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Preface

This report consists of lecture notes for a graduate course in combinato-
rial optimization at the University of Oslo. A better, although longer, title
of this course would be the report title “Convexity, polyhedral theory and
combinatorial optimization”.

The purpose of this report is to introduce the reader to convexity, polyhe-
dral theory and the application of these areas to combinatorial optimization;
the latter is known as polyhedral combinatorics. Compared to some other
texts in polyhedral combinatorics we concentrate on the foundation in convex
analysis. This is motivated by the fact that convexity leads to a good under-
standing of, e.g., duality and, in addition, convex analysis is very important
for applied mathematics in general.

We assume that the student has a good general mathematical background
and that she or he is familiar with mathematical proofs. More specifically,
a good understanding of linear algebra is important. A secondary course
in mathematical analysis is useful (topology, convergence etc.) as well as
an introductory course in optimization. Some knowledge of algorithms and
complexity is also required.

However, optimization is a part of applied mathematics, so we do want
to model and solve problems. Therefore, discussions on methods, both gen-
eral and more specific ones, follow the theoretical developments. Thus a
main goal is that a (hard working) student after finishing this course shall
(i) have a good theoretical foundation in polyhedral combinatorics, and (ii)
have the ability (and interest) to study, model, analyze and “solve” difficult
combinatorial problems arising in applications.

The present report should be viewed as a draft where several modifica-
tions are planned. For instance, some more material on matching and other
combinatorial problems would be suitable. Still, judging from experience, it
is hard (and not even desirable) to cover all the material in this report given
the estimated work load of the mentioned course. This opens up for some
flexibility in selecting material for lectures. It is also planned to find more
exercises for a future version of the report.
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It is suggested to read supplementary texts along with this report. Two
highly recommended books are G.L. Nemhauser and L. Wolsey “Integer
and combinatorial optimization” [29] and A. Schrijver “Theory of linear
and integer programming” [35]. Another very good reference is the paper
W.R. Pulleyblank “Polyhedral combinatorics” [32]. Although it has a differ-
ent perspective, we recommend the book R. K. Ahuja, T. L. Magnanti and
J. B. Orlin “Network flows: theory, algorithms, and applications” [33] where,
in particular, many interesting applications are described.

Have fun!



Chapter 0

Introduction

0.1 Background and motivation

Mathematical optimization, or mathematical programming, is a fast
growing branch of mathematics with a surprisingly short history. Most of its
development has occured during the second half of this century. Basically
one deals with the maximization (or minimization) of some function subject
to one or more constraints.

As we know, mathematicians, for centuries (maybe even thousands of
years) have studied linear algebraic equations and linear diophantine equa-
tions in a number of contexts. Problems came from e.g. mechanics, astron-
omy, geometry, economics and so on. Many of those problems had unique
solutions, so there was really no “freedom” involved. However, more recently,
problems have appeared from a number of applications, mathematical and
non-mathematical, where there is typically several possible, or feasible, solu-
tions to a problem. This naturally leads to the question of find a “best possi-
ble solution” among all those that are feasible in the specified sense. We shall
illustrate this by some examples. First, let us mention that famous mathe-
maticians like Bernoulli (1717), Lagrange (1788) and Fourier (1788) studied
particle movements in mechanics where the particle was moving within some
specified region R in space. Lagrange studied the case when R was described
by one or more equations, while Fourier went further and allowed R to be
described in terms of inequalities. Gauss also studied some of these mechan-
ics problems, as well as approximation problems. He introduced the least
squares method which reduces the problem of approximating a vector using a
quadratic loss function (Euclidean norm) to the problem of solving a certain
linear system. Fourier also studied these approximation problems, but with
another loss function and in a restricted sense. He actually then discovered
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a simplified simplex method which, today, is a main method in mathematical
optimization.

Today, optimization problems arise in all sorts of areas; this is the age of
optimization as a scientist stated it in a recent talk. Modern society, with
advanced technology and competive businesses typically needs to make best
possible decisions which e.g. involve the best possible use of resources, maxi-
mizing some revenue, minimize production or design costs etc. In mathemat-
ical areas one may meet approximation problems like solving some equations
“within some tolerance” but without using too many variables (resources).
In computer science the VLSI area give rise to many optimization prob-
lems: plysical layout of microchips, routing, via minimization and so on. In
telecommunications the physical design of networks leads to many different
optimization problems, e.g. that of minimizing network design (or expan-
sion) costs subject to constraints reflecting that the network can support the
desired traffic. In fact, in many other areas, problems involving communi-
cation networks can be viewed as optimization problems. Also in economics
(econometry) optimization models are used for e.g. describing money trans-
fer between sectors in society or describing the efficiency of production units.

The large amount of applications, combined with the development of fast
computers, has led to massive innovation in optimization. In fact, today
optimization may be divided onto several fields, e.g. linear programming,
nonlinear programming, discrete optimization and stochastic optimization. In
this course we are concerned with discrete optimization and linear program-
ming. In discrete optimization one optimizes some function over a discrete
set, i.e., a set which countable or even finite. We shall mainly use the slightly
more restricted term combinatorial optimization for the problems of interest
here. Typically these are problems of choosing some “optimal subset” among
a class of subsets of a given finite ground set. Many of the problems come
from the network area, where finding a shortest path between a pair of points
in a network is the simplest example.

The reader may now (for good reasons) ask: where does the title of
these lecture notes enter the picture? Well, polyhedral combinatorics is an
area where one studies combinatorial optimization problems using theory and
methods from linear programming and polyhedral theory. All these terms will
be discussed in detail later, but let us at this point just mention that linear
programming is to maximize a linear function subject to (a finite number) of
linear (algebraic) inequalities. Polyhedral theory deals with the feasible sets
of linear programming problems, which are called polyhedra. Now, polyhedral
theory may be viewed as a part of convex analysis which is the branch of
mathematics where one studies convex sets, i.e., sets that contain the line
segments between each pair of its points. A large part of this report is

2



therefore devoted to convex analysis and polyhedral theory. Some people
will probably say that it is too much focus on these areas, and they may be
right. However, a second purpose of our approach is to give the reader a
background in convexity which is useful for all areas in optimization, as well
in other areas like approximation theory and statistics.

0.2 Optimization problems and terminology

We now present several optimization problems to be studied throughout the
text. Also important terminology is introduced. First, however, we introduce
some general notation.

Usually, we denote the (column) vector consisting of the i’th row of a
matrix A ∈ Rm,n by ai, so we have aTi = (ai,1, . . . , ai,n). All vectors are
considered as column vectors. When we write x ≤ y for vectors x, y ∈ Rn,
we mean that the inequality holds for all components, i.e., xi ≤ yi for i =
1, . . . , n. Similarly, x < y means that xi < yi for i = 1, . . . , n.

An optimization problem (or mathematical programming prob-
lem) is a problem (P):

maximize {f(x) : x ∈ A} (1)

where f : A→ R is a given function defined on some specified setA (typically
A is a subset of Rn). A minimization problem is defined similarly. Each point
in A is called a feasible point, or a feasible solution, and A is the feasible
region (or feasible set. The function f is called the objective function.
An optimization problem is called feasible if it has some feasible solution.
A point x∗ is an optimal solution of the problem (P) if f(x∗) ≥ f(x) for
all x ∈ A. Thus an optimal solution maximizes the objective function among
all feasible solutions. The optimal value of (P), denoted v(P ) is defined
as v(P ) = sup{f(x) : x ∈ A}. (Recall that the supremum of a set of real
numbers is the least upper bound of these numbers). For most problems
of interest in optimization, this supremum is either attained, and then we
may replace “sup” by “max”, or the problem is unbounded as defined below.
Thus, if x∗ is an optimal solution, then f(x∗) = v(P ). Note that there may
be several optimal solutions. We say that (P) is unbounded if, for any
M ∈ R, there is a feasible soluton xM with f(xM ) ≥ M , and we then write
v(P ) = ∞. Similarly, an unbounded minimization problem is such that for
each M ∈ R, there is a feasible soluton xM with f(xM ) ≤M ; we then write
v(P ) = −∞. If the maximization problem (P) in (1) is infeasible (has no
feasible solution), we write v(P ) = −∞. For infeasible minimization problem
we define v(P ) =∞. Sometimes we may say, for two feasible solutions x1 and
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x2 in (1), that x1 is better than x2 if f(x1) > f(x2), and x1 is at least as
good as x2 if f(x1) ≥ f(x2). Similar notions may be used for minimization
problems.

Most optimization problems have additional structure compared to the
problem in (1) and we define some important classes of problems next.

Consider matrices and vectors A1 ∈ Rm1,n, A2 ∈ Rm2,n, b1 ∈ Rm1 , b2 ∈
Rm2 and c ∈ Rn. The optimization problem (LP)

maximize cTx
subject to
(i) A1x = b1;
(ii) A2x ≤ b2,

(2)

is called a linear programming problem or LP problem for short. Thus
in this problem the objective function is linear and the feasible set, let us call
it P , is the solution set of a finite number of linear inequalities and equations.

We shall also be interested in another linear problem, the integer linear
programming problem, (ILP) for short:

maximize cTx
subject to
(i) A1x = b1;
(ii) A2x ≤ b2;
(iii) x is integral.

(3)

Thus, in this problem the feasible set consists of all the integral points inside
the feasible region of a linear programming problem. It seems natural that
there should be some useful relations between the problems (LP) and (ILP),
and, in fact, the study of such relations is one of the main topics in polyhedral
combinatorics.

It is important to be aware of a main difference between the problems
(ILP) and (LP). In terms of theoretical computational complexity, the (ILP)
is NP -hard, while (LP) is polynomially solvable. Loosely speaking, this
means that (LP) may be solved efficiently on computers using an algorithm
with running time polynomially bounded by the “size” of the input prob-
lems, while for (ILP) no such efficient algorithm is known (or likely to exist).
Typically, algorithms for solving the general (ILP) problem have exponential
running time, so only small problems can be solved on a computer.

A discrete optimization problem is simply a problem of the form (1)
where the feasible set A is a discrete set. A more restricted class of optimiza-
tion problems may be defined as follows. Let E be a finite set (e.g., consisting
of certain vectors or matrices), and let F be a family (class) of subsets of E,
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called the feasible sets. Also let w : E → R+ be a nonnegative function
defined on E; we call it a weight function. Define w(F ) :=

∑
e∈F we for

each F ∈ F , so this is the total weight of the elements in F . We then call
the optimization problem (CO)

maximize{w(F ) : F ∈ F} (4)

a combinatorial optimization problem.

0.3 Examples of discrete models

This section simply contains several examples of the general optimization
problems introduced in Section 0.2. The purpose is not only to make the
reader acquainted with important problems, but also to illustrate the fan-
tastic potential of discrete mathematical models in representing various phe-
nomena in totally different fields of both science and society. It is important
to stress that modeling itself is not the only task. We also want to analyze
and solve these models. Combinatorial optimization and integer linear pro-
gramming provides a rich theory and powerful methods for performing these
tasks.

Example 0.1 The famous Traveling Salesman Problem (TSP) may be
described as follows: for a given set of cities with known distances between
pairs of cities, find a shortest possible tour visiting each city exactly once.
We introduce a set E consisting of every pair {u, v} of cities u and v, and
w({u, v}) is defined as the distance between cities u and v. A feasible subset
of E is the set of pairs of consecutive cities in a tour, and then the weight
of this tour coincides with its length, as desired. The (CO) problem (4) then
represents the TSP. We remark that the TSP has enjoyed an overwhelming
interest since it was “rediscovered” around 1930; each year it is published
about 100 papers on the subject (new algorithms, special cases, applications
etc.). We shall discuss the TSP in Section 6.7.

Discrete choices are often restricted to be binary (i.e., two alternatives),
as in the TSP above. Either we visit cities i and j consecutively, or we do
not. In such situations one can introduce a binary variable xj ∈ {0, 1} whose
value indicates the choice that occurs.

Example 0.2 The knapsack problem is a combinatorial optimization prob-
lem that may be presented as follows. A Norwegian mountain lover wants to
pack her knapsack for today’s walk. What should she bring? Available are

5



items 1 to n, where the weight of item j is aj ≥ 0 and its (subjective)“value”
is wj ≥ 0. Unfortunately, she cannot bring all the items, as the knapsack (or
she) can not carry a weight larger than b (and b <

∑n
j=1 aj). The problem is

to decide which items to bring such that the weight condition is satisfied and
such that the total value of the items brought on the trip is largest possible.
To model this we introduce a binary variable xj for each item j, and one can
check that the following (ILP) problem represents the problem

max {
n∑
j=1

wjxj :

n∑
j=1

ajxj ≤ b, x ∈ {0, 1}
n}.

Loosely speaking, combinatorics deals with properties of finite sets. Some
combinatorial optimization problems that involve packing and covering in
finite sets are descibed next.

Example 0.3 Let M be a finite set and M = {Mj : j ∈ N} a (finite) class
of nonempty subsets of M , so N is the index set of these subsets. We say
that a subset F of the index set N is a cover of M if ∪j∈FMj = M , i.e.,
each element in M lies in at least one of the selected subsets. We say that
F ⊆ N is a packing in M if the subsets Mj, j ∈ F are pairwise disjoint,
thus each element in M lies in at most one of the selected subsets. Finally, if
F ⊆ N is both a packing and a covering, it is called a partition of M . Let
now w be a weight function defined on N , so wj ≥ 0 is the weight of j ∈ N .
The minimum weight covering problem is to find a cover F with weight
w(F ) :=

∑
j∈F wj as low as possible. The maximum weight packing

problem is to find a packing F with weight w(F ) as large as possible.

There are many combinatorial problems in graphs and networks, as e.g.
the TSP. In fact, in the last half of this report we shall study many such
problems in detail. A reader who wants to get an idea of what kind of prob-
lems these are, can have a look in Chapter 5. In order to avoid introducing
graph terminology at this point, we just give one such example here.

Example 0.4 Assume that m jobs are supposed to be performed by n persons
(computers). Each job must be done by exactly one person, and each person
can do at most one job. The cost of assigning job i to person j is assumed
to be cij. The assignment problem is to assign the jobs to persons so
as to minimize the total assignment cost. This problem is also called the
minimum weight bipartite matching problem. It can be modeled by
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the following (ILP):

min
∑

i,j cijxij
subject to
(i)

∑n
j=1 xij = 1 for all i;

(ii)
∑m

i=1 xij ≤ 1 for all j;

(iii) 0 ≤ xij ≤ 1 for all i, j;

(iv) xij is integral for all i, j.

(5)

We see that the last two constraints assure that the vector x is binary. The
variable xij is 1 if job i is assigned to person j, and 0 otherwise. The con-
straints (5)(i),(ii) assure that the mentioned restrictions on feasible assign-
ments hold.

The model for the assignment problem in (5) has an interesting property.
Consider the so-called linear programming relaxation of this model, which
is obtained by removing the integrality constraint on the variables; thus
feasible solutions may also be fractional. It turns out that among the optimal
solutions of this LP problem there is always one which is integral! Thus, for
this model, the optimal value of the (ILP) and that of the LP relaxation
coincide, for every objective function c. This is an exceptional situation, but
still very important from both a theoretical and a practical point of view.
We shall study this in detail throughout this text.

0.4 An overview

In particular, in Chapter 1, we introduce some convex analysis in finite di-
mensional spaces. This chapter is partly motivated by the fact that most
of the concepts and results discussed there are frequently used in polyhedral
combinatorics. Secondly, it gives some foundation in convexity for studies in
e.g. other branches of optimization. Then, in Chapter 2, we continue the
study of convexity, but now in connection with linear inequalities. A powerful
theory of polyhedra (the solution set of linear inequalities) is presented.

Chapter 3 is devoted to linear programming, and, in particular, to the
main method for solving linear programs: the simplex method. Finally, for
those who might believe that the author had forgotten about combinatorial
problems, we come back to these problems in Chapter 4. It treats basic opti-
mization problems in graphs and networks, e.g., the shortest path problem,
the minimum spanning tree problem and the maximum flow problem. We
also discuss algorithms for solving these problems. Chapter 5 on polyhe-
dral combinatorics brings together the previous chapters: general theory and
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methods are given for attacking combinatorial problems via linear program-
ming and polyhedral theory. Finally, the last chapter contains an overview
of some methods for solving integer linear programming problems. The main
focus is on linear programming based methods, but other general techniques
are also discussed.

0.5 Exercises

Problem 0.1 Here is a classical LP problem. A student at the University
of Oslo wants to decide what kind of food to eat in order to minimize food
expenses, but still get healthy food. Available are 5 different kinds of food
(so it is a typical student cafeteria we have in mind), each containing cer-
tain amounts of energy (kcal), protein (g) and calcium (mg). The foods are
F1, . . . , F5. Each food is served in a given “size” (e.g., chicken with rice
might be 220 g). The student requires that today’s diet (which is to be de-
cided) must contain a minimum amount of energy (e.g. no less than 2,500
kcal), a minimum amount of protein and a minimum amount of calcium. In
addition the student has an upper bound on the number of servings of each
food. The cost for each meal (NOK/serving) is assumed given. Formulate
the student’s diet problem as an LP problem. Discuss the role of integrality
in this problem.

Problem 0.2 Let k ≤ m, and consider a set of m linear inequalities aTi x ≤
bi, i = 1, . . . ,m (where ai ∈ Rn). Formulate a model which represents that
a point shall satisfy at least k of these constraints and in addition satisfy
0 ≤ xj ≤M for each j ≤ n.

Problem 0.3 Approximation problems is also an area for linear program-
ming, in particular when the l1 or l∞ norms are used. (Recall that ‖z‖∞ =
maxj |zj|.) Let A ∈ Rm,n and b ∈ Rm, and formulate the approximation
problem min{‖Ax− b‖∞ : x ∈ Rn} as an LP problem.

Problem 0.4 Integer programs can be used to represent logical relations, as
indicated in this exercise. Let P1, . . . , Pn be logical statements, each being
either true or false. Introduce binary variables, and represent the following
relations via linear constraints.

1. Statement P1 is true.

2. All statements are true.

3. At least (at most, exactly) k statements are true.
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4. If P1 is true, then P2 is also true.

5. P1 and P2 are equivalent.

6. If either P1 or P2 is true, then at most two of the statements P3, . . . , Pn
are true.

Problem 0.5 Consider the following problem at our institute; one faces this
problem each semester. A (repeating) weakly plan which assigns classes to
rooms is to be constructed. Assume that the size of each class is known (it
could be an estimate), and that the size (number of seats) of each room is
also known. Formulate the problem of finding a feasible assignment of classes
to rooms as an (ILP) problem. Then, construct some additional constraints
that may be reasonable to impose on the schedule (be creative!), and formulate
these in your model.

Problem 0.6 In this exercise you must really be creative! Figure out an
optimization problem of interest to you (whatever it might be!) and try to
formulate it as an (integer) linear programming problem!

9



Chapter 1

Convexity in finite dimensions

In this chaper we give an introduction to convex analysis. Convexity is
important in several applied mathematical areas like optimization, approxi-
mation theory, game theory and probability theory. A classic book in convex
analysis is [34]. A modern text which treats convex analysis in combination
with optimization is [19]. A comprehensive treatment of convex analysis is
[38]. For a general treatment of convexity with application to theoretical
statistics, see [37]. The book [39] also treats convexity in connection with a
combinatorial study of polytopes.

We shall find it useful with some notation from set algebra. The (alge-
braic) sum, or Minkowski sum, A+B of two subsets A and B of Rn is defined
by A + B := {a + b : a ∈ A, b ∈ B}. Furthermore, for λ ∈ R we let λA
denote the set {λa : a ∈ A}. We write A + x instead of A + {x}, and this
set is called the translate of A by the vector x. It is usefule to realize that
A+B is the same as the union of all the sets A+b where b ∈ B. Subtraction
of sets is defined by A−B := {a− b : a ∈ A, b ∈ B}.

