professor in 1946.
An important figure in the maintenance of Princeton in the 1930s and 1940s as a prestigious
place for mathematical research, he served as head of the department from 1953 to 1963.
He had a tremendous influence on the students who came in contact with him, and he is
often characterized as a very good teacher and leader [Tucker, 1980; Kuhn, 1995].

Harold W. Kuhn—20 years younger than Tucker—was born in California. He received a
bachelor’s degree in science from the California Institute of Technology in 1947, and then
moved on to Princeton where he wrote a Ph.D. thesis on “Subgroup Theorems for Groups
Presented by Generators and Relations” in 1950 [Kuhn, 1952]. After some travelling and
a seven-year appointment at Bryn Mawr College, Kuhn returned to Princeton as asso-
ciate professor. He was connected to both the mathematics and the economics departments
[Kuhn, 1986].

4.1. The Nonlinear Programming Paper

The main point in Kuhn and Tucker’s paper was to find necessary and sufficient conditions
for the existence of a solution to the following “maximum problem,” as they called it:

To find anx0 that maximizesg(x) constrained byFx=0, x=0 [Kuhn and Tucker, 1950, p. 483].

Here x0 ∈ Rn and x −→ u = Fx is a differentiable mapping of nonnegativen-vectors
x into m-vectorsu. That is,Fx is anm-vector whose componentsf1(x), . . . , fm(x) are
differentiable functions ofx defined forx ≥ 0, andg(x) is a differentiable real function of
x ∈ Rn defined forx ≥ 0 [Kuhn and Tucker, 1950, p. 483].

Kuhn and Tucker handled this problem by taking the so-called “saddle value problem”
as their point of departure. They defined it as the problem of finding nonnegative vectors
x0 ∈ Rn andu0 ∈ Rm, such that

φ(x, u0)5φ(x0, u0)5φ(x0, u) for all x =0, u=0,

whereφ(x, u) is a differentiable function of ann-vectorx with componentsxi =0 and an
m-vectoru with componentsuh =0.
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They letφ0
x, φ0

u denote the partial derivatives, evaluated at a particular pointx0, u0. That
is,φ0

x is ann-vector,

φ0
x =

(
∂φ

∂x1
(x0), . . . ,

∂φ

∂xn
(x0)

)
,

andφ0
u is anm-vector,

φ0
u =

(
∂φ

∂u1
(u0), . . . ,

∂φ

∂um
(u0)

)
.

They used the′ notation to denote the transposed vector.
The first theorem Kuhn and Tucker proved in the paper concerned the question of nec-

essary and sufficient conditions for the existence of a solution to the saddle value problem.
They proved that the conditions

φ0
x 50, φ0′

x x0 = 0, x0=0 (1)

φ0
u =0, φ0′

u u0 = 0, u0=0 (2)

are necessary forx0, u0 to provide a solution [Kuhn and Tucker, 1950, pp. 482–483]. For
the second part of the question they proved that the conditions (1), (2) together with the two
conditions

φ(x, u0)5φ(x0, u0)+ φ0′
x (x − x0) (3)

φ(x0, u)=φ(x0, u0)+ φ0′
u (u− u0) (4)

for all x =0, u=0, aresufficient[Kuhn and Tucker, 1950, p. 483].
Equipped with these conditions, Kuhn and Tucker phrased their theorem in the following

way:

THEOREM 1. In order that x0 be a solution of the maximum problem, it is necessary that x0 and
some u0 satisfy conditions(1) and(2) for φ(x, u) = g(x)+ u′Fx. [Kuhn and Tucker, 1950, p. 484]

If the conditionx0=0 is incorporated into the constraint function,F , the first and last
conditions in (1) together mean that the Lagrangian functionφ(x, u) has a critical point at
x0, u. The second condition in (1) ensures that the multipliers associated with the nonbinding
components ofx0 are equal to zero. The first condition in (2) ensures thatx0 is feasible,
the second ensures that the multipliers associated with nonbinding constraints are equal to
zero, and the last is the sign-restriction on the multipliers. These conditions later became
known as “the Kuhn–Tucker conditions,” and they constitute one of the main results in the
mathematical theory of nonlinear programming.

Actually the first time Kuhn and Tucker announced this theorem was not at the Berkeley
Symposium but a few months earlier at a seminar held at the RAND Corporation in May
1950. Among the audience was C. B. Tompkins, who came up with something as unpleasant
as a counterexample [Kuhn, 1976, p. 14]. The result—as it stood—could not rule out the
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“abnormal” case, as Karush would have called it. Kuhn and Tucker got back to work and
realized the need for some regularity conditions on the constraint functions. This led them to
introduce the term “constraint qualification.” The constraint qualification they used in their
paper was the same as Karush’s: that for eachx0 of the boundary of the set determined by
the constraints and for any vector differentialdx for which the directional derivatives of the
binding constraints in the direction ofdx are nonnegative, there corresponds a differentiable
arcx = a(θ ), 0 5 θ 5 1, contained in the constrained set, withx0 = a(0), and some positive
scalarλ such thata′(x0) = λ dx [Kuhn and Tucker, 1950, p. 483].

As Kuhn and Tucker pointed out in their paper, it can seem artificial to introduce the
conditions (3) and (4) that occurred in the sufficiency part of the saddle value problem; but
these conditions are satisfied ifφ(x, u0) is a concave function ofx andφ(x0, u) is a convex
function ofu [Kuhn and Tucker, 1950, p. 483]. In order to gain full equivalence between
solutions of the maximum problem and the saddle value problem Kuhn and Tucker then
required that the functions involved,g, f1, . . . , fm, be concave as well as differentiable for
x =0. With these extra requirements they showed that

x0 is a solution of the maximum problem if, and only if,x0 and someu0 give a solution of the saddle
value problem forφ(x, u) = g(x)+ u′F(x). [Kuhn and Tucker, 1950, p. 486]

4.2. The Saddle Value Problem: A Detour?

Kuhn and Tucker’s formulation of the theorem is different from that of Karush and
John, neither of whom considered the concept of saddle points. Why did Kuhn and Tucker
choose the saddle point formulation, and why were they looking for equivalence between
the maximum problem and the saddle value problem? The mathematical context of their
work can provide an answer to these questions.

Their cooperation had begun two years earlier, in 1948, where they had examined the
relation between game theory and the linear programming model that had just been devel-
oped by George B. Dantzig for the U.S. Air Force. Kuhn was still a student at the time and
together with another student, David Gale, they worked out the mathematical foundations
for linear programming [Galeet al., 1951]. They formulated the corresponding dual prob-
lem, proved the duality theorem, and showed the relation between linear programming and
game theory.11

When he was introduced to the linear programming problem, Tucker was at first reminded
of Kirchoff’s laws for electrical networks [Albers and Alexanderson, 1985, pp. 342–343].
In the autumn of 1949 just after Kuhn, Gale, and Tucker had presented their work on lin-
ear programming and game theory at the first conference on linear programming, held in
Chicago in June 1949, Tucker went on leave to Stanford. Here he dug deeper into his first
association, and discovered the underlying optimization problem of minimizing heat loss.
According to Kuhn, this knowledge led Tucker to the recognition that the Lagrangian mul-
tiplier method which is normally used to solveequality-constrained optimization problems

11 A linear programming problem is a nonlinear programming problem where all the involved functions are
linear functions. For a linear programming problem one can formulate another linear programming problem on
the same data called thedual program. The duality theorem says that the original,primal, problem has a finite
optimal solution if and only if the dual problem has a finite optimal solution, and the optimum values will be the
same.
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could be adapted to optimization problems subject toinequalityconstraints [Kuhn, 1976,
pp. 12–13]. Tucker then wrote to Kuhn and Gale and invited them to continue the work
and extend their duality result for linear programming to quadratic programming, i.e., to
problems where the involved functions would be quadratic in form [Kuhn, 1976, pp. 12–13].
David Gale declined the offer but Kuhn accepted, and he and Tucker developed the theory
in correspondence between Stanford and Princeton.12

Thus, the original purpose of Kuhn and Tucker’s work was to extend the duality result
from linear programming to quadratic programming, and the idea was to adapt the classical
Lagrangian multiplier method. In the introduction to their paper Kuhn and Tucker explained
how this would work for linear programming. From a linear programming problem

maximizeg(x) =
∑

ci xi , ci ∈ R,

wherex1, . . . , xn aren real variables constrained bym+ n linear inequalities,

fh(x) = bh −
∑

ahi xi =0, xi =0,

with h = 1, . . . ,m, i = 1, . . . ,n, ahi , bh ∈ R, they formed the corresponding Lagrangian
function,

φ(x, u) = g(x)+
∑

uh fh(x), uh ∈ R.

They realized thatx0 = (x0
1, . . . , x

0
n) will maximize g(x) subject to the given constraints

if and only if there exists a vectoru0 = (u0
1, . . . ,u

0
m) ∈ Rm with componentsu0

i ≥ 0 for
all i , such that (x0, u0) is a saddle point for the Lagrangian functionφ(x, u) [Kuhn and
Tucker, 1950, p. 481]. The really interesting feature of this saddle point result for linear
programming was, as Kuhn and Tucker phrased it,

The bilinear symmetry ofφ(x, u) in x andu yields the characteristic duality of linear programming.
[Kuhn and Tucker, 1950, p. 481]

Thus a linear programming problem has a solution if and only if the corresponding
Lagrangian function has a saddle point; this saddle point then constitutes a solution not
only to the linear programming problem but also to the dual program. Considering now that
Kuhn and Tucker actually were searching for a way to extend the duality theorem for linear
programming to more general cases,13 it seems perfectly natural to take the saddle point
for the Lagrangian function as the starting point.14

Until now I have only explained and interpreted the content, the structure, and the under-
lying mathematical ideas of the results in Kuhn and Tucker’s paper. The important question
raised in the Introduction concerning why their work had such an enormous impact that
it could launch a new research field in applied mathematics can only be understood in a

12 This correspondence is lost; I know about it from an interview with Kuhn, who also mentioned it in [Kuhn,
1976, p. 13].

13 Somewhere during the process they shifted the focus from the quadratic case to the general nonlinear case.
14 It is striking then that Kuhn and Tucker did not mention duality for nonlinear programming in the paper. The

first duality result for nonlinear programming was derived by Werner Fenchel in 1951, published in 1953 [Fenchel,
1953].
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broader perspective that takes into account the relation between the military and science
during World War II as well as the postwar organization of science support in the United
States. These questions will be dealt with in Section 6.

5. THE ASPECT OF MULTIPLE DISCOVERY

The reason a question of multiple discovery arises in connection with a historical study of
the Kuhn–Tucker theorem is that the result today in textbooks and in papers on the history
of mathematics is ascribed to all of them—Karush, John, and Kuhn and Tucker.15

One can also see the result ascribed to the Russian mathematician Mikhail Ostrogradsky
(1801–1862) and the Hungarian mathematician Julius Farkas (1847–1930). In three papers
Franksen discusses Fourier’s extension of the principle of virtual work in mechanics and
how it sheds new light on the development of the second law of thermodynamics and
mathematical programming [Franksen, 1985a, 1985b, 1985c]. He concludes that the Kuhn–
Tucker theorem is an independent rediscovery, by Kuhn and Tucker, of a theorem derived by
Ostrogradsky in a paper which was read for the French Academy in 1834 and published four
years later, in 1838 [Franksen, 1985c, pp. 337–338, 353, 355]. Pr´ekopa gives an account
of the development of optimization theory in a paper of 1980. He had searched for the first
appearence of the Kuhn–Tucker conditions in the literature and he found it in Ostrogradsky
and Farkas [Pr´ekopa, 1980, p. 528].

Before I return to the question whether Karush’s, John’s, and Kuhn and Tucker’s work
can be said to count as a multiple discovery I will briefly deal with these older sources which
discuss questions belonging to the field of analytical mechanics—questions that came out
of Fourier’s extension of the principle of virtual work.