We leave as an exercise to verify the following set algebra identities from
sets A1, A2, A3 ⊆ Rn and real scalars λ1, λ2:

(i) A1 +A2 = A2 +A1;
(ii) (A1 +A2) +A3 = A1 + (A2 +A3);
(iii) λ1(λ2A1) = (λ1λ2)A1;
(iv) λ1(A1 +A2) = λ1A1 + λ1A2.

(1.1)

Note that, although the properties above are familiar for real numbers, there
are some properties that are not transfered to set algebra. For instance, we
do not have (λ1 + λ2)A = λ1A+ λ2A in general (why?).

We let ‖x‖ = (xTx)1/2 denote the Euclidean norm of a vector x. As usual
the n-dimensional real vector space with inner product xTy =

∑n
j=1 xjyj is

denoted by Rn, and R+ denotes the set of nonnegative reals. We distinguish
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between the symbols ⊂ and ⊆, the first denotes strict containment for sets
while the second allows equality of the sets involved. For vectors x, y ∈ Rn
we write x ≤ y whenever xi ≤ yi for i = 1, . . . , n. Similarly, x < y means
that xi < yi for i = 1, . . . , n. The Cauchy-Schwarz inequality says that
|xTy| ≤ ‖x‖‖y‖ for each x, y ∈ Rn.

1.1 Some concepts from point set topology

First, we recall some concepts from point set topology in Rn. A closed ball
is a set of the form B̄(a, r) = {x ∈ Rn : ‖x − a‖ ≤ r} where a ∈ Rn and
r ∈ R+, i.e. this set consist of all points with distance not larger than r from
a. The corresponding open ball, defined whenever r > 0, is B(a, r) = {x ∈
Rn : ‖x− a‖ < r}. A set A ∈ Rn is called open if it contains an open ball
around each of its points, that is, for each x ∈ A there is an ε > 0 such that
B(x, ε) ⊆ A. For instance, in R each open interval {x ∈ R : a < x < b}
is indeed an open set. A set F is called closed if its (set) complement
F̄ = {x ∈ Rn : x 6∈ F} is open. A closed interval {x ∈ R : a ≤ x ≤ b} is
a closed set. A sequence {x(k)}∞k=1 ⊂ Rn converges to x if for each ball B
around x there is an integer K(B) such that x(k) ∈ B for all k ≥ K(B), and
in that case we call x the limit point of the sequence and write x(k) → x.

The open sets in Rn, defined via the Euclidean norm as above makes Rn
into a topological space, i.e. the class τ of open sets have the following
properties:

(i) ∅,Rn ∈ τ ;

(ii) if A,B ∈ τ , then A ∩ B ∈ τ ;

(iii) if Ai, i ∈ I is a family of open sets, then the union ∪i∈IAi ∈ τ .

Thus, since closed sets are the complements of open sets, we get that
the union of any finite family of closed sets is again closed, and that the
intersection of any family of closed sets is closed. The interior int(A) of
a set A is defined as the largest open set contained in A; this coincides
with the union of all open sets in A (in fact, one may take the union of
all open balls contained in A and with center in A). For instance, we have
int(B̄(a, r) = B(a, r)). The closure cl(A) of a set A is the smallest closed
set containing A. We always have int(A) ⊆ A ⊆ cl(A). Note that a set A is
open iff int(A) = A, and that A is closed iff cl(A) = A. Finally, we define the
boundary bd(A) of A by bd(A) = cl(A)\ int(A). An useful characterization
of the closed sets is that F is closed if and only if it contains the limit point
of each sequence of points in F that converges.
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In convex analysis, we also need the concept of relative topology.
Whenever A is a nonempty set in Rn we say that a set B is open rela-
tive to A if B = B′ ∩A for some open set B′ in Rn (with usual topology).
The family of sets that are open relative to A constitutes a topology on A
(i.e. the properties (i)–(iii) above all hold). For a set C one can therefore
introduce the relative interior rint(C) (relative to A) of a set C in the
natural way: rint(C) is the union of all sets in C that are open relative to
A. One can also introduce relative closure, but this is not of interest for
our purposes. This is so because we shall always consider topologies relative
to sets A that are closed in the usual topology, and then relative closure
and usual closure coincides. However, the relative boundary defined by
rbd(C) = cl(C) \ rint(C) is of interest later.

A function f : Rn → Rm is continuous if for each convergent sequence
{x(k)}∞k=1 ⊂ Rn with x(k) → x we also have f(x(k)) → f(x). If a set F is
contained in some ball, it is called bounded. A set which is both closed
and bounded is called compact. Weierstrass’ theorem says that a con-
tinuous, real-valued function f on a compact set K achieves its supremum
and infimum over that set, so there are points x1 ∈ K and x2 ∈ K such that
f(x1) ≤ f(x) ≤ f(x2) for all x ∈ K.

Whenever A and B are two nonempty sets in Rn, we define the distance
between A and B by dist(A,B) = inf{‖a− b‖ : a ∈ A, b ∈ B}. For one point
sets we may write dist(A, b) instead of dist(A, {b}). Note that dist(a, b) =
‖a−b‖. From the definition of dist(A,B) it follows that we can find sequences
of points {an}∞n=1 in A and {bn}∞n=1 in B such that ‖an − bn‖ → dist(A,B).
Sometimes, but not in general, one can find points a ∈ A and b ∈ B with
‖a − b‖ = dist(A,B). For instance this is possible if one of the two sets is
compact. We discuss this in more detail in Section 1.5.

1.2 Affine sets

We here give an introduction to affine algebra which, loosely speaking, is
similar to linear algebra, but where we remove the importance of the origin
in the different concepts. The basic objects are affine sets which turn out to
be linear subspaces translated by some fixed vector. It is useful to relate the
concepts below to the corresponding ones in linear algebra.

An affine set A ⊆ Rn is a set which contains the affine combination
λ1x1 + λ2x2 for any x1, x2 ∈ A when the real numbers (weights) satisfy
λ1 + λ2 = 1. Geometrically, this means that A contains the line through any
pair of its points. A line L = {x0+λr : λ ∈ R} through the point x0 and with
direction vector r 6= 0 is a basic example of an affine set. Another example
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is the set P = {x0 + λ1r1 + λ2r2 : λ1, λ2 ∈ R} which is a two-dimensional
“plane” going through x0 and spanned by the nonzero vectors r1 and r2.

x

y

A

L

Figure 1.1: The affine hull of {x, y}

In Figure 1.1 we see a simple affine set, nemaely a line.
Recall that L ⊆ Rn is a linear subspace if λ1x1 + λ2x2 ∈ L for any

x1, x2 ∈ L, i.e., L is closed under the operation of taking linear combinations
(of two, and therfore any finite number) of vectors. It follows that a linear
subspace is also an affine set. The converse does not hold, but we have the
following basic relation. We say that an affine set A is parallel to another
affine set B if A = B + x0 for some x0 ∈ Rn, i.e. A is a translate of B.

Proposition 1.1 Let A be a nonempty subset of Rn. Then A is an affine
set if and only if A is parallel to a unique linear subspace L, i.e., A = L+x0

for some x0 ∈ Rn.

Proof. Assume that A = L+ x0 for some x0 ∈ Rn and a linear subspace L
of Rn. Let x1, x2 ∈ A and λ1, λ2 ∈ R satisfy λ1 + λ2 = 1. By assumption
there are y1, y2 ∈ L such that x1 = y1 + x0 and x1 = y2 + x0. This gives
λ1x1 + λ2x2 = λ1(y1 + x0) + λ2(y2 + x0) = λ1y1 + λ2y2 + (λ1 + λ2)x0 =
λ1y1 + λ2y2 + x0 ∈ L+ x0 = A as L is a linear subspace, and therefore A is
affine.

Conversely, assume that A is affine. Choose x0 ∈ A and define L = A−x0.
We claim that L is a linear subspace. To prove this, let µ ∈ R and x ∈ L , so
x = a− x0 for some a ∈ A. Then µx = µ(a− x0) = µa+ (1− µ)x0− x0 ∈ L
because µa + (1− µ)x0 ∈ A is an affine combination of two elements in A.
L is therefore closed under the operation of multiplying vectors by scalars.
Next, for any x1, x2 ∈ L, there are suitable a1, a2 ∈ A with x1 = a1 − x0,
x2 = a2 − x0 and therefore x1 + x2 = 2((1/2)a1 + (1/2)a2 − x0) ∈ L since
(1/2)a1 + (1/2)a2 ∈ A (affine combination of elements in A) and since we
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have already shown that 2z ∈ L whenever z ∈ L. This proves that L is a
linear subspace.

It remains to prove that A cannot be parallel to two distinct linear sub-
spaces. So assume that A = L1 + x1 = L2 + x2 for linear subspaces L1, L2

and vectors x1, x2. This implies that L1 = L2 + z where z = x2 − x1. But
since L1 is a linear subspace, 0 ∈ L1 and therefore L2 must contain −z and
also z (as also L2 is linear subspace). This gives L1 = L2 +z = L2 as desired.

In the example of Figure 1.1 the unique linear subspace L parallel to A
is shown.

We define the dimension dim(A) of an affine set A as the dimension of
the unique linear subspace parallel to A. The maximal affine sets not equal to
the whole space are of particular importance, these are the hyperplanes. More
precisely, we define a hyperplane in Rn as an affine set of dimension n− 1.
For instance, the set A in Figure 1.1 is a hyperplane in R2 and in Figure 1.3 it
is shown a hyperplane in R3. Each hyperplane gives rise of a decomposition
of the space nearly as for linear subspaces. Recall that if L ⊂ Rn then L

and its orthogonal complement L⊥ = {y ∈ Rn : yTx = 0 for all x ∈ L}
have the property that each vector x ∈ Rn may be decomposed uniquely as
x = x1 + x2 where x1 ∈ L and x2 ∈ L⊥, see Figure 1.2.

L

L’

x

x1

x2

Figure 1.2: Orthogonal decomposition x = x1 + x2

Furthermore, we know that dim(L) + dim(L⊥) = n, and, in particular, if
L has dimension n − 1, then L⊥ has dimension 1, i.e., it is a line. Similarly,
a hyperplane partitions the space into two parts, called halfspaces, such that
the normal vector of the hyperplane generates a line (affine set of dimension
1). In fact, we have the following characterization of the hyperplanes.

Proposition 1.2 Any hyperplane H ⊂ Rn may be represented by H = {x ∈
Rn : aTx = b} for some nonzero a ∈ Rn and b ∈ R, i.e. H is the solution
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Figure 1.3: A hyperplane in R3

set of a nontrivial linear equation. Furthermore, any set of this from is a
hyperplane. Finally, the equation in this representation is unique up to a
scalar multiple.

Proof. Recall from linear algebra that we have L = (L⊥)⊥ for any linear
subspace L. But according to Proposition 1.1, we have H = L+ x0 for some
x0 ∈ Rn and a linear subspace L of dimension n − 1. As remarked above
L⊥ = {λa : λ ∈ R} for some nonzero a ∈ Rn. We then get x ∈ H ⇔ x−x0 ∈
L ⇔ x − x0 ∈ (L⊥)⊥ ⇔ aT (x − x0) = 0 ⇔ aTx = aTx0 which shows that
H = {x ∈ Rn : aTx = b} for b = aTx0. The uniqueness (up to scalar multiple
of the equation) in this representation follows from the uniqueness of L (see
again Proposition 1.1) and the equivalences above. Similarly, one sees that
each set being the solution set of a nontrivial linear equation is in fact a
hyperplane.

We can proceed along the same lines and show that affine sets are closely
linked to systems of linear equations.

Proposition 1.3 When A ∈ Rm,n and b ∈ Rm the solution set {x ∈ Rn :
Ax = b} of the linear equations Ax = b is an affine set. Furthermore,
any affine set may be represented in this way. Therefore, the affine sets are
precisely the sets obtained as intersections of hyperplanes.

Proof. This can be proved by the same methods as in the proof of Propo-
sition 1.2. The only difference is that the orthogonal complement L⊥ may
have higher dimension, say k, and we then choose a basis b1, . . . , bk for L⊥

and let the matrix B have these basis vectors as rows.

We say that
∑m

j=1 λjxj is an affine combination whenever x1, . . . , xm ∈
Rn and the weights satisfy

∑m
j=1 λj = 1 (so this is a special linear combination
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of the vectors). Affine combinations play the same role for affine sets as linear
combinations do for linear subspaces, as we shall see below. Let S ⊆ Rn, and
let aff(S) be the intersection of all affine sets containing S. We call aff(S)
the affine hull of S. Note that this is an affine set as the intersection of any
family of affine sets is again an affine set.

Proposition 1.4 A set A ⊆ Rn is affine iff it contains all affine combina-
tions of its points. The affine hull aff(S) of a subset S of Rn consists of all
affine combinations of points in S.

Proof. We first note that if A contains all affine combinations of its points,
it also contains affine combinations of two points which by definition means
that A is affine. Next, assume that A is affine and let x1, . . . , xm ∈ A and
λ1, . . . , λm be such that

∑m
j=1 λj = 1. We must show that x =

∑m
j=1 λjxj ∈

A. Since the λj ’s sum to 1, one of them must be nonzero, say λ1 6= 0. Then

x = λ1x1 +
m∑
j=2

λjxj = λ1x1 + (1− λ1)
m∑
j=2

(λj/(1− λ1))xj. (1.2)

Note here that
∑m

j=2 λj/(1 − λ1) = 1, so the sum on the right-hand-side of
(1.2) is an affine combination y of m− 1 elements in A, and furthermore x is
an affine combination of x1 and y. Thus, by induction, we get the first part
of the proposition.

Next, let W be the set of all affine combinations of points in S. Then
S ⊆ W (affine combination of one point!) and it is easy to check that
W is affine. Therefore we must have aff(S) ⊆ W . By the first part of the
proposition, as aff(S) is affine, it contains all affine combinations of its points,
and, in particular, such combinations of points in S. Thus W ⊆ aff(S) and
the proof is complete.

A set of vectors X = {x0, x1, . . . , xm} are called affinely independent if
dim(aff({x0, x1, . . . , xm}) = m. Note the resemblence to linear independence
here. Affinely dependent vectors are vectors that are not affinely indepen-
dent. For a set X ⊆ Rn the affine rank ra(X) of X is the maximum number
of affinely independent vectors in X. We call the “usual” rank of X, namely
the maximum number of linearly independent vectors in X, for the linear
rank of X and denote this number by rl(X). Relations between linear and
affine independence are given in the next proposition.

Proposition 1.5 Let X = {x0, x1, . . . , xm} be a set of m+ 1 vectors in Rn.
Then the following six statements are equivalent:
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(i) X is affinely independent.
(ii) For each w ∈ Rn the set X − w is affinely independent.
(iii) No vector in X is an affine combination of the others.
(iv) If

∑m
j=0 λjxj = 0 and

∑m
j=0 λj = 0, then λj = 0 for all j.

(v) The m vectors x1 − x0, . . . , xm − x0 are linearly independent.
(vi) The vectors (x0, 1), . . . , (xm, 1) ∈ Rn+1 are linearly independent.

Furthermore, we have that
(vii) if 0 ∈ aff(X), then ra(X) = rl(X) + 1;
(viii) if 0 /∈ aff(X), then ra(X) = rl(X).

Finally, dim(S) = ra(S)− 1 for each set S in Rn.

We leave the proof as a useful exercise!
Affine independence is illustrated in Figure 1.4. The vectors x0, x1, x2, x3

are affinely independent, but linearly dependent while x1−x0, x2−x0, x3−x0

are linearly independent, . The vectors x1, x3, x4 are affinely dependent.

x1

x2

x3
x4

x0

Figure 1.4: Affine independence

1.3 Convex sets and convex combinations

A set C ⊆ Rn is called convex if it contains line segments between each pair
of its point, that is, if λ1x1 + λ2x2 ∈ C whenever x1, x2 ∈ C and λ1, λ2 ≥ 0
satisfy λ1+λ2 = 1. Equivalently, C is convex if and only if (1−λ)C+λC ⊆ C
for every λ ∈ [0, 1]. Some examples of convex sets Ci and non-convex sets Ni

in R2 are shown in Figure 1.5.
All affine sets are convex, but the converse does not hold. More generally,

the solution set of a family (finite or infinite) of linear inequalities aTi x ≤ bi,
i ∈ I is a convex set. Furthermore, when a ∈ Rn and r ∈ R+ the ball B(a, r)
is convex, and this also holds for every norm on Rn. We leave the proof of
these facts as exercises.
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C1

C2 C3

N1 N2

Figure 1.5: Convex and non-convex sets

The dimension of a convex set is defined as the dimension of its affine
hull. More generally, one may define the dimension of any set as the dimen-
sion of its affine hull.

The set Kn = {z ∈ Rn : z ≥ 0,
∑n

j=1 zj = 1} is a convex set called the
standard simplex in Rn, see Figure 1.6.

1

1

1

Figure 1.6: The standard simplex in R3

A cone C ⊆ Rn is a set which is closed under the operation of taking
rays through its points, i.e. λx ∈ C whenever λ ≥ 0 and x ∈ C. A convex
cone is, of course, a cone which is convex. We see that a set C is a convex
cone iff λ1x1 +λ2x2 ∈ C whenever λ1, λ2 ≥ 0 and x1, x2 ∈ C. Note that each
linear subspace is a convex cone. A cone need not be convex, for instance,
a set consisting of two distinct rays is a nonconvex cone. However, we shall
only consider convex cones in the following, so we may sometimes use the
term “cone” as a short term for “convex cone”.

In convex analysis one is interested in certain special linear combina-
tions of vectors that represent “mixtures” of points. When x1, . . . , xm ∈ Rn
and numbers (“weights”) λ1, . . . , λm ≥ 0 satisfy

∑m
j=1 λj = 1 (i.e., λ =
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1

1

Figure 1.7: A convex cone in R2

(λ1, . . . , λm) ∈ Km) we say that x =
∑m

j=1 λjxj is a convex combination
of the points x1, . . . , xm. Thus a set is convex iff it contains each convex com-
bination of any two of its points. A statistician may prefer to view convex
combinations as expectations; the weights define a probability distribution,
and if X is a stochastic vector which attains the value xk with probability
λk, the expectation EX equals

∑m
j=1 λjx. With this interpretation, a set

is convex iff it contains the expectation of all random variables with sam-
ple space {x1, . . . , xm}. A conical combination of vectors x1, . . . , xm is a
vector

∑m
j=1 λjxj for some weights λj ≥ 0, j = 1, . . . ,m.

Figure 1.8: The convex hull of some points in R2

Proposition 1.6 A set C ⊆ Rn is convex iff it contains all convex combina-
tions of its points. A set C ⊆ Rn is a convex cone iff it contains all conical
combinations of its points.

Proof. Clearly, by our definition of convexity, it suffices to prove that if C
is convex and x1, . . . , xm ∈ C and λ ∈ Km, then x =

∑m
j=1 λjx

j ∈ C. We can
show this with a similar method to the one used in the proof of Proposition
1.4. We note that some λj must be positive (otherwise λ 6∈ Km), say λ1 > 0

19



(and, of course, λ ≤ 1), and we then have

x = λ1x
1 + (1− λ1)

m∑
j=2

(λj/(1− λ1))xj. (1.3)

Here
∑m

j=2 λj/(1 − λ1) = 1, so the sum on the right-hand-side of (1.3) is a
convex combination y of m−1 elements in C, and x is a convex combination
of x1 and y. The desired result follows by induction, and similar arguments
give the result for cones.