5.1. The Kuhn–Tucker Theorem in Analytical Mechanics

John as well as Kuhn and Tucker mentioned explicitly that their work in one way or
another was connected with the Lagrangian multiplier method. John wrote directly in his
introduction that the purpose of his work was to extend this method to problems with
inequality constraints. Tucker associated the network nature of linear programming with
Kirchoff’s laws for electrical networks and got the idea that maybe the Lagrangian multiplier
method could be adapted to inequality constraint cases.

Lagrange developed his multiplier method in “M´echanique analitique” (1788) as a method
for finding an equilibrium for a mechanical system [Lagrange, 1788]. He founded his theory
of equilibrium on what is now called the principle of virtual work, which he took as an axiom.
In modern terms the principle states that in order for an equilibrium to take place the virtual
work of the applied forces acting on the system must be equal to zero. This principle was
stated in terms of reversible displacements which means that if a virtual displacementδr is
allowed then the opposite displacement−δr is also possible without breaking the constraints
on the system. This means that the mechanical system is subject only to constraints that can
be formulated as equations [Franksen, 1985a, p. 137].

Inequalities entered the picture in 1798 where Fourier extended the principle of virtual
work to irreversible displacements, that is, to mechanical systems subject to inequality

15 [Bazaraaet al., 1993, p. 149; Peressiniet al., 1988, p. 169]. For an account of the prehistory of linear
and nonlinear programming see [Grattan-Guinness, 1970, 1994]. For an account on the history of nonlinear
programming see [Kuhn, 1976; Kjeldsen, 1999].
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constraints [Fourier, 1798]. Based on arguments concerning “le moment de la force”
[Fourier, 1798, p. 479], he formulated the conditions for equilibrium for such systems
as inequality conditions, as he realized that such systems are in equilibrium if, and only if,
the virtual work of the applied forces is nonpositive [Fourier, 1798, p. 494]. This inequality
is often called “the Fourier inequality.”

Ostrogradsky derived the conditions for equilibrium for such a system in [Ostrogradsky,
1838]. He denoted the applied forces acting on a system byP, Q, R, . . . .He then wrote the
equilibrium condition, that is, the Fourier inequality, in the following way: the total work

Pdp+ Qdq+ Rdr+ · · ·

has to be nonpositive for every feasible displacement. The constraints were namedL,
M , . . . and because these constraints were given by inequalities Ostrogradsky argued that
dL, d M, “ . . . can only change sign in cases where one moves from feasible to infeasible
displacements” [Ostrogradsky, 1838, p. 131].

Ostrogradsky’s maneuver was to change the coordinates by introducing so-called “gen-
eralized” coordinates; instead of consideringdp, dq, dr . . . he introduced some other
variationsdξ , dη, dψ , . . . which are functions ofdp, dq, dr , . . . and in number equal the
number of the original variables. SincedL, d M, . . . are also functions ofdp, dq, dr , . . . , he
took these to be the first of the new generalized coordinates (this means that Ostrogradsky’s
method can be used only when the number of constraints does not exceed the number of
variables). He then reformulated the whole thing with these new coordinates and obtained
the equilibrium condition

λdL + µd M + · · · + Adξ + Bdη + Cdζ + · · · ≤ 0

for every feasible displacement [Ostrogradsky, 1838, p. 131]. Using arguments about the
impossibility of changing signs fordL, d M, . . . and the possibility of sign changing for
dξ , dη, dψ, . . .. Ostrogradsky concluded thatA = B = C = · · · = 0. This meant that the
total work, Pdp+ Qdq+ Rdr+ · · ·, equalsλdL + µd M + · · ·; i.e.

Pdp+ Qdq+ Rdr+ · · · = λdL + µd M + · · ·

for all feasible displacements. SincedL, d M, . . . cannot change sign, the equilibrium
condition can only take place, he concluded, if the multipliersλ,µ, . . . have signs opposite
to those of the corresponding constraints,dL, d M, . . . [Ostrogradsky, 1838, p. 132].

Ostrogradsky then ended up by concluding that:

[. . .] les conditions de l’´equilibre d’un syst`eme quelconcque seront exprim´ees

1mo par l’équation

0= Pdp+ Qdq+ Rdr+ · · · + λdL + µd M + · · ·
qui doit avoir lieu pour tous les d´eplacemens imaginables,

2dopar la condition que les quantit´esλ,µ, . . .aient respectivement les mˆemes signes que les diff´erentielles
dL, d M, . . . pour les déplacemens possibles. [Ostrogradsky, 1838, p. 132–133]
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Today, in terms of potential theory, ifP = − ∂V
∂p , Q = − ∂V

∂q , R= − ∂V
∂r , . . . , one can

“translate” the question of finding an equilibrium into a problem about minimizing the po-
tential energy. So the conclusion of Franksen and Pr´ekopa that Ostrogradsky here formulated
as well as argued for what we call the Kuhn–Tucker theorem in nonlinear programming can
only be understood with this interpretation and “translation” of Ostrogradsky’s work. My
opinion is that in ascribing the Kuhn–Tucker theorem to Ostrogradsky too much has been
read into the sources. In the next section I will provide further reasons for this conclusion.

The mathematical foundations for the extension of Lagrange’s multiplier method to
equilibrium for mechanical systems subject to irreversible displacements was treated by
Farkas. The main mathematical result that came out of this is Farkas’s lemma about linear
inequality systems [Farkas, 1901]. Farkas developed it in some earlier papers [Farkas, 1895,
1897, 1899] whose main focus was

[. . .] zu erweisen, dass mit einer passenden Modifikation die Methode der Multiplikatoren von Lagrange
auch auf das Fourier’sche Princip bertragen werden kann. [Farkas, 1895, p. 266]

There is a remarkable resemblance to the goal stated in John’s introduction, but here in a
context of analytical mechanics.