We define the convex hull conv(S) of a set S ⊆ Rn as the intersection
of all convex sets C containing S. Similarly, the conical hull cone(S) of
a subset S ⊆ Rn is the intersection of all convex cones containing S. Note
that conv(S) is a convex set and that cone(S) is a convex cone; this follows
from the fact that the intersection of an arbitrary family of convex sets (resp.
convex cones) is again a convex set (resp. convex cone). It also follows that if
C is convex, then C = conv(C), and if C is a convex cone, then C = cone(C).

Figure 1.9: The conical hull of some points in R2

Recall from linear algebra that the linear subspace generated by a set
of vectors is the smallest linear subspace containing those vectors. We have
a similar relation for convex hulls (playing the role of “subspace generated
by”).

Proposition 1.7 Let S ⊆ Rn. Then conv(S) consists of all convex com-
binations of points in S and cone(S) consists of all conical combinations of
points in S.

Proof. Let W be the set of all convex combinations of points in S. We see
that S ⊆ W (convex combination of one point!) and that W is convex (see
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Problem 1.8). Thus, by definition, we must have conv(S) ⊆ W . However, by
Proposition 1.6, since conv(S) is convex it contains all convex combinations
of its points, and, in particular, such combinations of points in S which
implies that W ⊆ conv(S) and the proof is complete. The result for cone(S)
is proved similarly.

Convexity is preserved under a number of operations, and the next result
describes a few of these.

Proposition 1.8 (i) Let C1, C2 be convex sets in Rn and let λ1, λ2 be real
numbers. Then λ1C1 + λ2C2 is convex.

(ii) The closure of a convex set is again convex. The closure of a cone is a
cone.

(iii) The intersection of any (even infinite) family of convex sets is a convex
set.

(iv) Let T : Rn → Rm be an affine transformation, i.e., a function of the
form T (x) = Ax + b, for some A ∈ Rm,n and b ∈ Rm. Then T maps
convex sets to convex sets.

Proof. See Problem 1.9!

There is a general technique for transforming results for convex sets into
similar results for cones in a space of dimension one higher than the original
space. Let C ⊆ Rn be a convex set and define

KC = cone({(x, 1) ∈ Rn+1 : x ∈ C}). (1.4)

This cone is called the homogenization of C, see Figure 1.10.

Lemma 1.9 Let C and KC be as above and define C̄ = {(x, 1) ∈ Rn+1 : x ∈
C}. Then we have

(i) KC = {λ(x, 1) : x ∈ C, λ ≥ 0}.
(ii) C̄ = {y ∈ KC : yn+1 = 1}.
(iii) x is a convex combination of (affinely independent) vectors in C if

and only if (x, 1) is a conical combination of (linearly independent) vectors
in C̄.

Proof. (i) C̄ is convex due to the convexity of C and because any convex
combination Y of points in C̄ must have yn+1 = 1. It is a general result
that the conical hull of a convex set C coincides with the set of rays through
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points of C (see Problem 1.10). We then see that property (i) follows directly
from this result.

Property (ii) is a simple consequence of property (i).
(iii) Let a1, . . . , am ∈ C and λ1, . . . , λm ≥ 0. Then (x, 1) =

∑m
j=1 λj(aj, 1)

if and only if x =
∑m

j=1 λjaj and
∑m

j=1 λj = 1. Therefore conical combina-

tions of elements in C̄ corresponds to convex combinations of elements in C.
Furthermore, by Proposition 1.5 (vi) we have that the vectors a1, . . . , am are
affinely independent if and only if (a1, 1), . . . , (am, 1) are linearly independent
and the property (iii) follows.

C

Figure 1.10: Homogenization

Sets being the convex or conical hull of a finite set are of special interest
in the following.

A set P ⊂ Rn which is the convex hull of a finite number of points is
called a polytope. Thus P is a polytope iff P = conv({x1, . . . , xm}) =
{
∑m

j=1 λjxj : λ ∈ Km} for certain x1, . . . , xm ∈ Rn. Examples of polytopes
are shown in Figure 1.8, Figure 1.5 (only C3), and Figure 1.11.

A set K which is the conical hull of a finite number of points is called a
finitely generated cone. So any finitely generated cone is of the form K =
cone({x1, . . . , xm}) = {

∑m
j=1 λjxj : λj ≥ 0 for j = 1, . . . ,m} for suitable

vectors x1, . . . , xm. Some examples of finitely generated cones are found in
Figure 1.7 and Figure 1.9.

In a sense cones may be viewed as objects “intermediate” of linear sub-
spaces and general convex sets, as we discuss next. For a convex cone K in
Rn, we define its polar cone K◦ ⊆ Rn by

K◦ = {y ∈ Rn : yTx ≤ 0 for all x ∈ K}. (1.5)

Since yTx = xTy we see that each x ∈ K represents a valid inequality
xTy ≤ 0 which holds for all y ∈ K◦. Thus, the polar cone K◦ consists of
the solution set of the infinite number of linear inqualities xTy ≤ 0 for each
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Figure 1.11: A polytope, the dodecahedron

element x in K, and, therefore, K◦ is a convex set. Some properties of the
polar cone are given next.

Proposition 1.10 K◦ is a closed convex cone. If K is a linear subspace,
then K◦ equals the orthogonal complement K⊥ of K.

Proof. The fact that K◦ is a convex cone follows directly from the definition
using the linearity of the scalar product. The continuity of the scalar product
gives the closedness as follows. Let {yk}∞k=1 be a sequence of points in K◦ that
converges to some point y. Then (yk)Tx ≤ 0 for each x ∈ K, so the mentioned
continuity of the function z → zTx implies that yTx ≤ 0, so y ∈ K◦ and
K◦ is closed. Finally, assume that K is a linear subspace, and then −x ∈ K
whenever x ∈ K. Therefore, K◦ = {y ∈ Rn : yTx = 0 for all x ∈ K} (for
if yTx < 0, then yT (−x) > 0, so we have a violation). But this proves that
K◦ = K⊥.

We may therefore view polarity as a concept generalizing orthogonality.
The polar cone of finitely generated cones will be of special interest to us in
connection with linear programming.

Proposition 1.11 If K is the finitely generated cone K = cone({c1, . . . , cm}),
then its polar cone is the solution set of a finite set of linear inequalities,
K◦ = {y ∈ Rn : cTj y ≤ 0 for j = 1, . . . ,m}.

Proof. Since c1, . . . , cm ∈ K, it follows that K◦ ⊆ {y ∈ Rn : cTj y ≤
0 for j = 1, . . . ,m}. Conversely, if y satisfies cTj y ≤ 0 for j = 1, . . . ,m,
then we also have (

∑m
j=1 λjcj)

T y ≤ 0 whenever λj ≥ 0 for each j. But since
any y ∈ K is of the form y =

∑m
j=1 λjcj for suitable λj ≥ 0, j = 1, . . . ,m,

this shows that y ∈ K◦ as desired.
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K

K’

Figure 1.12: Polar cones

The remaining part of this section is devoted to some topological consid-
erations for convex sets.

From the perspective of affine and convex sets the usual topology on
Rn has limited value. The problem is that many interesting convex sets
are not fulldimensional, i.e., they lie in affine sets of dimension strictly less
than n. Such sets have empty interior. For instance, a line segment in
R2 has nonempty interior, although the points except the two end points
are “interior relative to the line”. This deficiency of the usual topology is
overcome by passing to relative topologies, see Section 1.1.

Let C ⊆ Rn be a convex set, and let A = aff(C). Consider the topology
relative to A (defined on A). Recall that the relative interior of C, denoted
rint(C) is the union of all sets that are open relative to A and also contained
in C. Equivalently, rint(C) is the largest relative open set contained in C.
For instance, consider a convex set being a line segment in R2 and given by
C = {(x, y) ∈ R2 : 0 ≤ x < 1, y = 1}. Then we get rint(C) = {(x, y) ∈ R2 :
0 < x < 1, y = 1} and the relative boundary is rbd(C) = {(0, 1), (1, 1)}.

A remarkable topological property of convex sets is that they are “very
close” in a sense to their relative interior as the following theorem says.

Theorem 1.12 If C ⊆ Rn is a nonempty convex set, then rint(C) is also
nonempty. Furthermore, the sets rint(C), C and cl(C) all have the same
relative interior, relative boundary and closure.

We omit the proof of this result, but remark that they are related to the
following interesting property of convex sets: if x lies on the boundary of a
convex set C and y lies in the relative interior of C, then every point on the
line segment between x and y, except x, lies in the relative interior of C.
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1.4 Carathéodory’s theorem

The concept of a basis is very important in linear algebra (and in its gener-
alization, matroid theory). For a linear subspace L of Rn each maximal set
B of linearly independent vectors in L contain the same number of vectors.
This number is called the dimension of L (comment: maximal means here
that by extending the set by one more vector we get a linearly dependent
set), and B is a basis. Any vector x ∈ L may be expressed uniquely as a
linear combination of elements in this basis. Therefore any linear combina-
tion of “lots of” vectors in L may be rewritten as a linear combination of the
basis vectors, so only dim(L) vectors are used in this combination. A natural
question is now: can we do similar reductions for convex combinations? Yes,
the following theorem, called Carathéodory’s theorem, shows that this is
the case. Note that the proof actually gives an algorithm for performing this
reduction, and it is related to linear programming as we shall see later. We
prefer to consider the result for conical combinations first, and then turn to
convex combinations.

Theorem 1.13 Let C = cone(G) for some G ⊆ Rn and assume that x ∈ C.
Then x can be written as a conical combination of m ≤ n linearly independent
vectors in G.

Proof. Since C is a convex cone, it follows from Proposition 1.7 that there
are a1, . . . , am ∈ G and λ ≥ 0 such that x =

∑m
j=1 λjaj, in fact, we may

assume that λj > 0 for each j. If a1, . . . , am are linearly independent, then
we must have m ≤ n and we are done.

Otherwise, a1, . . . , am are linearly dependent, and we then claim that it
is possible to modify the weights λj into λ′j such that at least one λ′j is zero
and x =

∑m
j=1 λ

′
jaj. Thus we can reduce the number of elements in the

conical combination by 1. To prove this, we first note that since a1, . . . , am
are linearly dependent, there are numbers µ1, . . . , µm not all zero such that∑m

j=1 µjaj = 0. We may assume that µ1 > 0 (some µj is nonzero, and if it
is negative, we may multiply all weights by (−1); for simplicity we assume
that j = 1). Define ∆∗ by

∆∗ = max{∆ ≥ 0 : λj −∆µj ≥ 0 for all j ≤ m} = min{λj/µj : µj > 0}.
(1.6)

As each λj > 0 and µ1 > 0, we get 0 < ∆∗ < ∞. Let the modified weights
λ′j be given by λ′j = λj −∆∗µj for j ≤ m. It follows from (1.6) that λ′j ≥ 0
and that at least one λ′j must be 0. Furthermore,

∑
j≤m λ

′
jaj =

∑
j≤m(λj −

∆∗µj)aj =
∑

j≤m λjaj −∆∗
∑

j≤m µjaj = x −∆∗0 = x, so we have proved
our claim.
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By repeatedly applying this reduction we can reduce the number of ele-
ments in the conical combination representing x until we end up with positive
coefficient only for linearly independent vectors and there can be at most n
of these.

Next, we give the version of Carathéodory’s theorem for convex sets.

Corollary 1.14 Let C = conv(G) for some G ⊆ Rn and assume that x ∈
C. Then x can be written as a convex combination of m ≤ n + 1 affinely
independent vectors in G.

Proof. We use homogenization. Let x ∈ C = conv(G), so x is a convex
combination of elements in G (by Proposition 1.7). Then (x, 1) is a conical
combination of elements of the form (g, 1) for g ∈ G (see Lemma 1.9(iii)),
and therefore, according to Theorem 1.13, (x, 1) is also a conical combination
of linearly independent vectors of the form (g, 1) for g ∈ G. Using Lemma
1.9(iii) once again, it follows that x is a convex combination of affinely inde-
pendent vectors in G.

Carathéodory’s theorem says that, for a given point x ∈ Rn in the convex
hull of a set S of points, we can write x as a convex combination of at most
n+ 1 affinely independent points from S. This, however, does not mean, in
general, that there is a “convex basis” in the sense that the same set of n+ 1
points may be used to generate any point x. Thus, the “generators” has to
be chosen specificly to each x. This is in contrast to the existence of a basis
for linear subspaces. It should be noted that a certain class of convex sets,
simplices, discussed below, has a “convex basis”; this is seen directly from
the definitions below.

Carathéodory’s theorem has some interesting consequences concerning
decomposition of certain convex sets and convex cones.

Some special polytopes and finitely generated cones are of particular in-
terest. A simplex S in Rn is the convex hull of a set X of affinely indepen-
dent vectors in Rn, see Figure 1.6. In particular, each simplex is a polytope
and dim(S) = |X| − 1. A generalized simplex is a cone K generated by
(= conical hull of) n linearly independent vectors in Rn. So K is a finitely
generated cone and it is fulldimensional.

We next give a simplicial decomposition theorem for polytopes and finitely
generated cones.

Theorem 1.15 Each polytope in Rn can be written as the union of a finite
number of simplices. Each finitely generated cone can be written as the union
of a finite number of generalized simplices.
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Proof. Consider a polytope P = conv({a1, . . . , am}) ⊂ Rn. We define M =
{1, . . . ,m} and let F be the family of all subsets J of M for which aj,
j ∈ J are affinely independent. Clearly, F is finite. For each J ∈ F let
P J = conv({aj : j ∈ J}), and note that P J is a simplex and P J ⊆ P .

We claim that P = ∪J∈FP J . The inclusion ⊇ is trivial, so we only
need to prove that each x ∈ P lies in some P J . Let x ∈ P and then,
by Carathéodory’s theorem (Corollary 1.14), x may be written as a convex
combination of affinely independent vectors from a1, . . . , am. But this means
that x lies in some P J and the claim has been proved.

The corresponding result for convex cones may be proved similarly when
we define the family F to consist of all subsets J of M for which aj, j ∈ J
are linearly independent. We then apply the cone version of Carathéodory’s
theorem and the desired result follows.

The decomposition result has an important consequence for, in particular,
finitely generated cones as discussed next.

Proposition 1.16 Each finitely generated cone in Rn is closed. Each poly-
tope in Rn is compact.

Proof. Let K ′ be a finitely generated cone in Rn. By Theorem 1.15, K ′

is the union of a finite number of generalized simplices. Thus, it suffices to
prove that every generalized simplex is closed (as the union of a finite set of
closed sets is closed, see Section 1.1). Consider a generalized simplex K =
cone({a1, . . . , an}) where a1, . . . , an are linearly independent. LetA ∈ Rn,n be
the matrix with j’th column being aj. We then see that K = {Aλ : λ ∈ Rn+}
and that A is nonsingular. Consider a sequence of points {xk}∞k=1 ⊆ K
which converges to some point z. If we can prove that z ∈ K, then K is
closed (confer again Section 1.1 on topology). Since xk ∈ K, there is some
λk ∈ Rn+ with xk = Aλk for each k, and therefore , as A is nonsingular, we
have A−1xk = λk for each k. Since xk → z and any linear transformation
is continuous (by the Cauchy-Schwarz inequality), we get A−1xk → A−1z,
i.e., λk → A−1z. But the limit point of any convergent sequence in Rn+ must
lie in Rn+ (as this set is closed!), so we get A−1z ∈ Rn+ and therefore also
z = AA−1z ∈ K as desired. This proves that any generalized simplex is
closed, and we are done.

Finally, we prove the similar result for polytopes. This is easier. As-
sume that the simplex C is the convex hull of affinely independent points
a1, . . . , an+1. Then we may write C = {Aλ : λ ∈ Kn+1} where A ∈ Rn,n
is the matrix with j’th column being ai and Kn+1 is the standard simplex
in Rn+1. Now, Kn+1 is closed and bounded, i.e., compact, and the linear
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transformation given by A is continuous (see Problem 1.11). Thus we can
apply Weierstrass’ theorem and conclude that C is compact.

1.5 Separation of convex sets

Convex sets have many interesting properties. One of these is that disjoint
convex sets can be separated by hyperplanes. In R2 this means that for
any two disjoint convex sets we can find a line such that the two sets lie on
opposite sides of this line (possibly intersecting the line). This is not true
for non-convex sets. It turns out that this property in Rn may be viewed as
a “theoretical core” of the linear programming duality theory. Separation of
convex sets is also important in nonlinear optimization and other areas (e.g.,
game theory and statistical decision theory).

H

C1
C2

Figure 1.13: Separation of convex sets

Separation involves the concepts of a hyperplane and a halfspace as in-
troduced next. For each a ∈ Rn and b ∈ R we define the halfspaces
H≤(a, b) = {x ∈ Rn : aTx ≤ b} and H≥(a, b) = {x ∈ Rn : aTx ≥ b}, and
also the hyperplane H=(a, b) = {x ∈ Rn : aTx = b}. These two halfspaces
are the closed halfspaces associated with the hyperplane H=(a, b). We call
H<(a, b) := int(H≤(a, b)) and H>(a, b) := int(H≥(a, b)) the open halfspaces
associated with H=(a, b). Geometrically, a hyperplane divides the space into
two parts given by the associated closed halfspaces.

Loosely speaking, separation of disjoint convex sets means that one can
find a hyperplane such that the two sets are contained in the opposite closed
halfspaces defined by the hyperplane.

First, we study separation of a point from a convex set. Our proof will be
based on geometry and topology, so we recommend to look through Section
1.1 before proceeding.
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H

Cx0

Figure 1.14: The proof idea

Theorem 1.17 Let C be a nonempty closed convex set in Rn and let p 6∈ C.
Then there exists a nonzero a ∈ Rn and an ε > 0 such that

aTx ≤ aTp− ε for all x ∈ C. (1.7)

Furthermore, there is a unique point x0 ∈ C closest to p in C, i.e. ‖p−x0‖ =
dist(C, p), and we may choose a = p− x0 in (1.7).

Proof. We first prove that infx∈C‖x − p‖ is attained. Let c ∈ C (which is
possible as C is nonempty). Then infx∈C‖x − p‖ = infx∈C′‖x − p‖ where
C ′ = {x ∈ C : ‖x − p‖ ≤ ‖c − p‖}. Note that C ′ is bounded since it lies
inside a ball of radius ‖c − p‖ with center p. In addition C ′ is closed (as
the intersection of the mentioned ball and C), and therefore C ′ is compact.
Since the norm is a continuous function, it follows from Weierstrass’ theorem
that infx∈C‖x− p‖ = ‖x0 − p‖ for some x0 ∈ C as claimed. (Note: in these
arguments we did not use convexity, only that C is nonempty and closed, so
we have shown that dist(p, C) is attained under these assumptions)

Let x ∈ C and 0 < t < 1. Since C is convex, (1 − t)x0 + tx ∈ C

and therefore ‖(1 − t)x0 + tx − p‖ ≥ ‖x0 − p‖. By squaring both sides
and calculating the inner products we obtain ‖x0 − p‖2 + 2t(x0 − p)T (x −
x0) + t2‖x − x0‖2 ≥ ‖x0 − p‖2. We now subtract ‖x0 − p‖2 on both sides,
divide by t and let t → 0+, and get (x0 − p)T (x − x0) ≥ 0 or equivalently
(x0− p)Tx ≥ (x0 − p)T p+ ‖x0 − p‖2. Define a = p− x0, so a 6= 0 (as p 6∈ C)
and the inequality becomes aTx ≤ aTp − ‖p − x0‖2 which holds for each
x ∈ C. Thus we have shown (1.7). It only remains to prove that x0 is the
unique point in C closest to p. Let r = ‖p − x0‖ = dist(p, C). Then the
set of points within distance r from p is the ball B̄(p, r). Let b = aTx0, and
from (1.7) we see that C is contained in the halfspace H≤(a, b) and B̄(p, r)
is contained in the opposite halfspace H≥(a, b) and x0 is the unique point in
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B̄(p, r) which also lies in the hyperplane H=(a, b). The desired uniqueness
result follows directly from these relations.