Farkas knew the work of Ostrogradsky, and he made a remark about the limitation of
the method used by Ostrogradsky to situations were the number of constraints does not
exeed the number of variables [Farkas, 1895]. Farkas wanted to find a method that could be
used in any problem no matter what relationship between the numbers of constraints and
of variables [Farkas, 1895, p. 266]. He was very much concerned with the mathematical
foundations of the method and had a clear insight that homogeneous linear inequalities
could provide a satisfactory form; so he began his 1895 paper with such a theory:

I. enthält eine algebraische Einleitung ¨uber die homogenen linearen Ungleichheiten als mathematische
Grundlage der weiteren Betrachtungen. [Farkas, 1895, p. 266]

This “algebraische Einleitung” consists of a proof of what we now call “Farkas’s lemma.”
With the help of it Farkas was able to reach the same conclusion as Ostrogradsky but this time
for the general problem where there was no restriction on the relation between the numbers
of variables and of constraints on the system. Again, if a potentialV exists, Farkas’s results
can be translated and interpreted as the Kuhn–Tucker conditions, but the conclusion drawn
for Ostrogradsky also holds here.

The work of Ostrogradsky and Farkas had no direct influence on the development of
nonlinear programming. It is true that Farkas’s lemma functions was an important tool in
both the work of Karush and that of Kuhn and Tucker, but they used a version of Farkas’s
lemma that was completely removed from analytical mechanics and equilibrium conditions.
Indeed the title of Farkas’s 1901 paper, “Theorie der einfachen Ungleichungen,” shows that
here he was concerned solely with the pure theory of inequalities [Farkas, 1901].

5.2. Theories of Multiple Discoveries

The mathematical community does not ascribe the Kuhn–Tucker theorem to Ostrogradsky
and Farkas, but it does consider the work of Karush and John as papers belonging to nonlinear
programming, and both names now appear in textbooks. The Kuhn–Tucker theorem is now
often renamed the Karush–Kuhn–Tucker theorem and there is also a Fritz John theorem
[Bazaraaet al., 1993]. Also, my analysis of Karush’s, John’s, and Kuhn and Tucker’s work
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seems to indicate that we may actually have a multiple discovery. What I find particularly
interesting is the fact that three occurrences of a result which the scientific community
later viewed as the same, developed within a time span of only 11 years, were received
so differently. In order to examine and understand this phenomenon I turned to theories of
multiple discoveries.

A central figure in the literature on multiple discoveries in science is Robert K. Merton.
His main criterion for talking about a multiple discovery is independent discovery of the
same scientific result, and his theory is that they are not something special in science;
on the contrary, it is the discoveries that on the surface appear to be single that deserve
special attention. Merton’s hypothesis states that a thorough investigation will show that
these singletons will turn out to be if not multiple then at least potentially so. According to
him, “all scientific discoveries are in principle multiples” [Merton, 1973, p. 356]. He has
10 different arguments for this hypothesis. First of all he points to the huge class of singletons
which later turn out to be rediscoveries of results found in earlier work—unpublished or
published in “obscure” places. Then he has six arguments that all are concerned with the
problem of “being anticipated.” He describes situations where the scientist for some reason
suddenly realizes that someone else already has developed the result he or she is working
on. If the scientist then lets go of the result, the discovery is an example of a singleton
which in reality was a potential multiple discovery. If the scientist goes ahead and publishes
anyway there will typically be a footnote saying that this or that person arrived at this
conclusion in this or that source. The last three of Merton’s arguments deal with the way
scientists behave. In Merton’s view the behavior reveals that they themselves believe that
all scientific discoveries are potentially multiple. Here he refers to all the different things
that scientists do in order to secure that they will not be anticipated by another scientist:
they carefully date their notes, they “leak” information about their ideas and circulate
incomplete versions of their work [Merton, 1973, p. 358–361]. This behavior, Merton
points out, is based on a wish to ensure priority, which is very important in the scientific
world:

the culture of science puts a premium not only on originality but on chronological firsts in discovery,
this awareness of multiples understandably activates a rush to ensure priority. [Merton, 1973, p. 361]

Evaluated according to Merton’s theory, the Kuhn–Tucker theorem is a triple discovery.
Some of the circumstances Merton points out can be found in the work of Kuhn and Tucker.
Tucker presented their work at a meeting before they had the theory thoroughly worked
out; Kuhn told me that he felt that the Berkeley Symposium on Mathematical Statistics
and Probability was an odd place to present their work but explained it by arguing that it
provided an opportunity to get the result published fast [Kuhn, 1998]. Another of Merton’s
points also holds for Kuhn and Tucker. They do not say that Fritz John had worked on the
same problem, but they give a reference to his paper; in an interview Kuhn told me that the
reference to John was made in the proofreading stage when someone told them about his
work [Kuhn, 1998].

Merton’s hypothesis has not survived undisputed. It has been criticized by Don Patinkin,
who points out especially two issues which he finds have not received proper attention: first,
what is it actually that has been discovered; second, to what degree does the discovery form
part of the central message of the scientist? [Patinkin, 1983, p. 306]. Patinkin claims that
a lot of so-called multiple discoveries will turn out to be singletons if they are subject to
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an analysis that takes these two issues seriously. Patinkin’s own “central message” is that a
scientist cannot be considered as having made a discovery unless this discovery forms part
of the central message of the scientist. The question now is of course how to identify that
message. Patinkin sets up the following criteria:

[. . .] the central message of a scientific work is announced by its presentation early in the work (and
frequently in its title) and by repetition, either verbatim or modified in accordance with the circumstances.
[Patinkin, 1983, p. 314]

Patinkin’s reason for the importance of the central message is first the scientific reward
system. In order for this system to be “fair” Patinkin finds that it is important that

[. . .] its rewards must go to the true discoverers: to those who brought about a cognitive change. [Patinkin,
1983, p. 316]

Second, in Patinkin’s view the function of a scientific discoverer is to

stimulate a new research program on the part of colleagues in his field of inquiry, for only in that way
can the full scientific potential of the discovery be efficiently exploited. [Patinkin, 1983, p. 316]

Using Patinkin’s criteria for multiplicity the picture becomes a little more subtle. Using
his method for uncovering the central message of the scientist and taking John’s introduction
at face value, it must be said that the Kuhn–Tucker theorem is indeed part of the central
message in all three papers. The titles of both Karush’s and John’s paper indicate that the
subject is optimization constrained by inequality conditions. The title of Kuhn and Tucker’s
paper is simply “Nonlinear Programming”; but at that time linear programming was well
known in the circles to which Kuhn and Tucker belonged, so in 1950 this word could not
refer to anything but finite-dimensional optimization subject to inequality constraints. So
using only this criterion we must once again conclude that the Kuhn–Tucker theorem is a
triple discovery.