A more specialized version of this separation theorem is obtained if C is
a convex cone.

Corollary 1.18 Let C be a non-empty closed convex cone in Rn and let
p 6∈ C. Then there exists an a ∈ Rn \ {0} such that

aTx ≤ 0 < aTp for all x ∈ C. (1.8)

Proof. We apply Theorem 1.17 and let a be as in (1.7). We claim that
aTx ≤ 0 for all x ∈ C. In fact, if aTx > 0 for some x ∈ C, then also λx ∈ C
for each λ ≥ 0 (as C is a cone), and therefore aT (λx) = λaTx → ∞ as
λ→∞. But this contradicts that aT (λx) ≤ aTp− ε, and the claim follows.
Furthermore, we have that aTp > 0; this follows from (1.7) as 0 ∈ C and
aT0 = 0.

C

p

H

a

Figure 1.15: Separation for convex cones

From the perspective of linear programming duality, it is the previous
“point-set” separation theorem that is needed. However, for other applica-
tions, it may be of interest to give more general separation theorems as we
do next.

We first introduce different notions for separating sets. Let C1 and C2 be
nonempty sets, and let a ∈ Rn, b ∈ R. We say that the hyperplane H=(a, b)
weakly separates C1 and C2 if C1 and C2 are contained in different sets
among the two closed halfspaces H≤(a, b) and H≥(a, b). If, in addition, we
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have that dist(Ci, H=(a, b)) > 0 for i = 1, 2, the hyperplane H=(a, b) is said
to strongly separate C1 and C2.

It should be noted that weak separation is indeed a weak concept because
it allows the following improper separation. Let A be the affine hull of C1∪C2

and assume that A is not fulldimensional. Then we can find a nonzero vector
a ∈ L⊥ where L is the unique linear subspace parallel to A. Then aTx is
constant, say equal to b, for x ∈ A, and therefore the hyperplane H=(a, b)
weakly separates C1 and C2. Here both the sets C1 and C2 are contained in
this hyperplane, so this kind of separation is not of much interest. Therefore,
we introduce a stronger requirement next. We say that a hyperplaneH=(a, b)
properly separates C1 and C2 if it weakly separates the two sets and, in
addition, either C1 or C2 intersects one of the two open halfspaces associated
with H=(a, b).

We are now prepared to give results concerning both strict and proper
separation of convex sets.

Theorem 1.19 Let C1 and C2 be nonempty convex sets. Then the following
statements are equivalent.

(i) C1 and C2 are strongly separated by some hyperplane.
(ii) There exists an nonzero a ∈ Rn with supx∈C1

aTx < infy∈C2a
Ty.

(iii) dist(C1, C2) > 0.

Proof. (i) ⇒ (ii): Assume that (i) holds, so there exists a nonzero a ∈ Rn
and b ∈ R with C1 ⊆ H≤(a, b), C2 ⊆ H≥(a, b), and dist(C1, H=(a, b)) = ε1 >
0, dist(C2, H=(a, b) = ε2 > 0. We may assume that ‖a‖ = 1 as otherwise
we could scale a and b suitably. Define ε = min{ε1, ε2}, so ε > 0. Let
L = span{a} = {λa : λ ∈ R} (a subspace of dimension 1 being a line
through the origin with direction vector a) and let L⊥ be its orthogonal
complement, i.e. L⊥ = {x ∈ Rn : aTx = 0}. Let c ∈ C1. We may then
decompose c as c = c1 + c2 where c1 ∈ L and c2 ∈ L⊥. Here c1 = λa
for suitable λ ∈ R. Now, ε ≤ ε1 ≤ dist(C1, H=(a, b)) ≤ dist(c,H=(a, b)) =
dist(c1, H=(a, b)) = ‖λa− b a‖ = |λ− b|‖a‖ = |λ− b|. We used the fact that
the projection of λa onto the hyperplane H=(a, b) is the point b a. We must
have λ ≤ b as C1 ⊆ H≤(a, b), so it follows that λ ≤ b− ε which again gives
aT c = aT (c1 + c2) = aT c1 + aT c2 = aT c1 = aTλa = λ ≤ b− ε. This inequality
holds for all c ∈ C1, and therefore supx∈C1

aTx ≤ b− ε. By similar arguments
we obtain that infy∈C2a

Ty ≥ b+ ε, which shows that statement (ii) holds.
(ii) ⇒ (iii): Assume that (ii) holds, and that dist(C1, C2) = 0; we

shall deduce a contradiction and thereby obtain the desired implication.
Choose sequences {xn}∞n=1 ⊆ C1 and {yn}∞n=1 ⊆ C2 such that ‖xn − yn‖ →
dist(C1, C2) = 0. This implies that aT (xn−yn)→ 0 since each linear function
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is continuous (confer the Cauchy-Schwarz inequality). But this contradicts
the strict inequality in (ii) and the implication follows.

(iii) ⇒ (i): Assume that (iii) holds. Then 0 6∈ cl(C1 − C2). From (1.1)
we see that C1−C2 is convex, and this implies that its closure cl(C1−C2) is
convex. We now apply Theorem 1.17 with C = ¯C1 − C2 and p = 0 and obtain
a nonzero vector a such that aTz ≤ aT 0− ε = −ε for each z ∈ cl(C1−C2). In
particular, we get (for z = c1 − c2) a

T c1 ≤ aT c2 − ε for all c1 ∈ C1, c2 ∈ C2.
Let b = supx∈C1

aTx, and we have shown that aTx ≤ b and aTy ≥ b + ε for
all x ∈ C1, y ∈ C2. Thus C1 ⊆ H≤(a, b) and C2 ⊆ H≥(a, b + ε), so the
hyperplane H=(a, b+ ε/2) separates C1 and C2 strongly.

As remarked before, it is not generally true that dist(A,B) = ‖a− b‖ for
suitable a ∈ A and b ∈ B. However, under a compactness assumption this
holds as described next.

Lemma 1.20 Let A and B be two nonempty closed sets in Rn where at least
one of these sets is bounded as well (and therefore compact). Then there
exists a ∈ A and b ∈ B with ‖a− b‖ = dist(A,B). If, in addition, the sets
are disjoint, we have dist(A,B) > 0.

Proof. Say that A is compact, i.e. closed and bounded. Pick an element
b̃ ∈ B and consider the set B̃ = {b ∈ B : dist(A, b) ≤ dist(A, b̃)}. This set B̃
is nonempty (it contains b̃) and compact. Furthermore, we have

inf{‖a− b‖ : a ∈ A, b ∈ B} = inf{‖a− b‖ : a ∈ A, b ∈ B̃}. (1.9)

Note here that A× B̃ is compact (this follows from Tychonoff’s theorem, but
can also be shown directly) and the function ‖a−b‖ is continuous on this set.
By Weierstass’ theorem each continuous function on a compact set achieves
its infimum, so it follows that that the last infimum in (1.9) is achieved by
some a ∈ A and b ∈ B̃ ⊆ B. Assume now that A and B are disjoint, and
let a ∈ A, b ∈ B be such that ‖a− b‖ = dist(A,B). The disjointness implies
that a 6= b, so 0 < ‖a− b‖ = dist(A,B) which completes the proof.

Corollary 1.21 Let C1 and C2 be disjoint convex sets where at least one of
these is compact. Then C1 and C2 are strongly separated by some hyperplane.

Proof. This is an immeditate consequence of Lemma 1.20 and Theorem
1.19.

Our last separation theorem involves proper separation, but we leave out
the proof.
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Theorem 1.22 Let C1 and C2 be nonempty convex sets with disjoint relative
interior (rint(C1)∩ rint(C1) = ∅). Then C1 and C2 can be properly separated
by a hyperplane.

In particular, if C1 is a nonempty convex set and p ∈ rbd(C1), then {p}
and C1 can be properly separated by a hyperplane.

This result is important in connection with a theory of generalized gradients
which again is central in e.g. nondifferentiable optimization.

H

C2

C1

Figure 1.16: Proper separation

We shall give one important application of the separation theory to po-
larity. Recall from (1.5) that the polar of a convex cone K ⊆ Rn is the set
K◦ = {y ∈ Rn : yTx ≤ 0 for all x ∈ K}. What happens if we apply the
polarity operation twice to the cone K? In the next result we give the form
of the bipolar K◦◦ := (K◦)◦.

Proposition 1.23 Let K be a convex cone. Then we have that K◦◦ = cl(K).

Proof. For each x ∈ K and each y ∈ K◦ we have that yTx ≤ 0 (by the
definition of K◦). But this immediately gives that x ∈ K◦◦, so we have
K ⊆ K◦◦. By taking the closure on both sides of this inequality we obtain
cl(K) ⊆ K◦◦ since we know from Proposition 1.10 that K◦◦ is a closed cone.

In order to prove the opposite inclusion, we shall use separation. Note
that, by Proposition 1.8, the set cl(K) is convex, in fact it is easy to see
that it is a closed convex cone. Assume that cl(K) ⊂ K◦◦ holds with strict
inclusion, so there is some p ∈ K◦◦ \ cl(K). From Corollary 1.18 there is
some nonzero vector a ∈ Rn such that aTx ≤ 0 < aTp for all x ∈ K. From
the last inequality we get that a ∈ K◦ and therefore, for any z ∈ K◦◦ we
must have (by definition of the bipolar) that aT z ≤ 0. In particular, this
must hold for z = p ∈ K◦◦, so aT p ≤ 0. But this contradicts the separation
inequality aTp > 0, and it follows that cl(K) = K◦◦ as desired.
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For an illustration of the previous theorem, see Figure 1.12.
It follows from the last result that when K is a closed convex cone we have

that K = K◦◦. This relation generalizes the well-known fact that L⊥⊥ = L
for a linear subspace L.

1.6 Exercises

Problem 1.1 Prove the relations in (1.1).

Problem 1.2 Show that the intersection of any family of affine sets is an
affine set.

Problem 1.3 Prove Proposition 1.5.

Problem 1.4 Consider a family (possibly infinite) of linear inequalities
aTi x ≤ bi, i ∈ I, and C be its solution set, i.e., C is the set of points satisfying
all the inequalities. Prove that C is a convex set.

Problem 1.5 Consider the unit disc S = {(x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1}
in R2. Find a family of linear inequalities as in the previous problem with
solution set S.

Problem 1.6 Show that the ball B(a, r) is convex (for a ∈ Rn and r ∈ R+).

Problem 1.7 Show that (i) the intersection of any family of convex sets is
a convex set, and that (ii) the intersection of any family of convex cones is
a convex cone.

Problem 1.8 Let S ⊆ Rn and let W be the set of all convex combinations
of points in S. Prove that W is convex.

Problem 1.9 Prove Proposition 1.8.

Problem 1.10 Prove that the conical hull of a convex set S ⊆ Rn coincides
with the set of rays through points of S, i.e., cone(S) = {λx : x ∈ S, λ ≥ 0}.

Problem 1.11 Prove that (i) the linear transformation x→ aTx, for given
a ∈ Rn is continuous, and that (ii) the standard simplex Km is compact.

Problem 1.12 Let C be a simplex being the generated by a set Sof (affinely
independent) points. Show that each point in C can be written uniquely as
a convex combination of the points in S. What about the points outside C:
can they be written as convex, affine or linear combination of points in S?
Uniquely?

34



Chapter 2

Theory of polyhedra, linear
inequalities and linear
programming

From chapter 1 we have now available a theory of convex sets. The purpose
of this chapter is to apply and extend this theory to a very important class of
convex sets called polyhedra. The interest in polyhedra is motivated by the
fact that these are the feasible sets in linear programming and that they arise
in integer linear programming. Moreover, the “mathematics of polyhedra” is
a fascinating subject in itself, although we shall not go to far into this theory.

A main influence of the presentation given here is the classic book [35]
on linear and integer linear programming, as well as the paper [32]. We also
recommend [39] where the combinatorics of polytopes is the main theme.
Both these books contain a large number of further references.

2.1 Polyhedra and linear systems

We introduce the basic objects of this chapter, polyhedra and linear inequal-
ities.

A linear inequality is an inequality of the form aTx ≤ β where a ∈ Rn
is non-zero and β ∈ R. Note that a linear equality (equation) aTx = β
may be written as the two linear inequalities aTx ≤ β, aTx ≥ β. A linear
system, or system for short, is a finite set of linear inequalities, so it may
be written in matrix form as Ax ≤ b where A ∈ Rm,n and b ∈ Rm. The
i’th inequality of the linear system Ax ≤ b is the linear inequality aTi x ≤ bi
(so aTi = (ai,1, . . . , ai,n)). A linear system is consistent if it has at least
one solution, i.e., there is an x0 satisfying Ax0 ≤ b. An inequality aTi x ≤ bi
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from the system Ax ≤ b is active in a point x0 (with Ax0 ≤ b) if it satisfies
aTi x0 = bi, i.e., this inequality holds with equality in x0.

We are (very!) interested in the set of points that satisfy linear systems.
A polyhedron P ⊆ Rn is the solution set of a linear system, i.e., P =
{x ∈ Rn : Ax ≤ b} for some linear system Ax ≤ b. An example of an
(unbounded) polyhedron is shown in Figure 2.1; it is the solution set of
three linear inequalities. A halfspace is the solution set of a single linear
inequality, see Figure 2.2.

Proposition 2.1 Any polyhedron in Rn is a closed convex set, and it is the
intersection between a finite number of halfspaces.

Proof. Let P = {x ∈ Rn : Ax ≤ b}, so we have P = ∩mi=1{x ∈ Rn : aTi x ≤
bi} which shows that P is the intersection of a finite number of halfspaces.
Thus, the result will follow if we show that each halfspace is both closed and
convex. This, however, is easy to verify from the definitions (or like this: a
halfspace is closed as the inverse image of the closed set {y ∈ R : y ≤ b}
under the continuous function x→ y = aTx).

Figure 2.1: A polyhedron

We say that two linear systems are equivalent if they have the same
solution set, i.e., if the associated polyhedra coincide. A linear systemAx ≤ b
is called real (resp. rational) if all the elements in A and b are real (resp.
rational). A polyhedron is real (resp. rational) if it is the solution set
of a real (resp. rational) linear system. Note that a rational linear system
is equivalent to a linear system with all coefficients being integers; we just
multiply each inequality by a suitably large integer. (Remark: an integral
polyhedron is not defined through an integral linear system, but we return
to this later).
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Figure 2.2: A halfspace

2.2 Farkas’ lemma and linear programming

duality

One of the main topics in this section is the consistency of linear systems, i.e.,
the question of whether a given linear system has a solution. This problem is
connected to linear programming. In fact, consider an LP problem (P) max
{cTx : Ax ≤ b} having optimal value v(P ). We then see that v(P ) ≥ α if
and only if the linear system Ax ≤ b, cTx ≥ α has a solution x. Thus after
a study of consistency, we pass on to applications of these results to linear
programming.

Consider first a linear system of equations Ax = b. From linear algebra
we recall a simple characterization of whether this system has a solution; this
is the so-called Fredholm’s alternative.

Theorem 2.2 Let A ∈ Rm,n have columns a1, . . . , an and let b ∈ Rm. The
system Ax = b has a solution if and only if yT b = 0 for all y ∈ Rm with
yTaj = 0, j = 1, . . . , n.

This (algebraic) result may be interpreted in different ways. The geomet-
ric content is obtained by observing that Ax = b has a solution x if and only if
b ∈ L = span({a1, . . . , a1}) (recall from block multiplication of matrices that
Ax =

∑n
j=1 xjaj). But L is a linear subspace and by the orthogonal decom-

position theory we have L = (L⊥)⊥, so we obtain that Ax = b is consistent iff
b ⊥ y for each y ∈ L⊥, which is precisely the statement in Fredholm’s result.
Finally, we may give an inference interpretation as follows. Let us say that an
equation which is a linear combination of the equations in Ax = b is implied
by the system. Thus an implied equation is of the form (yTA)x = yT b for
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some vector y ∈ Rm. An obvious fact is that a consistent system cannot have
an implied equality of the form 0Tx = β for some β 6= 0; such an equation is
clearly inconsistent. Fredholm’s alternative says that Ax = b is consistent if
and only if there is no implied equality which is inconsistent.

The next result, called Farkas’ lemma generalizes Fredholm’s alternative
to general linear systems.

Theorem 2.3 Let A ∈ Rm,n and b ∈ Rm. Then the linear system Ax = b,
x ≥ 0 has a solution if and only if yT b ≥ 0 for each y ∈ Rm with yTA ≥ 0.

Proof. The system Ax = b, x ≥ 0 has a solution if and only if b ∈ K :=
cone({a1, . . . , an}), where these vectors are the column vectors of A. But
from Proposition 1.16 K is closed and combining this with the form of the
bipolar in Proposition 1.23 we get K = K◦◦. Thus we get the following
equivalences:

b ∈ K ⇔ b ∈ K◦◦ ⇔

yT b ≤ 0 for each y ∈ K◦ ⇔

yT b ≤ 0 for each y ∈ Rm with yTA ≤ 0⇔

yT b ≥ 0 for each y ∈ Rm with yTA ≥ 0.

and the proof is complete.

Farkas’ lemma may therefore be viewed as a polarity result which, in our
development, is based on two results: (i) the closedness of finitely generated
cones (due to Carathéodory’s theorem) and (ii) a separation theorem for
convex cones. The geometric interpretation of Farkas’ lemma is illustrated
in Figure 2.3. Here the matrix A has the two columns a1 and a2 and K is the
cone generated by these two vectors. We see that Ax = b1 has nonnegative
solution as b1 ∈ K, while Ax = b2 has no nonnegative solution as there is a
hyperplane defined by y which separates b2 from K.

Variants of Farkas’ lemma are obtained by studying the consistency of
other linear systems. One can transform one linear system into another by
e.g. introducing additional variables. For instance, the system (i) Ax ≤ b is
“equivalent” to the system (ii) Ax+ y = b, y ≥ 0 in the sense that we can
transform a solution of one of the systems into a solution of the other. In
fact, if x is a solution of (i), then (x, y) where y := b−Ax is a solution of (ii)
(because Ax ≤ b gives y ≥ 0 and Ax+y = b). Conversely, if (x, y) is a solution
of (ii), then Ax = b− y ≤ b so x is a solution of (i). The variable y above is
called a slack variable as its components represent the slack (difference) in
each of the original inequalities. There are two other transformation tricks to
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Figure 2.3: Farkas’ lemma

be aware of. First, we can clearly convert each equation into two inequalities,
i.e., aTx = β is equivalent to aTx ≤ β,−aTx ≤ −β. Secondly, simple variable
substitutions are useful, for instance, a free variable x ∈ Rn which can be
any real number (e.g., it is not restricted to be nonnegative) may be replaced
by the two nonnegative variables x1, x2 ∈ Rn through x = x1 − x2. By using
one or more of these transformations one may get alternative (equivalent)
forms of Farkas’ lemma, formulated for different types of linear system. One
such alternative formulation is as follows.

Corollary 2.4 Let A ∈ Rm,n and b ∈ Rm. Then the linear system Ax ≤ b
has a solution if and only if yT b ≥ 0 for each y ∈ Rm with y ≥ 0 and
yTA = 0.