This, however, is not very satisfactory, and if one is also considering Patinkin’s reasons
for putting such a high empasis on the central message, namely that the purpose of scientific
discoveries is to stimulate further research in the field, it becomes clear that only Kuhn and
Tucker can be said to be the true discoverer of the Kuhn–Tucker theorem in nonlinear
programming. Neither Karush’s nor John’s work stimulated any further research. Their
work had no influence on the development of any discipline.

This however does not shed light on why the three different versions of the result were
so differently received in the scientific community. I think that Patinkin’s second essential
point—what is it exactly that has been discovered—analyzed with respect to the different
contexts the three papers originated in is a more fruitful approach to understanding this
phenomenon.

6. THE SIGNIFICANCE OF THE CONTEXT

In the following I shall distinguish between a mathematical and a sociological context.
I shall make a further division of the mathematical context into what I call the context
of “pure mathematical content,” which refers to analysis of mathematical results without
taking into account the context of discovery or the mathematical environment in which
they are presented, and the context of mathematical subdisciplines such as the theory of
convexity or the calculus of variations.
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Today mathematicians conceive of Karush’s and Kuhn and Tucker’s result as the same
one—as the Kuhn—Tucker theorem—and of John’s result as the Kuhn–Tucker theorem
without the constraint qualification. The reason for this is an analysis of the results in
relation to “pure mathematical content” based on the theoretical knowledge of today. In such
an analysis mathematicians disregard the differences and focus solely on the similarities
between the three results. They look at the theorems independent of the context within
which they were developed.

An analysis which instead focuses on thedifferencesin the three formulations of the
theorem and takes the context of the subdisciplines into account can provide an explanation
for the different influences on the mathematical development and the different reception
in the mathematical community at the time of the three occurences of the result. As was
argued in Section 2 and 3, the reason the works of Karush and John were “overlooked”
was not that their result did not form part of the central message of their work but rather
because they were not central in relation to the internal mathematical—and maybe also
sociological—context in which they appeared.

In order to understand the fame and recognition that almost immediately followed the
work of Kuhn and Tucker one must also understand its origin in applied mathematics and
the importance of the postwar organization of science support in the United States, both of
which were consequences of World War II.

6.1. The Social Context of Kuhn and Tucker’s Work

Introduction. Before World War II applied mathematics had a very bad reputation
among professional mathematicians in the United States. From the beginning of the 20th
century this country had witnessed a growing community of professional mathematicians.
The kind of research that was pursued and the mathematical interests were mainly in what
traditionally is called pure mathematics. Only a very few of the mathematicians working
in academia were interested in applied mathematics. In the academic environment there
was a hierarchy among mathematicians and generally, mathematicians working in applied
areas were not ranked very high on the scale. The state of affair before World War II can be
sumarized by the words of Professor Prager, who gave the following describtion in 1972:

[. . .] their number [professional mathematicians interested in the applications] was extremely small.
Moreover, with a few notable exceptions, they were not held in high esteem by their colleagues in pure
mathematics, because of a widespread belief that you turned to applied mathematics if you found the
going too hard in pure mathematics. [Prager, 1972, p. 1]

Some of this changed as a consequence of the Second World War.16 During this period
a huge number of American scientists took part in the war effort. Some of them were
hired directly by the armed forces, but most of them were organized through Office of
Scientific Research and Development (OSRD) which was established in May 1941 under
the leadership of Vannevar Bush and financed by Congress.17 But is was not until 1943 when
the Applied Mathematics Panel (AMP) was founded as a subsection under OSRD that the
mathematicians got involved in great numbers. The mathematicians organized through AMP
worked on war related issues bounded by contracts. Thus, the AMP provided the mediating

16 See, e.g., [Dalmedico, 1996].
17 See, e.g., [Zachary, 1997].
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link between the military and the mathematicians, who stayed in the universities and the
industries. This activity during the war served to stimulate the involvement of professional
mathematicians in solving applied problems, some of which were subsequently made the
subject of theoretical matematical research and development, and in some cases—as with
nonlinear programming—became a new discipline in mathematics.

The Air Force programming problem.The work on what became linear programming
began during the war. The main person was the mathematician George B. Dantzig who was
hired in 1941 by the Air Force to work on the so-called “programming planning methods”—a
tool in the Air Force for handling huge logistic planning. In a paper presented in December
1948 and published in 1951, Dantzig and Marshall K. Wood, who also worked for the
Planning Research Division at the Air Force, gave the following definition:

Programming, or program planning, may be defined as the construction of a schedule of actions by
means of which an economy, organization, or other complex of activities may move from one defined
state to another, or from a defined state toward some specifically defined objective. [Dantzig and Wood,
1951, p. 15]

In this definition there is a possibility of moving towards a defined objective. This was not
the case during the war. Here the focus was to make sure that the plan for activities was
consistent:

The levels of various activities such as training, maintenance, supply, and combat had to be adjusted in
such a manner as not to exceed the availability of various equipment items. Indeed, activities should be
so carefully phased that the necessary amounts of these various equipment items were available when
they were supposed to be available, so that the activity could take place. [Dantzig, 1951, p. 18]

Wood and Murray A. Geisler described the procedure behind the Air Force wartime
program scheduling in [Geisler and Wood, 1951, p. 189]. They emphasized that “the major
difficulty with this procedure was that it took too long. Even with the most careful scheduling,
it took about seven months to complete the process.” [Geisler and Wood, 1951, p. 191].18