Proof. We introduce a nonnegative slack variable u and see that Ax ≤ b
has a solution iff Ax + u = b, u ≥ 0 has a solution. Next, we introduce
nonnegative variables x1, x2 by x = x1 − x2, and we obtain the new system
A(x1 − x2) + u = b, x1, x2 ≥ 0, u ≥ 0 or in matrix form

[
A −A I

]  x1

x2

u

 = b,

x1 ≥ 0, x2 ≥ 0, u ≥ 0.

and this system is equivalent to the original system Ax ≤ b. By Farkas’
lemma the new system has a solution iff yT b ≥ 0 for each y satisfying yTA ≥
0, yT (−A) ≥ 0 and yTI ≥ 0, i.e. yT b ≥ 0 for each y ≥ 0 satisfying yTA = 0.
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Note that from Corollary 2.4 we obtain Fredholm’s alternative as follows.
A linear system of equations Ax = b has a solution iff Ax ≤ b,−Ax ≤ −b has
a solution which again is equivalent to yT1 b+ yT2 (−b) ≥ 0 for each y1, y2 ≥ 0
with yT1 A + yT2 (−A) = 0. By replacing y1 − y2 by y (without any simple
bounds), we get the equivalent condition yT b ≥ 0 for each y with yTA = 0,
which clearly is equivalent to yT b = 0 for each y with yTA = 0 (as yTA = 0
implies that (−y)TA = 0).

We now turn to linear programming theory. A central concept in this area
is duality which represents certain close connections between pairs of LP
problems. Recall from Chapter 0 that the optimal value of an optimiza-
tion problem (Q) is denoted by v(Q) (and if the problem is unbounded or
infeasible v(Q) is suitably defined as either −∞ or ∞).

Consider a linear programming problem

(P) max{cTx : Ax ≤ b}. (2.1)

We shall call (P) the primal problem. We associate another LP problem
with (P), which we call the dual problem:

(D) min{yT b : yTA = cT , y ≥ 0}. (2.2)

We may motivate the study of this dual problem in the following way.
Assume that one wants to find an upper bound on the optimal value of prob-
lem (P). This may be derived from the system Ax ≤ b by taking nonnegative
linear combinations. Thus, let y ∈ Rm be nonnegative and assume that y is
chosen such that yTA = cT which means that the objective c is written as
a conical combination of the rows in A. Then each feasible solution of (P)
also satisfies the new inequality (yTA)x ≤ yT b (because y is nonnegative), or,
equivialently, cTx ≤ yT b. Therefore yT b is an upper bound on the optimal
value v(P ) of (P), and it follows that the dual problem (D) is to find the best
upper bound on v(P ) in terms of such conical combinations.

The following theorem, called the duality theorem of linear programming,
represents the heart of the duality theory. It says that the optimal values of
the two problems are the same.

Theorem 2.5 Let A ∈ Rm,n, b ∈ Rm and c ∈ Rn. Assume that each of the
two systems Ax ≤ b and yTA = cT , y ≥ 0 is consistent. Then we have

max{cTx : Ax ≤ b} = min{yT b : yTA = cT , y ≥ 0}. (2.3)
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Proof. Let x satisfyAx ≤ b and y satisfy yTA = cT , y ≥ 0 (such vectors exist
by the consistency assumption). Then we get cTx = (yTA)x = yT (Ax) ≤
yT b, and it follows that

max{cTx : Ax ≤ b} ≤ min{yT b : yTA = cT , y ≥ 0}. (2.4)

This inequality, called weak duality, is therefore easy to prove (but still
useful, as we shall see later). The opposite inequality will follow if we show
that the linear system Ax ≤ b, yTA = cT , y ≥ 0, cTx ≥ yT b has a solution.
We write this system in matrix form

A 0
−cT bT

0 AT

0 −AT

0 −I


[
x
y

]
≤


b

0
c
−c
0


By Farkas’ lemma (Corollary 2.4) this system has a solution if and only if
for each u ∈ Rm, v ∈ R, w1, w2 ∈ Rn and z ∈ Rm satisfying

(i) u ≥ 0, v ≥ 0, w1, w2 ≥ 0, z ≥ 0;
(ii) uTA− vcT = 0;
(iii) vbT + (w1 − w2)TAT − zT = 0

(2.5)

we also have
uT b+ (w1 − w2)T c ≥ 0. (2.6)

Let (u, v, w1, w2, z) satisfy (2.5). Consider first the case when v = 0. Then
uTA = 0 and (w1 −w2)TAT = zT . Let x satisfy Ax ≤ b and y satisfy yTA =
cT , y ≥ 0. Combining these inequalities we get uT b+(w1−w2)T c ≥ uT (Ax)+
(w1 − w2)T (ATy) = (uTA)x + yTA(w1 − w2) = 0 + yTz ≥ 0 so (2.6) holds.
Next, consider the case when v > 0. Then uT (vb) = uT (z − A(w1 − w2)) =
uTz − (uTA)(w1 − w2) = uTz − vcT (w1 − w2) ≥ −vcT (w1 − w2). We divide
this inequality by (the positive number) v, and get uT b+ cT (w1−w2) ≥ 0, so
again (2.6) holds. Thus we have verified the consistency condition in Farkas’
lemma, and the equation (2.3) follows.

There is a nice geometrical interpretation of the duality theorem, which
is illustrated for n = 2 in Figure 2.4. Let P = {x ∈ Rn : Ax ≤ b} be the
feasible set in the primal LP (P), and assume that x0 is an optimal solution.
Let aTi x ≤ bi for i ∈ I ′ be the set of active inequalities (among Ax ≤ b)
in x0, in the figure these are the inequalities aT1 x ≤ b1 and aT2 x ≤ b2. We
see, intuitively, that the optimality of x0 is equivalent to that c lies in the
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cone generated by ai, i ∈ I ′, say cT =
∑

i∈I′ yiai for nonnegative numbers yi,
i ∈ I ′. By defining a vector y ∈ Rm by adding zero components for indices
i ∈ I \ I ′, we see that the mentioned condition means that y is feasible in
the dual problem, i.e. yTA = cT and y ≥ 0. But now we have v(P ) =
cTx0 = (yTA)x0 = yT (Ax0) =

∑
i∈I′ yi(Ax0)i =

∑
i∈I′ yibi = yT b ≥ v(D)

so v(P ) ≥ v(D). Combined with weak duality v(P ) ≤ v(D) (see (2.4)), we
therefore get v(P ) = v(D). Note that this is not a complete proof; we did
not actually prove that x0 is optimal in (P) iff b lies in the mentioned cone.

We can obtain a more general version of the duality theorem in which
one only requires that at least one of the two LP problems is feasible. Again,
Farkas’ lemma is the main tool in the proof.

Theorem 2.6 Let A ∈ Rm,n, b ∈ Rm and c ∈ Rn. Consider the two dual
LP problems (P) max{cTx : Ax ≤ b} and (D) min{yT b : yTA = cT , y ≥ 0}
and assume that at least one of the two problems is feasible. Then we have
that

sup {cTx : Ax ≤ b} = inf {yT b : yTA = cT , y ≥ 0}. (2.7)

Proof. If both problems are feasible, then (2.7) holds, even with the supre-
mum and infimum replaced by maximum and minimum, respectively; this is
Theorem 2.5.

Next, assume that (P) is feasible, but that (D) is not. Then the linear
system ATy = c, y ≥ 0 is inconsistent, and by Farkas’ lemma there exists
an z ∈ Rn such that zTAT ≤ 0, zT c > 0, i.e., Az ≤ 0, cTz > 0. Let x0 be
a feasible solution of (P) (this problem is feasible), and consider, for λ ≥ 0,
the point x(λ) = x0 + λz. Since Ax(λ) = Ax0 + λAz ≤ Ax0 ≤ b, we have
x(λ) ∈ P . But cTx(λ) = cTx0 + λcT z → ∞ as λ → ∞, so (P) must be
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unbounded. Thus we have v(P ) =∞ = v(D) as (D) is infeasible, and (2.7)
holds.

The case when (P) is infeasible, but (D) feasible, can be treated similarly,
and one obtains that both values are −∞.

For a pair of dual linear programs there are only four different situations
that can arise concerning the values of these optimization problems.

Corollary 2.7 Consider a pair of linear programs (P) and (D) as above.
Then exactly one of the following four situations occurs.

(i) Both v(P ) and v(D) are finite; and then these values are equal
and attained.

(ii) (P) is feasible and unbounded while (D) is infeasible.
(iii) (D) is feasible and unbounded while (P) is infeasible.
(iv) Both (P) and (D) are infeasible.

Proof. Consider first when (P) is feasible. From Theorem 2.6 we see that
we are either in case (i) or (ii) depending on whether (P) is bounded or not.
Next, assume that (P) is infeasible. Then, if (D) is feasible, we must have
v(D) = v(P ) = −∞ so case (iii) occurs. Alternatively, (D) is infeasible, and
then we are in case (iv).

2.3 Implicit equations and dimension of poly-

hedra

We shall study the dimension of polyhedra and obtain a dimension formula
which generalizes the dimension formula for linear transformations.

Throughout this section we shall write all linear systems either as Ax ≤ b
or Ax ≤ b, Cx = d. Thus we assume that all “≥” inequalities have been
rewritten to the form given. Let I = {1, . . . ,m} be the index set of the
inequalities, so Ax ≤ b can be written as aTi x ≤ bi for i ∈ I .

An inequality aTi x ≤ bi in a linear system Ax ≤ b is called an implicit
equality if each solution x of Ax ≤ b also satisfies aTi x = bi. For instance,
consider the system −x1 ≤ 0, −x2 ≤ 0, x1 + x2 ≤ 0. The solution set
consists of 0 alone, and each of the inequalities is an implicit equality. We
also define implicit equalities in a similar manner for linear systems with both
inequalities and equalities, and then clearly all the equalities are implicit
equalities.

For a linear system Ax ≤ b we let A=x = b= denote the subsystem
consisting of the implicit equalities, and A+x ≤ b+ denotes the remaining
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inequalities. Therefore, the three systems (i) Ax ≤ b, (ii) A+x ≤ b+, A=x =
b= and (iii) A+x ≤ b+, A=x ≤ b= are all equivalent. Let I= and I+ be
the index set of the implicit and the remaining inequalities, respectively, and
these sets therefore represent a partition of the index set I .

An inner point x0 in the polyhedron P = {x ∈ Rn : Ax ≤ b} is a a
point in P which satisfies A=x0 = b=, A+x0 < b+ (recall that here < means
that all of the inequalities are strict).

Lemma 2.8 Each nonempty polyhedron P = {x ∈ Rn : Ax ≤ b} has an
inner point.

Proof. From the definition of implicit equalities (since P is nonempty), it
follows that, for each i ∈ I+, there is an xi ∈ P with aTi x

i < bi. Let
x0 = (

∑
i∈I+ xi)/|I+|, so this is a convex combination of the points xi, i ∈ I+

and therefore x0 ∈ P and A=x0 = b=. Furthermore, we see that A+x0 < b+,
as desired.

Recall that dimension of a set of points in Rn, e.g. a polyhedron, is
the dimension of its affine hull. A polyhedron in Rn is fulldimensional
if dim(P ) = n. If a polyhedron P has an implicit equality, then P lies in
the hyperplane defined by this implicit equality, and consequently P can not
be fulldimensional. More generally, we can describe the affine hull and the
dimension of a polyhedron in terms of the implicit equalities.

Proposition 2.9 Let P = {x ∈ Rn : Ax ≤ b} be a nonempty polyhedron.
Then

aff(P ) = {x ∈ Rn : A=x = b=} = {x ∈ Rn : A=x ≤ b=} (2.8)

and
dim(P ) = n− rank(A=). (2.9)

Proof. Let A1 = {x ∈ Rn : A=x = b=} and A2 = {x ∈ Rn : A=x ≤ b=}.
Since P ⊆ A1 and A1 is an affine set, the affine hull of P must be contained
in A1. Since A1 ⊆ A2, it only remains to prove that A2 ⊆ aff(P ). Let
x0 be an inner point of P (which exists by Lemma 2.8 as P is nonempty)
and let x ∈ A2. If x = x0 , then x ∈ P ⊆ aff(P ). If x 6= x0, define
z = (1 − λ)x0 + λx for λ > 0 “small”. Since both x0 and x lie in A2, we
have A=z ≤ b=. Furthermore, by choosing λ small enough, z will be near
enough to x0 to assure that all the inequalities that are not implicit equalities
hold with strict inequality in z. Thus z ∈ P , and therefore the line through
x0 and x must be contained in aff(P ), and in particular, x ∈ aff(P ). Thus
A1 = A2 = aff(P ) and (2.8) has been shown.
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The dimension of P is (by definition) the dimension of aff(P ). But the
dimension of an affine set is the dimension of the unique linear subspace
parallel to it. Thus, by combining these remarks with the first part of the
proof, we get dim(P ) = dim({x ∈ Rn : A=x = 0}) = n − rank(A=) where
the last equality is due to the dimension formula for linear transformations.

Recall from Chapter 1 the concept of relative interior of point sets. In
connection with a polyhedron P = {x ∈ Rn : Ax ≤ b} the relative topology
we consider is the topology relative to the affine hull of P , i.e., aff(P) =
{x ∈ Rn : A=x = b=}. For a polyhedron P we therefore see that its relative
interior is given by

rint(P ) = {x ∈ Rn : A=x = b=, A+x < b+}. (2.10)

This shows that a point in P is a relative interior point if and only if it is an
inner point.

We next consider interior points of a polyhedron for the usual topology
on Rn, see Section 1.1. An interior point x of a polyhedron P is a point
in P with the property that B(x, ε) ⊆ P for some ε > 0, i.e., P contains a
ball around x. Note that each interior point is also an inner point, but the
converse does not hold. We can characterize the fulldimensional polyhedra
as follows.

Corollary 2.10 The following conditions are equivalent for a polyhedron
P = {x ∈ Rn : Ax ≤ b}.

(i) P is fulldimensional.
(ii) P has an interior point.
(iii) Ax ≤ b has no implicit equalities.

Proof. From Proposition 2.9 we see that P is fulldimensional iff rank(A=) =
0, i.e. there are no implicit equalities, so the equivalence of (i) and (iii)
follows. Now, if there are no implicit equalities ((iii) holds), choose an inner
point x0 (which exixts by Lemma 2.8) so Ax0 < b. But then it is easy to see
that x0 is also an interior point, i.e. (ii) holds. Conversely, if (ii) holds, P
must contain some ball. But this ball is fulldimensional, and therefore P is
fulldimensional as well and (i) holds.

These concepts are illustrated in Figure 2.5, where P is the polyhedron
P = {x ∈ R3 : 0 ≤ xi ≤ 1 for i = 1, 2, 3}, i.e., the unit cube, and where
F is the polyhedron being the intersection between P and the hyperplane
{x ∈ R3 : x2 = 1}. Then P is fulldimensional, while F has dimension 2 with
implicit equality x2 = 1. The point x is an interior point of P , y is an inner
point of F , but z is not an inner point of F .
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2.4 Interior representation of polyhedra

A linear programming problem max {cTx : x ∈ P} over a nonempty polyhe-
dron P may have finite or infinite optimal value. The main goal in this section
is to show that, in both cases, there are always optimal points or directions
of a very special kind, and, furthermore, that all these points and directions
span the polyhedron P through convex and conical combinations. We shall
find it convenient to develop the results for so-called pointed polyhedra, and
then extend these to the general situation afterwards.

The lineality space of a polyhedron P = {x ∈ Rn : Ax ≤ b} is the set
lin.space(P ) = {x ∈ Rn : Ax = 0}. Note that y ∈ lin.space(P ) iff for each
x ∈ P we have Lx ⊆ P where Lx = {x+λy : λ ∈ R} is the line going through
x with direction vector y. Thus the lineality space is the nullspace (kernel) of
the matrix A and it is therefore a linear subspace of Rn. P is called pointed
if lin.space(P ) = {0}, i.e., P contains no lines, or equivalently, rank(A) = n.
Note that if L is a linear subspace (and therefore a polyhedron), then we
have L = lin.space(L). In Figure 2.6 the polyhedron P is pointed, while Q
is not. The lineality space of Q is span({e1}) where e1 = (1, 0, . . . , 0).

We now define the basic objects that, as we shall show, span polyhedra.
Consider a pointed nonempty polyhedron P = {x ∈ Rn : Ax ≤ b}. A point
x0 ∈ P is called a vertex of P if x0 is the (unique) solution of n linearly
independent equations from the system Ax = b. (Remark: when we say that
equations Cx = d are linearly independent we actually mean that the row
vectors of C are linearly independent). We shall see below that P must have
at least one vertex (as it is pointed and nonempty). We say that x0 ∈ P is
an extreme point of P if there are no points x1, x2 ∈ P both distict from
x0 with x = (1/2)x1 + (1/2)x2. Let r ∈ Rn be such that r 6= 0 and Ar ≤ 0,
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and define the set R(x; r) = {x + λr : λ ≥ 0} = x + cone({r}) for each
x ∈ P . Then we have that R(x; r) ⊆ P as A(x + λr) = Ax + λAr ≤ b.
The set R(x; r) is called a ray of P , in fact, we call it the ray in direction
r in the point x. The direction of a ray is defined up to a positive scalar
multiple, i.e., R(x; r1) = R(x; r2) iff r1 = λr2 for some positive scalar λ.
Note that a bounded polyhedron has no ray. Two rays are parallel if they
have parallel direction vectors. A ray R(x; r) is an extreme ray if there are
no non-parallel rays R(x; r1) and R(x; r2) with r = (1/2)r1 + (1/2)r2 (Note
that this definition is independent of x ∈ P ). In Figure 2.7 the polyhedron
(cone) K has extreme rays R(0, r1) and R(0, r2), while R(0, r3) is a ray, but
not an extreme ray. K has one vertex, namely the origin. In the polyhedron
P the points x1, . . . , x5 are vertices, but x7, x8 and x9 are not vertices. (We
leave it as an exercise to find x6!). P has no rays, as it is bounded.

Proposition 2.11 (i) A point x0 ∈ P is a vertex of P = {x ∈ Rn : Ax ≤
b} if and only if it is an extreme point of P .

(ii) A ray of P is an extreme ray if and only if it has a direction vector
r such that A′r = 0 for some subsystem A′x = 0 consisting of n − 1
linearly independent equations from Ax = 0.

Proof. (i) Assume first that x0 is a vertex of P , so there is a linearly inde-
pendent subsystem A′x ≤ b′ of Ax ≤ b such that x0 is the unique solution
of A′x = b′. Assume that x0 = (1/2)x1 + (1/2)x2 for some x1, x2 ∈ P . Then
A′xi = b′ for i = 1, 2 (otherwise, since A′x ≤ b′ are valid inequalities, we
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Figure 2.7: Vertices and extreme rays

would get the contradiction aTi x0 < bi for some inequality in A′x ≤ b′). But
since the equalities in A′x = b′ are linearly independent, i.e., A′ is nonsingu-
lar, we get x1 = x2 = x0, which proves that x0 is an extreme point.

Assume next that x0 ∈ P is not a vertex of P , and let A′x ≤ b′ be the
inequalities among Ax ≤ b that are satisfied by equality in x0. From the
assumption, we have that rank(A′) < n. Thus there is a nonzero vector
z ∈ Rn with A′z = 0. We may now find ε > 0 “suitably small” such that the
two points x1 = x0− εz and x2 = x0 + εz both strictly satisfy each inequality
in Ax ≤ b, but not in A′x ≤ b′. Furthermore, for each inequality aTi x ≤ bi in
A′x ≤ b′ we have aTi x1 = aTi x0 − εaTi z = aTi x0 ≤ bi and similarly aTi x2 ≤ bi.
Thus, x1, x2 ∈ P and x0 = (1/2)x1 + (1/2)x2, and x0 is not a vertex of P ,
which completes the proof of (i).

The proof of (ii) is similar, and is left for an exercise.

An important consequence of the previous proposition is that the number
of vertices and extreme rays is finite.

Corollary 2.12 Each pointed polyhedron has a finite number of vertices and
extreme rays.