Postwar organization of science support.The end of the war also meant the end of
OSRD. Bush’s organization was an emergency organization and it had been clear right from
the beginning that OSRD would disappear with the war. There was a common concern that
the scientists would just go back to their university duties after the war. There also was a
strong belief that America had to be strong scientifically in order to be strong militarily. A
lot of people were concerned about the further financing of science after the war, military
related science as well as basic science.19

In his annual report to the President in 1945 the Secretary of the Navy, James V. Forrestal
expressed the concern of the Navy on the further relationship between science and the mil-
itary in peacetime. He stressed the need for an independent agency established by law and
devoted to long-term, basic military research, securing its own funds from the Congress and
responsive to, but not dominated by, the Army and the Navy. On the request of President
Roosevelt, Vannevar Bush prepared a plan for the organization of postwar research and

18 For further readings on the origin of linear programming see the memoirs by Dantzig [Dantzig, 1963, 1968,
1982, 1988, 1991] and [Dorfman, 1984]. For historical accounts on the development of linear programming in
the USSR see, e.g., [Brentjes; Brentjes, 1976b; Charnes and Cooper, 1961; Koopmans, 1961; Isbell and Marlow,
1961; Leifman; 1990; Kantorovich, 1939].

19 See [Rees, 1977a; Schweber, 1988; Dupree, 1986].
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education. In his report “The Endless Frontier” Bush—like Forrestal—called for a gov-
ernmental supply of money for independent research in the universities and industries. In
contrast to Forrestal, who lobbied for basicmilitary research, Bush wanted the government
to supply basic research without necessary regards to the military. Bush’s main point was
that

basic research leads to new knowledge. It provides scientific capital. It creates the fund from which
the practical applications of knowledge must be drawn.. . . today it is truer than ever that basic research
is the pacemaker of technological progress.. . .A nation which depends upon others for its new basic
scientific knowledge will be slow in its industrial progress and weak in its competition in world trade,
regardless of its mechanical skill. (Citation from [Schweber, 1988, p. 14])

This gives an impression of the spirit just after the war. There was a willingness to
offer money on basic science and a philosophy that basic science was a necessity that
automatically would lead to something that eventually could be applied for practical and
therefore military purposes.

Bush wanted a National Science Foundation to support research in the universities and
the industries but it took some time to establish such a foundation. In the mean time the
Navy established the Office of Naval Research (ONR) the purpose of which was to continue
the research practice established by the OSRD.20

Towards linear programming. The different military sections also hired scientists on
their own. George B. Dantzig was hired—again—by the Air Force where he—from 1946
until 1952—functioned as mathematical advisor for the U.S.A.F. headquarters. The assign-
ment he was hired to work on was to

[. . .] develop some kind of analog devise which would accept, as input, equations of all types, basic
data, and ground rules, and use these to generate as output a consistent Air Force plan. [Dantzig, 1988,
p. 12]

Still, no objective was formulated: the programs were built on personal experience and
a lot of ad hoc ground rules were issued by those in authority [Dantzig, 1968, p. 4]. This
changed with the emergence of the computer, which had a profound influence on the work
of Dantzig and his group. The idea of an “analog device” was rejected. Instead the work took
a turn towards the development of what is now called linear programming. In the spring
of 1947 the Air Force established project SCOOP (Scientific Computation of Optimum
Programs) where Dantzig, Wood, and Geisler were the main figures. The purpose of this
project was twofold: to build a mathematical model for the programming problem and the
development and construction of computers.21

Wood and Geisler described the problems and the prospects in [1951, p. 194]:

These complexities [of the Air Force programming problem] have been spelled out to indicate a whole
range of planning problems which, because of the present difficulties of computing alternative programs,
receive little or no consideration.So much time and effort is now devoted to working out the operational
program that no attention can be given to the question whether there may not be some better program
that is equally compatible with the given conditions.It is perhaps too much to suppose that this difference
between programs is as much as the difference between victory and defeat, but it is certainly a signifcant
difference with respect to the tax dollar and the division of the total national product between military
and civilian uses.

20 For historical accounts on ONR see, e.g., [Old, 1961; Sapolsky, 1979; Schweber, 1988].
21 See [Brentjes, p. 177].
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Consideration of the practical advantages to be gained by comparative programming, and particularly
by the selection of “best” programs, leads to a requirement for a technique for handling all program
elements simultaneously and for introducing the maximization process directly into the computation of
programs. Such a technique is now in prospect. [Geisler and Wood, 1951, p. 194]

The possibilities of high-speed computers made it realistic to implement the notion of
an objective in the programming problem, because there now seemed to be a possibility of
computing alternative programs in order to choose the “best” one. Thus, there was a prospect
of an effective decision tool useable not only for war-time activities but also “in planning
for organizations or economic systems, where relationships are largely technologial and
decision making is centralized.” [Geisler and Wood, 1951, p. 189].

The model for the programming planning problem that the group ended up with was
reflected in the following mathematical problem:

[. . .] the minimization of a linear form subject to linear equations and inequalities. [Dantzig, 1982,
p. 44]

This is now known as a linear programming problem. Originally Dantzig called it “Pro-
gramming in a Linear Structure.”

The involvement of John von Neumann.Dantzig was advised to make contact with the
economist T. C. Koopmans, who had been working with a transportation model during the
war, and with John von Neumann. Koopmans did a lot to introduce linear programming,
especially to economists but it was the involvement of John von Neumann that was crucial
for the further development.