Proof. According to Proposition 2.11 each vertex of a pointed polyhedron
P = {x ∈ Rn : Ax ≤ b} is obtained by setting n linearly independent
inequalities among the m inequalities in the defining system Ax ≤ b to
equality. But there are only a finite number of such choices of subsystems (in
fact, at most m!/(n!(m−n)!)), so the number of vertices is finite. For similar
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reasons the number of extreme rays is finite (at most m!/((n−1)!(m−n+1)!)).

The next step in our project of proving the interior representation theorem
for polyhedra is to show that we obtain optimal solutions that are vertices
or extreme rays when solving a linear programming problem over a pointed
polyhedron P .

Proposition 2.13 Consider a nonempty pointed polyhedron P = {x ∈ Rn :
Ax ≤ b} and consider the LP problem

max{cTx : x ∈ P}. (2.11)

(i) If v(P ) is finite, there is a vertex x0 which is an optimal solution of
(2.11), i.e., cTx0 = v(P ).

(ii) If v(P ) =∞ (problem (2.11) is unbounded) , then there is an extreme
ray R(x; r) = x+ cone({r}) of P with cT r > 0, and therefore R(x; r) ⊆
P and x+ λr→∞ whenever λ→∞ for any x ∈ P .

Proof. (i) Let v∗ = v(P ) be the finite optimal value, and define the set
F = {x ∈ P : cTx = v∗}, so F consists of all optimal solutions in (2.11), and
F is nonempty. Consider the pair of dual LP’s given in (2.1) (or (2.11)) and
(2.2). It follows from the LP duality theory, see Theorem 2.6 and Corollary
2.7, that (D) is feasible and that max{cTx : Ax ≤ b} = min{yT b : yTA =
cT , y ≥ 0}. Consider an optimal dual solution y∗, so (y∗)TA = cT , y∗ ≥ 0
and (y∗)T b = v(D) = v(P ). Define I ′ = {i ∈ I : yi > 0}. We claim that

F = {x ∈ P : aTi x = bi for all i ∈ I ′}. (2.12)

To see this, note that for each x ∈ P we have cTx = ((y∗)TA)x = (y∗)TAx =∑
i∈I y

∗
i (Ax)i =

∑
i∈I′ y

∗
i (Ax)i ≤

∑
i∈I′ y

∗
i bi = v(P ). Thus we have cTx =

v(P ) if and only if aTi x = bi for each i ∈ I ′, and (2.12) follows.
For each Ī ⊆ I we define the polyhedron P (Ī) = {x ∈ Rn : aTi x =

bi for i ∈ Ī, aTi x ≤ bi for i ∈ I \ Ī. Thus, F = P (I ′) and therefore F is a
polyhedron contained in P (in fact, F is a face of P as we shall discuss
later).

We claim that F contains a vertex of P and prove this by a dimension
reduction argument. Let initially Ī = I ′. Let m = dim(F ), so 0 ≤ m ≤
dim(P ). If m = 0, then F consists of one point x0 only, and this point
must be a vertex (since rank({ai : i ∈ I ′}) = n, there must be n linearly
independent vectors among ai, i ∈ I ′ and x0 is a vertex) and we are done.
If m > 0, choose a point x0 ∈ F , and a nonzero vector z ∈ aff(F ) (which
is possible since this set has dimension m > 1). Note that aTi z = 0 for
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each i ∈ I ′ as all the vectors ai, i ∈ I ′ belongs to the equality system of
F . Consider the line L = {x0 + λz : λ ∈ R} which then intersects F ,
i.e., x0 ∈ L ∩ F . On the other hand, as P is pointed, P , and therefore F ,
cannot contain the line L. Thus there is an i ∈ I \ I ′ such that the halfspace
defined by aTi x ≤ bi does not contain L. Consider the unique point x1 in the
intersection between L and the hyperplane {x ∈ Rn : aTi x = bi}. Note that
x1 ∈ F . Update I ′ by setting I ′ := I ′ ∪ {i}. Then F (I ′) is a polyhedron
of dimension at most m − 1 and x1 ∈ F (I ′) ⊂ F . We can now repeat this
procedure of adding inequalities set to equality, and eventually we will have a
polyhedron F (I ′) ⊂ F which consists of only one point; a vertex of P which
proves (i).

(ii) Assume that (2.11) is unbounded, so the dual problem is infeasible
(by Corollary 2.7). Then it follows from Farkas’ lemma (exactly as in the
proof of Corollary 2.6) that there is a vector r0 ∈ Rn with Ar0 ≤ 0 and
cTr0 > 0. Thus r0 is the direction vector of some ray of P , and we now
explain how to find an extreme ray. Consider the LP problem (Q) max
{cTz : Az ≤ 0, cT z ≤ 1}. This problem is feasible, as λr0 is a feasible
solution for suitable λ ≥ 0, and clearly (Q) is bounded. We can therefore
apply part (i) of this proof, and obtain an optimal solution r of (Q) which
is a vertex of the polyhedron defined by Az ≤ 0, cTz ≤ 1. We have that
v(Q) = 1 (an optimal solution is λr0 for λ = 1/(cT r0)). Thus any optimal
solution of (Q), and therefore also r, must satisfy cT z ≤ 1 with equality.
Therefore we can find a subsystem A′z ≤ 0 of Az ≤ 0 consisting of n − 1
vectors such that these vectors augmented with c are linearly independent
and such that the unique solution of A′z = 0, cTz = 1 is r. It follows from
Proposition 2.11 that r a direction vector of an extreme ray of P and, in
addition, we have cTr > 0, so (ii) has been proved.

Consider an LP problem max{cTx : x ∈ P} where P is a bounded poly-
hedron, which, therefore, has no ray. Then the previous proposition shows
that we can solve the LP problem by comparing the objective function for
all the vertices, and there is a finite number of these. This is not a good
algorithm in the general case, because the number of vertices may be huge,
even with a rather low number of inequalities in the defining system Ax ≤ b.
However, the fact that LP’s may be solved by searching through vertices
only has been the starting point for another algorithm, the simplex method,
which, in practice, is a very efficient method for solving linear programming
problems.

We next combine the previous optimization result with Farkas’ lemma and
obtain the following interior representation theorem for polyhedra.
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Theorem 2.14 Let P = {x ∈ Rn : Ax ≤ b} be a nonempty pointed poly-
hedron with vertex set V . Let R be a set consisting of exactly one direction
vector for each extreme ray of P . Then P can be decomposed as follows

P = conv(V ) + cone(R). (2.13)

Proof. Let Q = conv(V ) + cone(R), and also V = {v1, . . . , vt} and R =
{r1, . . . , rm}. For each i ≤ t, the vertex vi must satisfy Avi ≤ b, and for each
j ≤ m the ray directon vector rj satisfies Arj ≤ 0. A point x ∈ Q can be
written as x =

∑
i λivi +

∑
j µjrj for suitable λi ≥ 0 for each i ≤ t such that∑

i λi = 1 and µj ≥ 0 for j ≤ m. Then we have Ax =
∑

i λiAvi+
∑

j µjArj ≤∑
i λib+

∑
j µj0 = b

∑
i λi = b, so x ∈ P . Therefore, Q ⊆ P .

To prove the converse inclusion, assume that x0 6∈ Q. Thus the linear
system

∑
i≤t λivi +

∑
j≤m µjrj = x0,

∑
i≤t λi = 1, λ ≥ 0, µ ≥ 0 has no

solution (λ, µ). Therefore, by Farkas’ lemma (Theorem 2.3) there is c ∈ Rn
and d ∈ R such that cT vi + d ≤ 0 for i ≤ t, cTrj ≤ 0 for j ≤ m and
cTx0 + d > 0. Consider the LP problem (P) max {cTx : x ∈ P}. It follows
from Proposition 2.13 that (P) must be bounded (for, otherwise, there would
be an direction vector r of an extreme ray with cT r > 0 which is impossible
as cTrj ≤ 0 for all j). Thus, again by Proposition 2.13, there must an optimal
solution of (P) which is a vertex. Since cTvi + d ≤ 0, the optimal value of
(P) can not be greater than −d. But cTx0 > −d, so x0 can not be feasible
in (P), i.e., x0 6∈ P . This proves that P ⊆ Q and the proof is complete.

In order to generalize this result to hold for all polyhedra, not just pointed
ones, we show how to decompose a polyhedron in terms of a linear subspace
and a pointed polyhedron.

Lemma 2.15 Let P be a nonempty polyhedron. Then P can be decomposed
as P = L + Q, where L = lin.space(P ) and Q = P ∩ L⊥ is a pointed
polyhedron.

Proof. Let P = {x ∈ Rn : Ax ≤ b}. Since L = {x ∈ Rn : Ax = 0} is a linear
subspace, we may view Rn as the direct sum of L and L⊥. Let Q = P ∩L⊥.
We claim that P = L + Q. To see this, decompose x ∈ P by x = x1 + x2

where x1 ∈ L and x2 ∈ L⊥. Since x1 ∈ L, we have Ax1 = 0 and combined
with A(x1 + x2) ≤ b, we get that Ax2 ≤ b which proves that x2 ∈ P . Thus,
x = x1 + x2 ∈ L + Q, and we have shown that P ⊆ L + Q. The opposite
inclusion is direct: if x = x1 + x2 with x1 ∈ L and x2 ∈ Q, then Ax1 = 0
and Ax2 ≤ b, so Ax = Ax2 ≤ b and x ∈ P . It remains to prove that Q is
pointed. Assume not, and let L′ = {x0 + λr : λ ∈ R}, where r 6= 0, be a line
in Q = P ∩ L⊥. But then r ∈ lin.space(P ) = L and r ∈ lin.space(L⊥) = L⊥
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(by a previous remark). Thus, r ∈ L∩L⊥ = {0}, and r = 0; a contradiction.
Thus Q contains no line and is therefore pointed.

Proposition 2.16 Any nonempty polyhedron P may be decomposed by

P = conv(V ) + cone(R) + L (2.14)

where L = lin.space(P ), and where V is the set of vertices of the pointed
polyhedron P ∩ L⊥, and R consists of one direction vector for each extreme
ray of P ∩ L⊥.

The decomposition in (2.14) is minimal in the sense that if P = conv(V ′)+
cone(R′)+L′ where L′ is a linear subspace, then L′ = L , V ⊆ V ′ and R ⊆ R′.

Proof. The existence of the decomposition in (2.14) is an immediate conse-
quence of Theorem 2.14 and Lemma 2.15, and the proof of the minimality is
left for an exercise.

A polyhedral cone is a cone of the form {x ∈ Rn : Ax ≤ 0} with
A ∈ Rm,n, i.e., a polyhedron defined by a finite set of homogeneous linear in-
equalities. The next result, called the Farkas-Minkowski-Weyl theorem,
establishes the equivalence between polyhedral cones and finitely generated
cones. Note that the proof uses polarity to obtain one part of this equiva-
lence.

Theorem 2.17 A convex cone is polyhedral if and only if it is finitely gen-
erated.

Proof. The result is trivial for empty cones, so let K = {x ∈ Rn : Ax ≤ 0}
be a nonempty polyhedral cone. First we note that the only vertex of a
cone (if any) is 0. Therefore, in Proposition 2.16 we must have V = {0}
and P = cone(R) + L for some finite set R and a linear subspace L. But,
each linear subspace is also a finitely generated cone which is seen as follows.
Select a basis a1, . . . , as for L, so L = span({a1, . . . , as}). Let u = −

∑
j≤s aj.

Then it is easy to check that L = cone({u, a1, . . . , as}). Therefore we see
that P = cone(R′) for a finite set R′, and P is finitely generated.

Conversely, let K ⊆ Rn be a finitely generated cone, so K = cone(R)
for a finite set R = {a1, . . . , as}. K is a closed set (see Proposition 1.16)
and combining this with the polarity result of Proposition 1.23 we have
K = K◦◦. Next, using Proposition 1.11, we have K◦ = {x ∈ Rn : aTi x ≤
0 for i = 1, . . . , s} so K◦ is a polyhedral cone. We can therefore apply the
first part of the proof to K◦ and get K◦ = cone({b1, . . . , bm}) for suitable
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vectors b1, . . . , bm. Thus we have K = K◦◦ = (cone({b1, . . . , bm})◦ = {x ∈
Rn : bTi x ≤ 0 for i = 1, . . . ,m} (again using Proposition 1.11). Thus K is a
polyhedral cone, and the proof is complete.

Note the content of the Farkas-Minkowski-Weyl theorem: a convex cone
is the solution set of a finite number of linear inequalities iff it is generated
by a finite number of vectors. Thus, the theorem establishes an equiva-
lence between a finite exterior description and a finite interior description.
A similar result may now be shown for polyhedra and it is called the the
decomposition theorem for polyhedra or Motzkin’s representation
theorem.

Theorem 2.18 For each polyhedron P ⊆ Rn there are finite sets V and R
such that P = conv(V ) + cone(R).

Conversely, if V and R are finite sets, then conv(V ) + cone(R) is a poly-
hedron.

Proof. Assume that P is a nonempty polyhedron, and then we have from
Proposition 2.16 that P = conv(V )+cone(R′)+L where L is a linear subspace
and V and R′ are finite sets. But as we saw in the proof of the Farkas-
Minkowski-Weyl theorem, L may be written as a finitely generated cone, say
L = cone(R′′). LetR = R′∪R′′ and note that cone(R) = cone(R′)+cone(R′′).
Therefore P = conv(V ) + cone(R) as desired.

Conversely, let V and R be finite sets and define Q = conv(V ) + cone(R).
Note that x ∈ Q if and only if (x, 1) ∈ Q′ where Q′ = cone({(v, 1) ∈ Rn+1 :
v ∈ V }∪{(r, 0) ∈ Rn+1 : r ∈ R}). The cone Q′ may be viewed as the sum of
the homogenization of Q (see section 1) and the cone generated by the (r, 0),
r ∈ R. We apply Theorem 2.17 so there is a Ax + cxn+1 ≤ 0 with solution
set Q′. Thus x ∈ Q iff (x, 1) satisfies this linear system, i.e., Ax ≤ −c. Thus,
P is a polyhedron as desired.

In Figure 2.8 we show a polyhedron P given by P = conv(V ) + cone(R).
An important corollary of the decomposition theorem for polyhedra con-

cerns polytopes. Recall that a polytope is the convex hull of a finite number
of points. The next result is called the finite basis theorem for polytopes.

Theorem 2.19 A set P is a polytope if and only if it is a bounded polyhe-
dron.

Proof. Let P be a polytope, say conv(V ) for a finite set V ⊂ Rn. It then
follows from the second part of Theorem 2.18 that P is a polyhedron. Fur-
thermore, P is bounded (it is contained in the ball with center in the origin
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Figure 2.8: Decomposition theorem for polyhedra

and radius maxv∈V ‖v‖). Conversely, let P be a bounded polyhedron, and let
P = conv(V ) + cone(R) be the decomposition of Theorem 2.18. Since P is
bounded, we must have R = ∅, so P is a polytope as desired.

2.5 Faces of polyhedra and exterior represen-

tation of polyhedra

In the previous section we saw that for a pointed polyhedron P there is
always an optimal vertex solution of an LP problem max {cTx : x ∈ P}. In
this section we study the set of optimal solutions of LP problems for general
polyhedra. We also study minimal exterior representation of polyhedra.

Let c ∈ Rn be a nonzero vector. Associated with c we have the hy-
perplanes H=(c, α) = {x ∈ Rn : cTx = α} for each α ∈ R. Now, view
c as an objective function and consider an optimization problem (P) max
{cTx : x ∈ S} over some set S ⊆ Rn. Note that the hyperplane H=(c, α)
contains all the points (in Rn) with equal value on the objective function, and
similarly, H=(c, α) ∩ S consist of all the feasible points in S with equal ob-
jective function value. The optimal value of (P) is the largest possible value
α, say α = α0, with the property that the set H=(c, α) ∩ S is nonempty.
Then H=(c, α0) ∩ S is the set of optimal solutions. For an arbitrary set S
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of feasible solutions the optimal set H=(c, α0) ∩ S may be very “complex”,
for instance, it may be nonconvex. However, in the case of interest to us,
when S is a polyhedron, this set H=(c, α0) ∩ S turns out to be very nice, it
is another polyhedron. This is discussed in detail below.

P

a’x <=b2

a’x <= b1

Figure 2.9: Valid inequality

Consider a polyhedron P = {x ∈ Rn : Ax ≤ b}. A valid inequality for P
is a linear inequality cTx ≤ α satisfied by all points in P , i.e., P ⊆ H≤(c, α) =
{x ∈ Rn : cTx ≤ α}. Note that cTx ≤ α is a valid inequality if and only
if max {cTx : x ∈ P} ≤ α. A valid inequality cTx ≤ α is supporting if
there is some point x0 ∈ P with cTx0 = α, i.e., the hyperplane H=(c, α)
intersects P . Thus, aTx ≤ α is a supporting inequality if and only if max
{cTx : x ∈ P} = α. In Figure 2.9 the inequality cTx ≤ b1 is valid for P , but
it is not supporting. The inequality cTx ≤ b2 is not valid for P . A face of P
is a set F of the form

F = H=(c, α) ∩ P = {x ∈ P : aTx = α} (2.15)

for a valid inequality cTx ≤ α; we say that F is the face induced or defined
by cTx ≤ α. We also call P itself a face of P (and we could say that it
is induced by the valid inequality 0Tx ≤ 0). The empty set and P are
trivial faces, while all other faces are called proper faces. We see that
the proper faces are obtained from supporting inequalities for which the
associated hyperplane does not contain P . Thus the faces of a polyhedron
are those point sets on the boundary of P that can be obtained as the set
of optimal solutions of LP problems over P , or equivalently, intersection
between P and its supporting hyperplanes. In Figure 2.10 we show a valid
inequality for a polyhedron P and the induced face F .

There is another useful description of faces of polyhedra that connect
these sets to the defining inequalities Ax ≤ b of the polyhedron P . In fact,
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P

a’x <= bF

Figure 2.10: Face of a polyhedron

we have met this result before, but then it was hidden in the the proof of
Proposition 2.13.

Theorem 2.20 Let P = {x ∈ Rn : Ax ≤ b}. A nonempty set F is a face of
P if and only if

F = {x ∈ P : A′x = b′} (2.16)

for some subsystem A′x ≤ b′ of Ax ≤ b.

Proof. Let F be a nonempty face of P , so F = H=(c, α)∩P for a supporting
inequality cTx ≤ α. Then the optimal value v(P ) of the LP problem (P) max
{cTx : Ax ≤ b} satisfies v(P ) = α <∞ and furthermore F = {x ∈ P : cTx =
v(P )}. It follows from the duality theorem, Theorem 2.6, that the LP dual
of problem (P) is feasible and that max{cTx : Ax ≤ b} = min{yT b : yTA =
cT , y ≥ 0}. Let y∗ be an optimal dual solution, so (y∗)TA = cT , y∗ ≥ 0
and (y∗)T b = v(D) = v(P ), and define I ′ = {i ∈ I : yi > 0}. We claim
that (2.16) holds with the subsystem A′x ≤ b′ consisting of the inequalities
aTi x ≤ bi for i ∈ I ′. To see this, note that for each x ∈ P we have cTx =
((y∗)TA)x = (y∗)TAx =

∑
i∈I y

∗
i (Ax)i =

∑
i∈I′ y

∗
i (Ax)i ≤

∑
i∈I′ y

∗
i bi = v(P ).

Thus we have cTx = v(P ) if and only if aTi x = bi for each i ∈ I ′, and (2.16)
holds.

Conversely, assume that the set F satisfies (2.16) for some subsystem
A′x ≤ b′ consisting of inequalities aTi x ≤ bi, i ∈ I ′ from Ax ≤ b. Let
c =

∑
i∈I′ ai and α =

∑
i∈I′ bi. Then cTx ≤ α is a valid inequality for P

(it is a sum of other valid inequalities). Furthermore F is the face induced
by cTx ≤ α, i.e., F = {x ∈ P : cTx = α}. In fact, a point x ∈ P satisfies
cTx = α if and only if aTi x = bi for each i ∈ I ′.