John von Neumann was involved with almost everything related to mathematics that went
on during the war. He was a member of many military scientific advisory boards and he
also held a lot of military consulting jobs.22 In October 1947 Dantzig and von Neumann
met in Princeton. This was the first time von Neumann heard about linear programming
and—not surprisingly—he recognized the relationship to two-persons zero-sum games.
In 1944 he had published the famous book “Theory of Games and Economic Behavior”
together with the Austrian-American economist Oskar Morgenstern [von Neumann and
Morgenstern, 1944]. Both models—the linear programming model and the game model—
can be formulated as questions about linear inequalities. According to Dantzig, at this
meeting von Neumann showed that a zero-sum two-person game can be reduced to a linear
programming problem and conjectured the reverse relationship [Dantzig, 1982, 1988]. That
the interest of von Neumann was caught can be seen from a note “Discussion of a maximum
problem” that he wrote in November 1947 [von Neumann, 1947]. In this note he worked
on a linear maximum problem subject to linear inequality constraints:

max
x

a · x
s. t. x ≥ 0

x A≤ α

wherea, x aren-dimensional vectors,A is ann by m matrix, andα is anm-dimensional
vector. He almost—almost because he used an incorrect version of Farkas’s lemma—proved

22 See [Ulam, 1958, p. 42].
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that if there exists a finite maximum with a maximum pointx0, satisfying the constraints
x0 ≥ 0,x0A ≤ α, then there exists anm-dimensional vectorξ with Aξ ≥ a anda · x ≥ ξ · α
[von Neumann, 1947, p. 91]. Thisξ will actually minimize the linear formξ · α and then
von Neumann’s result in this note can be—and has been—interpreted as the duality theorem
for linear programming. But von Neumann did not state that conclusion, and he did not
formulate the dual linear programming problem or the duality theorem in this note. He did
introduce what are now known as dual variables even though he did not call them that.
Whether von Neumann was fully aware of the relationship between the primal—x—and
the dual—ξ—variables cannot be decided from the note.

Anyway, this note is the first sign of developing linear programming into a theory. Von
Neumann had an enormous influence in speeding up this process. First, he was a member
of the committee23 set up by the National Academy of Sciences to act as advisers to the
Mathematics Branch of ONR on questions connected with projects in pure mathematics;
second, he had considerable influence in promoting game theory as a major research area
at the RAND in the immediate postwar period.24

The mathematics division of ONR.Kuhn and Tucker’s work, which was a direct con-
sequence of these circumstances, took place under contract with the mathematics division
of ONR. Mina Rees who had served as technical assistant to Warren Weaver—the leader
of AMP—during the war, was asked by ONR just after the war to set up a mathematics
program. Even though from the outset she had expressed her doubt about the success of
such a program (she did not think that mathematicians would let the military finance their
peacetime research), she took the position as head of the mathematics branch because she
found it extremely important for the further development of mathematics in the United
States to be actively involved in the ONR program [Rees, 1977b; Albers and Alexanderson,
1985]. As such she was a very influential person in the mathematics community in the post-
war period. The program she prepared for the ONR was one she had discussed with most
of the leading mathematicians and mathematics departments in the country. She was very
much concerned that the ONR mathematics program should reflect what mathematicians
thought would help mathematics. The question was of course whether the Navy would
support basic research and especially research in pure mathematics without any relevance
for the Navy. Rees was very concerned with this, for she wanted the program to strengthen
the mathematical research in the USA and not to fragment the field [Rees, 1977a].

In 1948 the mathematics department of the ONR had been functioning for a little over
a year and Rees had a note in the Bulletin of the American Mathematical Society where
she announced “the philosophy which has determined the mathematical research projects
which ONR is sponsoring.” She stated that:

The Office of Naval Research is committed primarily to the support of fundamental research in the
sciences, as contrasted with development, or with applications of known scientific results. . . . It is
natural, however, that the most obvious types of mathematical research which would seem to warrant
Navy support would be research in applied directions. [Rees, 1948, p. 1]

The state of affairs when it came to money was that 4/5 of the annual expenditure went to
research in applied mathematics, mathematical statistics, numerical analysis, and computing

23 Consisting of John von Neumann, G. C. Evans, H. M. Morse, H. M. Stone, H. Whiney, and O. Zariski.
24 See [Mirowski, 1991; Leonard, 1992, 1995].
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devices. But the number of contracts with theoretical objectives stood for more than 1/3 of
the entire group [Rees, 1948]. She emphasized that basic research in mathematics proper
was deemed important and was receiving funding from ONR.

The support of ONR. The prospects of the programming planning methods that the Air
Force group was developing were—as explained above—considerable. Rees remembered
it like this in 1977:

when, in the late 1940’s the staff of our office became aware that some mathematical results obtained
by George Dantzig,. . . could be used by the Navy to reduce the burdensome costs of their logistics
operations, the possibilities were pointed out to the Deputy Chief of Naval Operations for Logistics.
His enthusiasm for the possibilities presented by these results was so great that he called together all
those senior officers who had anything to do with logistics, as well as their civilian counterparts, to hear
what we always referred to as a “presentation.” The outcome of this meeting was the establishment in
the Office of Naval Research of a separate Logistics Branch with a separate research program. This has
proved to be a most successful activity of the Mathematics Division of ONR, both in its usefulness to
the Navy, and in its impact on industry and the universities. [Rees, 1977a, p. 111]

In the spring of 1948 Dantzig went to Princeton on behalf of ONR to meet with John von
Neumann in order to discuss the possibilities for a university-based project on linear pro-
gramming and its relationship to game theory financed by ONR [Albers and Alexanderson,
1985, pp. 342–343]. During this visit Dantzig was introduced to Tucker, who gave him a
ride to the train station. During this short car trip Dantzig gave Tucker a brief introduction
to the linear programming problem. Tucker made a remark about a possible connection to
Kirchoff–Maxwell’s law of electric networks; because of it Tucker was contacted by the
ONR a few days later and asked if he would set up such a mathematics project [Albers and
Alexanderson, 1985, pp. 342–343].

Until this moment Tucker had been absorbed in research in topology. He agreed to
become principal investigator, and this completely changed his research direction. The
same happened for Kuhn, who at the time was finishing a Ph.D. project on group theory. In
the summer of 1948 Kuhn went to Tucker to ask for summer employment because he needed
the additional income. Tucker hired him, together with David Gale, who was also a graduate
student, to work with him on the ONR project [Kuhn, 1998]. The three of them presented
the results of their work on the project at the first conference on linear programming, which
took place in Chicago in June 1949 [Galeet al., 1951]. The most prominent among their
results was the duality theorem for linear programming. After that Kuhn and Tucker became
commited to the project; the duality theorem caught their attention as interesting from a
mathematical point of view. From then on, proceeding according to the “inner” rules for
research in pure mathematics, they tried to extend this result to more general cases, which
resulted in the “nonlinear programming” paper and the Kuhn–Tucker theorem. This work
was also sponsored by the ONR, which continued to support Tucker’s project until 1972,
when the National Science Foundation took over.

Another social factor also related to the military was the development of operations
reserach (OR) during the war and the establishment of OR as a scientific discipline at the
universities after the war.25 ONR also played a major role in this process. Fred Rigby, the
head of the logistics program of ONR, later described its significance:

25 For historical accounts on OR in the United States see, e.g., [Rau; Fortun and Schweber, 1993].
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We did indeed influence the introduction of operations research into business schools. The subdiscipline
called management science is our invention, in quite a real sense. That is, we and our contract researchers
recognized its potentials, planned its early growth, and, as it turned out, set the dominant pattern in which
it has developed. (Quoted in [Rees, 1977a, p. 111]).

After the war several people—especially Philip Morse from M.I.T.—who had been in-
volved in the operations research groups during the war, with the help of ONR and the
National Research Council, introduced operations research into the universities. Already
from 1948 Morse had two courses running at M.I.T. [Morse, 1956]. From 1952 on Johns
Hopkins had a program in operations research and from 1954 on it was possible to take a
Ph.D. in the field [Roy, 1956].

Morse was a key figure in the shaping of operations research as an academic discipline in
the United States. From the beginning he emphazised the importance of the newly developed
linear programming for operations research. His main point was that basic research in
mathematical programming was vital for operations research [Morse, 1955, p. 383].

From the journals and from the proceedings of the international conferences in operations
research which began in 1957 it can be seen that mathematical programming was quite well
represented. But all the time there was a continuously running debate about what OR actually
was and not everybody held the opinions of Morse. In 1956 W. N. Jessop warned against
“the placing of emphasis on mathematical methods and on highly abstract treatments of
general situations” in the journal of the American Operations Research Society [Jessop,
1956]. When it came to linear programming Jessop also held the opinion that there was
too much focus on developing “a subject so delightful to the pure mathematician that many
papers appear to have had their origin in sheer exuberance unsullied by any thought of a
factual situation” [Jessop, 1956, p. 51].

Linear programming was immediately incorporated into the toolbox of OR, which meant
that OR also stood ready to provide a “home” for nonlinear programming as soon as it was
developed. In this way it can be seen that the Office of Naval Research had an enormous
influence in creating a scientific community of people doing linear programming, and in
this community it was almost inevitable that the nonlinear programming paper of Kuhn and
Tucker would give rise to the new research field of nonlinear programming.

During the first two decades of its existence mathematical programming established itself
as a discipline with conferences, monographs, and textbooks. The question of a journal and a
society for mathematical programming was discussed on and off and in 1971 the first journal,
“Mathematical Programming,” was founded, and two years later came the “Mathematical
Programming Society.”

7. CLOSING REMARKS

The Kuhn–Tucker theorem shows that a mathematical theorem in itself, its “pure math-
ematical content,” does not always decide whether it will stimulate further research or
not. Social contexts can also play an essential role. Even though the three results today
are viewed as the same theorem, they were in practice very different. The significance
of a result and its potential for stimulating further research in its area are determined by
the mathematical—and sometimes also the social—context within which it was devel-
oped. The Kuhn–Tucker theorem was an important result in the mathematical discipline
in which Kuhn and Tucker were working, a discipline which also received huge financial
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support. This was not the case in the subdiscplines where the papers of Karush and John
appeared.

The fact that Karush, John and Kuhn and Tucker all receive credit for the theorem
in the scientific community of nonlinear programming is due to the influence of “third
parties”—a notion introduced by Susan Cozzens. In her book “Social Control and Multiple
Discoveries in Science: The Opiate Receptor Case,” she focuses on how discoveries later
become established as multiples [Cozzens, 1989]. She points out that it is often due to
an “after-the-fact process” where the case is settled by influence from third parties, that,
is members of the scientific community who are not directly involved in the discovery.
Through later references and acknowledgement the third parties establish the discoveries
as multiple. The quotations I showed in the section on Karush show that this also was
the case for the establishment of the Kuhn–Tucker theorem as a multiple discovery, even
though Kuhn himself, that is, one of the involved scientists, here played a major role in the
recognition of predecessors.
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stituierung als selbständige mathematische Theorie—Eine Studie zum Problem der Entstehung mathematischer
Disziplinen im 20. Jahrhundert.Ph.D. dissertation, Leipzig. [Unpublished]

Brentjes, S. 1976a. Bemerkungen zum Beitrag von Julius Farkas zur Theorie der linearen Optimierung.NTM-
Schriftenreihe zur Geschichte der Naturwissenschaften, Technik und Medizin13, 21–23.

Brentjes, S. 1976b. Der Beitrag der sowjetischen Wissenschaftler zur Entwicklungen der Theorie der linearen
Optimierung.NTM-Schriftenreihe zur Geschichte der Naturwissenschaften, Technik und Medizin13, 105–110.

Browder, F. E. 1989. The stone age of mathematics on the midway. InA Century of Mathematics in America, Part
II , Peter Duren, Ed., History of Mathematics, Vol. 2, pp. 191–193. Amer. Math. Soc., Providence, RI.

Charnes, A., and Cooper, W. W. 1961. On some works of Kantorovich, Koopmans and Others.Management
Science8, 246–263.

Cozzens, S. E. 1989.Social Control and Multiple Discovery in Science: The Opiate Receptor Case. Albany, NY:
State Univ. of New York Press.

Dalmedico, A. D. 1996. L’essor des math´ematiques appliqu´ees auxÉtats-Unis: L’impact de la seconde guerre
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