We therefore see that the faces of P = {x ∈ Rn : Ax ≤ b} are precisely
the sets of the form F = {x ∈ Rn : A′x = b′, A′′x ≤ b′′} for some partition
A′x ≤ b′ , A′′x ≤ b′′ of the linear system Ax ≤ b.

Corollary 2.21 Consider a polyhedron P = {x ∈ Rn : Ax ≤ b}. Then
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(i) P has a finite number of faces.

(ii) Each face of P is a polyhedron.

(iii) Let F be a face of P (so F is a polyhedron by (ii)). Then a subset G
of F is a face of F if and only if it is a face of P .

Proof. All these results follow from Theorem 2.20. (i) Each face is obtained
by setting a subsystem of inequalities from Ax ≤ b to equality, and there
are a finite number, in fact 2m, of such subsystems. (Remark: there are 2m

subsystems, but many of these may induce the same face. In fact, estimating
the number of faces is a discipline on its own, within discrete geometry).

(ii) This is clear as each face is the solution set of a finite set of linear
inequalities and equations.

(iii) Let F = {x ∈ Rn : A′x = b′, A′′x ≤ b′′}. Each face G of F is
obtained by setting some of the inequalities in A′′x ≤ b′′ to equality and so
this is also a face of P . Conversely, let G be a face of P with G ⊆ F , say
G = {x ∈ P : A′x = b′} and F = {x ∈ P : A′′x = b′′}. Since G ⊆ F , we
must have G = {x ∈ P : A′x = b′, A′′x = b′′}, and therefore G is a face of F .

Faces of polyhedra are interesting from an optimization viewpoint, and,
in particular, one is concerned with minimal and maximal faces. A minimal
face of P is a minimal nonempty face, i.e., a nonempty face of P not strictly
containing any other nonempty face of P . Similarly, a maximal face of P is
a face F 6= P not strictly contained in any proper face of P . Each maximal
face of P is also called a facet of P .

The minimal faces of P are related to the lineality space of P and the
facets are related to a minimal exterior representation of P . We shall discuss
these relations in detail in the following. First, we give a characterization of
the minimal faces due to Hoffman and Kruskal (1956).

Theorem 2.22 Let ∅ 6= F ⊂ P = {x ∈ Rn : Ax ≤ b}. Then F is a minimal
face of P if and only if F is an affine set of the form

F = {x ∈ Rn : A′x = b′} (2.17)

for some subsystem A′x ≤ b′ of Ax ≤ b.

Proof. Assume that F is a minimal face of P , say F = {x ∈ Rn : A′x =
b′, A′′x ≤ b′′}, where we may assume that each inequality in A′′x ≤ b′′ is
nonredundant and not an implicit equality. Then, one of the inequalities in
A′′x ≤ b′′ has the property that if we set it to equality we obtain a nonempty
face strictly contained in F , which contradicts the minimality of F . Thus,
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the system A′′x ≤ b′′ must be empty, and F = {x ∈ Rn : A′x = b′} which
proves that F is an affine set of the form (2.17).

Conversely, assume that F is given by (2.17) which we rewrite by replacing
each equality by two opposite inequalities. By Theorem 2.20, any face of F
is obtained by setting some of these inequalities to equality, but clearly this
does not change the solution set F (since all the inequalities are implicit
equalities). Thus F is a minimal face.

Corollary 2.23 Each minimal face F of P = {x ∈ Rn : Ax ≤ b} is a
translate of lin.space(P ), and therefore dim(F ) = n − rank(A). If P is
pointed, the minimal faces are precisely the one-point sets consisting of the
vertices of P .

Proof. Let F be a minimal face of P , so by Theorem 2.22 we have that F
is the affine set F = {x ∈ Rn : A′x = b′} for some subsystem A′x ≤ b′ of
Ax ≤ b. Let x0 ∈ F (F is nonempty) and then F = x0 + L where L is the
unique linear subspace parallel to F , i.e., L = {x ∈ Rn : A′x = 0}. Since
A′ contains a subset of the rows of A, we have rank(A′) ≤ rank(A). In fact,
we here have equality, for, if not, there would be an inequality aTi x ≤ bi in
Ax ≤ b such that ai is not a linear combination of the rows of A′, which then
gives the contradiction F ⊆ {x : A′x = b′, aTi x ≤ bi} ⊂ {x : A′x = b′} = F
(where the last inclusion is strict). We therefore get that L = lin.space(P ).

Note the following important consequence of the previous corollary: a
point x in a polyhedron P is a vertex of P if and only if it is the unique
optimal solution of an LP problem over P . This fact is sometimes useful in
finding all the vertices of a polyhedron.

An edge of a polyhedron is a bounded face of dimension one (so it is not
a ray). Each edge is the line segment between two vertices and these two
vertices are said to be adjacent.

There is a convex cone which is naturally associated with a polyhedron.
For a polyhedron P = {x ∈ Rn : Ax ≤ b} we define its characteristic cone
char.cone(P ) = {y ∈ Rn : Ay ≤ 0}. Each nonzero element in char.cone(P )
is called an infinite direction of P , see also Section 2.4. (Some authors
also use the term ray here, but we reserve the notation ray for the geometric
object R(x; r) defined previously). We leave it as an exercise to show that

(i) char.cone(P ) = {y ∈ Rn : x+ y ∈ P for all x ∈ P};
(ii) lin.space(P ) = char.cone(P ) ∩ −char.cone(P ).

(2.18)
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As an application of the theory developed, let us consider again a pair
of dual LP problems and relate their optimal solutions. Consider the linear
programming problems

(P) max{cTx : x ∈ P}, (2.19)

and
(D) min{uT b : u ∈ Q} (2.20)

where we, for simplicity, assume that both polyhedra P and Q are pointed.
Let these polyhedra be given by

P = {x ∈ Rn : x ≥ 0, Ax ≤ b}
= conv(VP ) + cone(RP );

Q = {u ∈ Rm : u ≥ 0, uTA ≥ cT}
= conv(VQ) + cone(RQ),

(2.21)

where VP , resp. RP , is the (finite) set of extreme points (vertices) and direc-
tions corresponding to extreme rays of P . VQ resp. RQ are similar objects
defined for Q.

Theorem 2.24 For the problems (P) and (D) the following hold.
(i) (P) is feasible iff bTr ≥ 0 for all r ∈ RQ.
(ii) When (P) is feasible the following statements are equivalent:

a) v(P ) =∞.
b) There is an r ∈ RP with cTr > 0.
c) Q = ∅.

(iii) If v(P ) is finite, then v(P ) = maxv∈VP c
T v = minu∈VQu

T b = v(D)

Proof. (i) From Farkas’ lemma we see that (P) is feasible (i.e., P 6= ∅) iff
νT b ≥ 0 for all ν ≥ 0 with νTA ≥ 0. It follows from Theorem 2.17 that
char.cone(Q) = {ν ∈ Rm

+ : νTA ≥ 0} = cone(RQ). Thus νT b ≥ 0 for all
ν ≥ 0 with νTA ≥ 0 iff rT b ≥ 0 for all r ∈ RQ.

(ii) It follows from the interior representation of P that v(P ) is finite iff
cTr ≤ 0 for all r ∈ RP , and the equivalence for the dual problem follows
similarly.

(iii) This follows by combining the LP duality theorem with the interior
representations above.

We now turn to a study of minimal exterior descriptions of polyhedra. The
main goal is to show that, in addition to the implicit equality system, these
descriptions are given by inequalities that define facets of the polyhedron.
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In order to discuss minimal representations of polyhedra we find it conve-
nient to write the linear system with both inequalities and equalities. Con-
sider a linear system

aTi x = bi for i ∈ I1;
aTi x ≤ bi for i ∈ I2,

(2.22)

and let P be its solution set. We call a constraint (inequality or equality)
in (2.22) redundant if the solution set is unchanged if this constraint is
removed. We call the system (2.22) minimal if

(i) no inequality can be set to equality without reducing the solution set;

(ii) no inequality or equality is redundant.

A minimal representation of a polyhedron P is a minimal linear system
of the form (2.22) with solution set P . It is clear that every polyhedron has
a minimal representation (one simply removes redundant constraints as long
as possible, see Problem 2.9). An interesting result is that one also has a
kind of uniqueness of a minimal representation as discussed next.

Theorem 2.25 Let P be the polyhedron defined by (2.22) and assume that
P is nonempty. Then (2.22) is a minimal representation of P if and only if
(i) the vectors ai, i ∈ I1 are linearly independent, and (ii) there is a bijection
(one-to-one and onto mapping) between the facets of P and the inequalities
aTi x ≤ bi for i ∈ I2 given by F = {x ∈ P : aTi x = bi}.

Proof. Assume first that the system (2.22) is minimal. If an ai for some
i ∈ I1 is a linear combination of the other vectors in I1, then either the
equation aTi x = bi is redundant, or the equation system is inconsistent (and
P = ∅); in any case a contradiction. Thus ai, i ∈ I1 are linearly independent.

Next, let i ∈ I2 and let P ′ be the solution system when the inequality
aTi x ≤ bi is removed from (2.22). As aTi x ≤ bi is nonredundant, there is
a point x1 ∈ P ′ \ P . Thus, x1 satisfies all the constraints in (2.22) except
that aTi x1 > bi. As shown before (see Lemma 2.8), P has an inner point
x2, i.e., aTi x2 = bi for i ∈ I1, aTi x < bi for i ∈ I2. Therefore, some convex
combination x̄ of x1 and x2 must satisfy aTj x̄ = bj for j ∈ I1 and aTj x < bj
for j ∈ I2 \ {i} and finally aTi x̄ = bi. Let F be the face of P induced by the
inequality aTi x ≤ bi, and note that x̄ ∈ F . Therefore the equality set of F
consists of the constraints with index set I1 ∪ {i} (remark: x̄ shows that the
equality set can not contain other inequalities). F is therefore a maximal face
because any face G strictly containing F must have equality system aTi x = bi
for i ∈ I1, and this is only the case for the trivial face G = P . Therefore,
F is a maximal face, i.e., a facet of P induced by the inequality aTi x ≤ bi.
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Furthermore, no other inequality can induce the same facet, because the point
x̄ above satisfies aTi x ≤ bi with equality, but it satisfies no other inequality
in aTj x ≤ bj for j ∈ I2 with equality. Finally, we note that each facet is of
the form F = {x ∈ P : aTi x = bi} for some i ∈ I2 (as a facet is also a face,
so it is induced by some inequality, and, furthermore, this inequality cannot
be an implicit equality, for that would not give a proper face). This proves
that condition (ii) holds.

Conversely, assume that conditions (i) and (ii) both hold. Consider an
inequality aTi x ≤ bi for an i ∈ I2. If we set this inequality to equality, we
obtain by (ii) a facet of P , and this is a proper subset of P . Therefore
condition (i) in the definition of a minimal system is satisfied. Furthermore,
this also shows that the equality system of (2.22) is aTj x = bj for j ∈ I1. We
next prove that each equality aTj x = bj for j ∈ I1 is nonredundant. Let A be
the affine hull of P , i.e., this is the solution set of the equality system aTj x = bj
for j ∈ I1. Since the vectors ai, i ∈ I1 are linearly independent, the removal
of one of these equations results in a solution set being an affine set A′ with
dim(A′) = dim(A) + 1. By the dimension formula for polyhedra it follows
that we get dim(P ′) = dim(P ) + 1 where P ′ is the solution set of the system
obtained by removing aTi x = bi from (2.22). This proves that each equality
in (2.22) is nonredundant. It only remains to prove that each inequality is
nonredundant, so consider an inequality aTi x ≤ bi for some i ∈ I2. Let x1

be an interior point in the facet F = {x ∈ P : aTi x = bi} and let x2 be an
interior point of P (note: such points exist as both polyhedra are nonempty).
It is easy to see that the line through these two points contains a point which
satisfies all the constraints in (2.22) except for aTi x ≤ bi. Thus this inequality
is nonredundant and the proof is complete.

We therefore see that, except for implicit equalities, we only need the
facet defining inequalities in an exterior representation of a polyhedron.

An interesting property of a proper face of a polyhedron is that it has
lower dimension than the polyhedron.

Lemma 2.26 Let F be a proper face of a polyhedron P (so F is nonempty
and strictly contained in P ). Then we have dim(F ) < dim(P ).

Proof. Since F ⊂ P , there is an x0 ∈ P \ F . Furthermore, F is a face
of P so F = P ∩ H for some hyperplane H. Then x0 6∈ H (for x0 ∈ H
implies that x0 ∈ P ∩H = F ; a contradiction). But H is an affine set, and
therefore aff(F ) ⊆ H, and x0 6∈ aff(F ). This gives dim(P ) = dim(aff(P )) ≥
dim({x0} ∪ aff(F )) > dim(aff(F )) = dim(F ). (The strict inequality is due to
the fact that aff(F ) is strictly contained in aff({x0} ∪ aff(F ))).

61



We conclude this section with a result which gives further characterization
of the facet defining inequalities. This theorem is often used in polyhedral
combinatorics.

Theorem 2.27 Let P be the solution set of a linear system of the form
(2.22) which is assumed to be minimal and consistent. Assume that F is
a nontrivial face of P . Let m = |I2|. Then the following statements are
equivalent.
(i) F is a facet of P .
(ii) dim(F ) = dim(P ) − 1.
(iii)If a, ā ∈ Rn and α, ᾱ ∈ R satisfy
F = {x ∈ P : aTx = α} = {x ∈ P : āTx = ᾱ} where both aTx ≤ α and
āTx ≤ ᾱ are valid inequalities for P , then there exist λ ∈ Rm and a positive
γ ∈ R such that ā = γa+ λA=, ᾱ = γα + λb=.

Proof. Let A=x = b=, A+x ≤ b+ be a minimal system for P , and let I1 and
I2 be the index sets of these two subsystems, respectively. We prefer to show
first the equivalence of (i) and (ii), and then the equivalence of (ii) and (iii).

(i) ⇔ (ii): Assume that F is a facet of P . By Theorem 2.25, there is an
i ∈ I2 such that F = {x ∈ P : aTi x = bi}, and (see the proof of that theorem)
the equality system of F is aTj x = bj for j ∈ I1, aTi x = bi. The dimension
formula gives that dim(F ) ≥ dim(P )− 1, and since F is a nontrivial face we
also get dim(F ) ≤ dim(P )− 1 (see Lemma 2.26), and (ii) holds. Conversely,
assume that condition (ii) holds. If F is not a facet (but still a face), there is
a nontrivial face G such that F ⊂ G ⊂ P (all inclusions strict). By applying
Lemma 2.26 twice, we get the contradiction dim(F ) ≤ dim(P ) − 2. This
proves that condition (i) must hold, as desired.

(ii) ⇔ (iii): Assume that (ii) holds and that aTx ≤ α and āTx ≤ ᾱ are
valid inequalities for P that both induce the same facet F . Therefore F
is the solution system of the original system (2.22) augmented with the two
equations aTx = α og āTx = ᾱ. Let Y = {ai : i ∈ I1}, so |Y | = m. Note that
neither a nor ā can be a linear combination of the vectors in Y (for this would
violate that F is nonempty and has dimension less than that of P ). On the
other hand, the rank of Y ∪{a, ā} can not be larger than m+ 1 because that
would imply that dim(F ) < dim(P ) − 1. These two observations therefore
give that rank(Y ∪ {a, ā}) = m + 1, from which we easily get the desired
relation between a and ā, and then also between α and ᾱ as in (iii).

To prove the converse, we assume that F is not a facet of P . But then F
is the face of P obtained by setting at least two of the inequalities aTi x ≤ bi to
equality, say for i = r and i = s (see Theorem 2.25). The minimality of (2.22)
implies that we can find a point x̄ which satisfies all the constraints in (2.22)
except aTk x ≤ bk (so aTk x̄ > bk). Then (as we have done previously) a suitable
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convex combination x̃ of x̄ and an inner point of P , satisfies aTi x̃ < bi for
i ∈ I2 \ {k}, and aTk x̃ > bk. Let H consist of those i ∈ I2 for which aTi x ≤ bi
is an implicit equality for F . Let λi > 0 for i ∈ H and define a =

∑
i∈H λiai

and α =
∑

i∈H λibi. We see that aTx ≤ α is then a valid inequality for P
and that it induces F . Also note that k ∈ H. By suitable choices of λi, for
i ∈ H we can find two such valid inequalities (a1)Tx ≤ α1 (choose λk small
enough) and (a2)Tx ≤ α2 (choose λk large enough) such that (a1)T x̃ ≤ α1

and (a2)T x̃ > α2. This shows that (a2)Tx ≤ α2 is not a positive multiple
of (a1)Tx ≤ α1 plus some linear combination of the equations aTi x = bi for
i ∈ I1, i.e., condition (iii) does not hold, and the proof is complete.

If the polyhedron P is fulldimensional, the previous Theorem shows that
there is a unique minimal representation of P . Here the uniqueness is up to
the multiplication of an inequality by a positive scalar, and the inequalities
involved correspond to the facets of P .

2.6 Exercises

Problem 2.1 Prove Fredholm’s alternative directly from Theorem 2.3.

Problem 2.2 Show that y ∈ lin.space(P ) iff for each x ∈ P we have Lx ⊆ P
where Lx = {x+ λy : λ ∈ R}.

Problem 2.3 Prove that for a linear subspace L in Rn we have that L =
lin.space(L).

Problem 2.4 Prove (ii) in Proposition 2.11.

Problem 2.5 Prove the minimality of the decomposition in Corollary 2.16.

Problem 2.6 Let P ⊂ R2 be the polyhedron defined by the following linear
inequalities: x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 0, x1 ≤ 3, x2 ≤ 2, x1 + x2 ≤
4, 2x1 + 3x2 ≤ 15. Illustrate P and the inequalities in the plane. Find the
face of P induced by each of the inequalities. What is the dimension of P ,
and of all the faces? Which inequalities are redundant? Find a minimal
representation of P . Is this polyhedron a polytope? What is the lineality
space and the characteristic cone? You should also give formal proofs for all
these properties (not just use geometric intuition!).

Problem 2.7 Let Q ⊂ R2 be the polyhedron defined by the following linear
inequalities: x1 ≤ 3, x2 ≤ 2, x1 + x2 ≤ 4, 2x1 + 3x2 ≤ 15. Answer now the
same questions as in the Problem 2.6.
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Problem 2.8 Show that each linear subspace is a finitely generated cone (see
the comments in the proof of Theorem 2.17).

Problem 2.9 Show that a minimal representation of a polyhedron does in-
deed exist.

Problem 2.10 Let P ⊆ Rn be a polyhedron of dimension m and with the
dimension of its lineality space being d. Show that there is a sequence of
faces Fd, Fd+1, . . . , Fm of P such that dim(Fj) = j for j = d, . . . ,m. Also
prove that this sequence may be chosen such that Fj is a facet of Fj+1 for
j = d, . . . ,m− 1.

Problem 2.11 Let P ⊆ Rn be a polyhedron and let T : Rn → Rm be an
affine transformation, that is, T (x) = Cx+ d for some m× n-matrix C and
vector d ∈ Rm. Consider an inner representation P = conv(V ) + cone(R) of
P . Show that the image T (P ) of P under T (i.e., T (P ) = {T (x) ∈ Rm : x ∈
P}) satisfies

T (P ) = conv(T (V )) + cone(T (R)).

Thus, T (P ) is a polyhedron as well. Prove next that each face of T (P ) is
the image under T of some face of P . As a concrete example, let P be the
solution set of the (nonlinear) inequalities |xi| ≤ 1 for i = 1, 2, 3. Explain
why P is a polyhedron and find inner and outer descriptions. Let the linear
transformation T be given by T (x1, x2, x3) = (x1, x2) so this is projection
into the xy-plane. Determine T (P ). We mention that the polytope P in the
example is called a crosspolytope (simialr in Rn). It may also be seen that
the set of points with norm no greater than 1 in the l∞-norm.
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Chapter 3

The simplex method

In Chapter 2 we discussed linear programming theory. In particular we stud-
ied relations between the optimal solutions in a pair of dual LP problems.
The purpose here is to describe the simplex method for solving linear pro-
gramming problems numerically. Efficient implementations of this algorithm
are among the fastest LP codes available today.

There is a vast literature on linear programming. The classical text is
G. Dantzig’s book [8] on linear programming. More recent literature in-
cludes [4], [24], [25] and [29]. The famous book by A. Schrijver [35] treats LP
from a theoretical point of view and contains a lot of literature references on
the subject. For a presentation on recent algorithmic developments (ellipsoid
method, Karmarkar’s method etc.), see the survey paper [13]. A comprehen-
sive treatment of the ellipsoid method in connection with implicitly described
polyhedra is the book [26].

3.1 Some basic ideas

We use a small example in order to motivate the algebraic manipulations of
the simplex method. The underlying geometric ideas are also treated.

Consider the LP problem (P) max{x1+x2 | x1 ≥ 0, x2 ≥ 0, x1 ≤ 3, x2 ≤
2.5, x1 + 2x2 ≤ 5} illustated in Figure 3.1. Let P be the feasible set in (P)
and note that P is a polytope.

Geometrically we can solve this problem as follows. Let c = (1, 1) be the
objective function and consider a hyperplane H=(c, b) = {x ∈ R2 | cTx = b}
for each b ∈ R; these are all parallel hyperplanes (i.e., they are all parallel to
the same linear subspace). Thus H=(c, b) consists of those solutions (points)
with the same value b on the objective function. We therefore find the optimal
value v(P ) as the maximum b such that F := H=(c, b) ∩ P 6= ∅, and then F
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x1+x2=4

optimal solution (3,1)
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x1 <= 3

constraint

x2 <= 2.5
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L(4)

x1+2x2 <= 5

1

2

Figure 3.1: The example LP

is the set of optimal solutions. In the example, v(P ) = 4 and F = {(3, 1)}.
Although this geometric approach can only be used to solve problems with
two (or possibly three) variables, it gives some (geometric) understanding of
what happens in higher dimensional spaces as well.

Now, let us take a look at the algebraic side. First, recall from Chapter 2
that there is an optimal solution which is also a vertex because the polyhedron
P is both pointed and bounded. Consider the vertex x0 = (0, 0) of P . This
point is the unique solution obtained by setting the two defining inequalities
x1 ≥ 0 and x1 ≥ 0 to equality. This solution is not optimal, which may be
explained by the fact that (at least) one of the active constraints, x1 = 0,
hinders us in improving the objective function. In fact, if we remove the
constraint x1 = 0 (defining x0), but maintain the constraint x2 = 0, we make
an improvement possible. More precisely, the set {x ∈ P | x2 = 0} defines
an edge of P (a face of dimension 1) and we can move along this edge until
we meet another vertex x1 = (3, 0), and this vertex is the solution of the
original equation x1 = 0 combined with the defining inequality x1 ≤ 3 which
has now become active. This process of moving from a vertex to another
(adjacent) vertex along an edge of the feasible polyhedron is precisely the
geometric idea underlying the simplex algorithm. The algebraic operations
are: (i) maintaining a set of active constraints defining the current vertex,
(ii) testing if loosening one of these constraints may improve the objective
function, and, if so, (iii) calculate the new solution obtained by moving as
far as feasibility allows, and we then find a new active constraint (linearly
independent of the others). Finally, we should mention that optimality of
the last solution corresponds to finding a “matching” dual feasible solution
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so that weak duality serves as a stopping rule!
The method is given in detail in the next section. Actually the simplex

method consists of two stages: first one finds a vertex (if any) and then,
starting from this initial vertex, one finds an optimal vertex. In both stages
the simplex algorithm is used: it solves an LP problem when an initial vertex
solution is given. The method has its origins in some papers by the physisist
Joseph Fourier (ca. 1820) on problems in mechanics, but it was fully devel-
oped into an efficient algorithm by George Dantzig around 1940. By the way,
the LP duality theory was a joint effort of Dantzig and the famous mathe-
maticial John von Neumann (known for his work in functional analysis, game
theory and also in the initial developments of computers).

3.2 The simplex algorithm

We shall describe the (primal) simplex algorithm for LP problems of the
following form

max{cTx | Ax = b, x ≥ 0} (3.1)

where A ∈ Rm,n, b ∈ Rm and c ∈ Rn. We assume that the coefficient matrix
A has full row rank, i.e., the row vectors are linearly independent. This
assumption is valid (both theoretically and computationally). Anyway, the
assumption implies that m ≤ n, and we note that the feasible set P = {x ∈
Rn | Ax = b, x ≥ 0} is a pointed polyhedron. It is pointed because P is
contained in the nonnegative orthant which is pointed. Thus the minimal
faces of P are vertices, and from Proposition 2.13 we know that, if P is
nonempty, there is an optimal solution which is a vertex, or, if the problem
is unbounded, there is an extreme ray along which the objective function
increases without bounds.

Some notational remarks are in order. The subvector of a vector z ∈ RJ
(resp. matrix M ∈ RI×J) corresponding to (column indices) J ′ ⊆ J is
denoted by zJ′ (resp. MJ′). We shall also write M =

[
MB MN

]
and

z =
[
zB zN

]
. (Note that this notation could be misinterpreted; it does

not mean that B = {1, . . . ,m} and N = {m+ 1, . . . , n}).
We introduce some useful concepts that will turn out to be algebraic

counterparts to vertices. Let J = {1, . . . , n} be the index set of the variables,
and let B = {B1, . . . , Bm} be a subset of J consisting of m variable indices
and define N = J \ B. Thus AB is a square m × m matrix. If AB is
nonsingular, it is called a basis and we then call B a basis index set. Note
that, since the rows of A are linearly independent, its row rank, and also its
column rank, is m. Therefore, there is at least one basis index set. Note that
when AB is a basis, then its columns constitute a vector basis in Rm.
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Associated with a basis index set we have the primal basic solution
xB = (xB, xN) where xN = 0 and xB = A−1

B b. The variables in xB (i.e.,
xj with j ∈ B) are called basic variables and the variables in xN are
the nonbasic variables. We see that a basic solution xB satisfies all the
equations in (3.1). However, xB may not be nonnegative, but if it is, xB is
called a basic feasible solution, as we then have that xB ∈ P .

As we have suggested above, basic feasible solutions and vertices are the
same, as stated next.

Lemma 3.1 The set of vertices of P coincides with the set of basic feasible
solutions in (3.1)

Proof. Let xB be a basic feasible solution in (3.1). To prove that xB is a
vertex, it suffices, by Corollary 2.23, to find an objective function d ∈ Rn
such that xB is the unique optimal solution of the LP problem (Q) min
{dTx | x ∈ P}. Let d =

∑
j∈N ej where ej denotes the jth coordinate vector.

Since each point in P is nonnegative, we must have that v(Q) ≥ 0. But
dTxB = 0, so xB is an optimal solution and v(Q) = 0. Furthermore, each
optimal solution y in (Q) must satisfy yN = 0 and from Ay = b we then get
AByB+ANyN = b and AByB = b. ButAB is nonsingular, so yB = A−1

B b = xB,
and we have y = xB, proving the desired uniqueness.

Conversely, let x0 be a vertex of P . Then x0 is determined by n linearly
independent inequalities from the linear system Ax = b, x ≥ 0. Since A
has rank m, this subsystem must contain n−m inequalities from x ≥ 0, say
xj = 0 for some N ⊂ J with |N | = n −m. Thus the 2× 2 block matrix C
corresponding to the mentioned subsystem[

AB AN

0 I

]
is nonsingular and therefore 0 6= det(C) = det(AB)det(I) = det(AB), so AB

is nonsingular, and it follows that x0 = xB, i.e., a basic feasible solution.

The simplex algorithm solves an LP problem of the form (3.1) when
an initial basic feasible solution (vertex) is given. Iteratively one moves from
one vertex to the next as long as the objective function increases until no
further improvement can be made. More precisely, the algorithm generates
a sequence of bases, each corresponding to a vertex of P . In this process it is
crucial to be able to determine (efficiently) if a given basic feasible solution
xB is optimal. This is where the LP duality theory is useful. From Theorem
2.5 it follows that xB is optimal if and only if cTxB equals the objective value
for some dual feasible solution yB. In fact, the simplex algorithm produces
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such a candidate yB and the desired optimality test corresponds to checking
if yB is feasible in the dual LP problem of (3.1). The details are given next.

The LP dual of the primal problem (P) is the LP problem (D) given by

min{yT b | yTA ≥ cT}. (3.2)

Let B be a basis index set, AB the associated basis and xB the (primal) basic
solution as above. We also define an associated dual basic solution yB ∈
Rm by (yB)T = cTBA

−1
B . We then have that (yB)TA = (yB)T

[
AB AN

]
=[

cTB (yB)TAN

]
. Therefore, a dual basic solution is a dual basic feasible

solution if and only if (yB)TAN ≥ cN , which means that yB is feasible in
(D). The two basic solutions xB and yB are called complementary because
they satisfy the complementary slackness condition

((yB)TA− cT )xB = 0 (3.3)

We now have the following result.

Proposition 3.2 Assume that B is a basis index set such that the associated
basic solutions xB and yB are primal feasible and dual feasible, respectively.
Then xB is optimal in (P) and yB is optimal in (D).

Proof. We have that cTxB = cTBxB + cTNxN = cTBxB = (yB)TABA
−1
B b =

(yB)T b. On the other hand, using LP duality (Theorem 2.5) and the fact
that xB is feasible in (P) and yB is feasible in (D) we get cTxB ≤ v(P ) =
v(D) ≤ (yB)T b. As shown, the first and last expression here are equal, and
the desired result follows.

Remark. Note that this proof only relied on weak duality (v(P ) ≤
v(D))! Acually, one can prove the LP duality theorem (strong duality) by
proving the correctness of the simplex algorithm. For that approach the
finiteness of the simplex algorithm is a main task.

The simplex algorithm generates a sequence of basis index setsB(1), . . . , B(N)

with the properties that:

(i) each primal basic solution xB
(j)

, for j = 1, . . . , N , is feasible in (P),

(ii) the dual basic solutions yB
(j)

for j = 1, . . . , N − 1 are all infeasible in

(D), while yB
(N)

is feasible in (D),

(iii) consecutive basis index sets satisfy |B(j) \ B(j+1)| = 1 and |B(j+1) \
B(j)| = 1.

69



Thus, in the last iteration t = N we get, for the first time, a dual basic
solution, which is feasible. Therefore, by Proposition 3.2 xB

(N)
is optimal in

(P) and yB
(N)

is optimal in (D).
We remark that a there is a related algorithm, called the dual simplex

algorithm. It is in a sense complementary to the primal algorithm, and
generates a sequence of basis index sets such that the associated dual solu-
tions (i.e., yB) are feasible in (D), but the associated primal solutions are
infeasible in (P), except for at termination.

One of the reasons for the success of the simplex algorithm is that the
transition from the pair of primal and dual basic solutions (xB, yB) to the
next pair can be done with little computational effort. We describe how this
can be done.

For a basis index set B, we assume that B = {B1, . . . , Bm} is such that
B1 < . . . < Bm. In the associated primal basic solution x = xB = (xB, xN )
we call the variable xBi the i’th basic variable. Assume now that xB is feasible
in (P), i.e. A−1

B b ≥ 0. Geometrically, xB is a vertex of the polyhedron P
and it satisfies the n linearly independent equations given by xBi = (A−1

B b)i,
i = 1, . . . ,m, and xj = 0 for j ∈ N . We can reformulate the original LP
problem (3.1) into an equivalent problem P (B) relative to the current basis
B

cB b̄+ max{c̄TNxN | xB + ĀNxN = b̄; xB ≥ 0, xN ≥ 0}. (3.4)

where we define ĀN = A−1
B AN , b̄ = A−1

B b and c̄TN = cTN − c
T
BA
−1
B AN . In fact,

the feasible region, as well as the objective functions in the two problems
(P) and (P(B)) coincide; we have just introduced the partitioning and pre-
multiplied the equation system with the inverse of the basis, i.e. A−1

B . This
problem has a convenient form for analyzing the effect of variation in the non-
basic variables xN . First, we notice, as expected, that when we let xN = 0,
then we obtain the solution xB = (b̄, 0) in (P(B)). Is this solution optimal?
To answer this question, consider the objective function c̄TN = cTN −c

T
BA
−1
B AN

called the reduced cost vector. If c̄ ≤ 0, then the associated dual basic
solution yB is also feasible (check this!), and then the two basic solutions are
optimal in their respective problems (see Proposition 3.2). If, however, for
some j, say j = r, we have that c̄r > 0, then an increase of the nonbasic
variable xr leads to a solution which is at least as good as the current one.
Starting in (b̄, 0), we now want to increase the variable xr as much as possi-
ble, while maintaining all the other nonbasic variables at 0. Let xr = λr ≥ 0,
and we then
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obtain the solution x(λr) given by

x(λr)B = b̄− ārλr,
x(λr)r = λr,
x(λr)j = 0 for j ∈ N \ {r}.

(3.5)

How much can we increase λr? Since all the equations hold for any λr
(by construction), it is only the nonnegativity of the basic variables that may
cause trouble. The i’th basic variable, x(λr)Bi is given by x(λr)Bi = b̄i−āi,rλr.
Note that, because AB is a primal feasible basis, we have b̄ ≥ 0. We therefore
see that, for each i

(i) if āi,r ≤ 0, then x(λr)Bi ≥ 0 for all λr ≥ 0, and

(ii) if āi,r > 0, then x(λr)Bi ≥ 0 if and only if 0 ≤ λr ≤ b̄i/āi,r.

We therefore see that the maximum permittable λr for which x(λr) is primal
feasible is λ∗r given by

λ∗r = min {b̄i/āi,r | i ≤ m, āi,r > 0}. (3.6)

and we define λ∗r =∞ if ār ≤ 0. If λ∗r is finite, we let

B∗(r) = {Bi | i ≤ m, āi,r > 0, b̄i/āi,r = λ∗r} (3.7)

which is the index set of basic variables that will become zero in the solution
x(λ∗r) (why!).

We say that the primal basic solution xB is degenerate if xBi = 0 for
some i ≤ m. Otherwise, the solution is nondegenerate, i.e., all the basic
variables are strictly positive. We observe that the new solution x(λ∗r) is
primal feasible, and, furthermore, that x(λ∗r) 6= x(0) = xB if and only if
λ∗r > 0. In particular, we see that if xB is nondegenerate, then λ∗r > 0. If
xB is degenerate, then we may, or may not, have λ∗r = 0. Whenever λ∗r is
finite, the new solution x(λ∗r) is also a basic solution; this follows from the
next proposition.

Proposition 3.3 Consider a basis index B and an r ∈ J \ B. Define λ∗r
and x(λ∗r) as in (3.5) and (3.6). Let F = {x(λr) | 0 ≤ λr ≤ λ∗r}. Then the
following statements all hold.

(i) If λ∗r = 0, the vertex x0 = xB is degenerate and each of the sets
(B \{s})∪{r} for s ∈ B∗(r) is a basis index set with associated basic feasible
solution x0.

(ii) If 0 < λ∗r < ∞, each of the sets (B \ {s}) ∪ {r} for s ∈ B∗(r) is
a basis index set with associated basic feasible solution x(λ∗r). Furthermore,
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F = {x(λr) | 0 ≤ λ ≤ λ∗r} = conv({xB, x(λ∗r)}) is an edge (one-dimensional
face) of P which joins the two vertices xB and x(λ∗r).

(iii) If λ∗r = ∞, then the set F = {x(λ) | λ ≥ 0} is an extreme ray of P
(i.e., an unbounded one-dimensional face).

Proof. This result is essentially obtained by using the following basic result
from linear algebra: an m × m matrix AB is nonsingular if and only if for
some b ∈ Rm the linear system ABx = b has a unique solution.

Consider first the situation with λ∗r < ∞, and let s ∈ B∗(r). Let B′ =
(B \{s})∪{r} and N ′ = N \B′. Then , by definition of λ∗r, the linear system
AB′x = b has a unique solution, namely x(λ∗r), and from the mentioned linear
algebra result it follows that AB′ is nonsingular, and B′ is a basis index set.
All the results now follow since feasible basic solutions are vertices of P , and
the line segment between two vertices is an edge of P . The statement in (iii)
follows in a similar manner.

The previous discussion therefore describes how the simplex algorithm
goes from one (primal) basic feasible solution to the next, and adjacent,
basic feasible solution. The detailed algorithm is as follows.

The simplex algorithm.

Step 0. (Initialization) Let B be an initial basis index set such that the
associated primal basic solution xB is feasible. Calculate xB = A−1

B b and
(yB)T = cTBA

−1
B .

Step 1. (Optimality check) Calculate the reduced cost c̄TN = cTN − (yB)TAN .
If c̄TN ≤ 0, then terminate; xB is optimal in (P) and yB is optimal in (D).
Otherwise, choose an r 6∈ B with c̄r > 0 and go to Step 2.
Step 2. (Pivoting) Determine λ∗r and B∗(r) from (3.6) and (3.7). If B∗(r)
is empty, then (P) is unbounded, x(λ) ∈ P for all λ ≥ 0 and cTx(λ) → ∞
as λ → ∞. Otherwise, choose an s ∈ B∗(r) and update the basis index set
by B := (B \ {s})∪ {r}. Determine the new primal and dual basic solutions
xB and yB, and return to Step 1.

There are several questions that are natural to ask at this point. First,
does the algorithm work, i.e., does it terminate? Note that it is not obvious
that the algorithm works because we may have degenerate pivots, i.e., two
consecutive bases may correspond to the same vertex. Therefore, in principle,
it might be that the algorithm gets stuck in some vertex and never reaches
an optimal one. However, the algorithm does work, provided that one uses
specific principles for selecting new basic variables and also (in case of ties)
outgoing basic variables. We show this in the next section.
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Another important question concerns the problem of finding an initial
vertex. Remember that the simplex algorithm takes a feasible basic solution
as input, so we need a device for producing this initial solution, or prove
that the problem is infeasible. It is remarkable that we can use the simplex
algorithm for this task as well, see Section 3.4.

A final question is how we can obtain efficient implementations of the sim-
plex algorithm (or simplex method). The straightforward implementation of
the simplex algorithm as described above, would require that we (in addition
to some matrix products) solve two m×m linear equation systems with the
basis AB, or its transpose, as the coefficient matrix. In fact, to find xB and
yB we solve ABxB = b and (yB)TAB = cTB, respectively. The important ob-
servation is that these two systems are “nearly equal” from one iteration to
the next as the basis index sets differ in one index only. In fact, one can find
an LU-factorization of the basis in terms of so called eta-matrices (represent-
ing the pivot operation on the coefficient matrix). This factorization may
then be updated in each iteration by adding suitable eta- matrices (and pos-
sibly permutation matrices). Two such schemes, the Bartels-Golub method
and the Forrest-Tomlin method, are used in efficient simplex implemetations
today, for further informations on this topic, see e.g. [4].

3.3 The correctness of the simplex algorithm

The purpose of this section is to prove that the simplex algorithm works, i.e.,
that it correctly solves the linear programming problem in a finite number
of iterations whenever a primal basic feasible solution is given.

As pointed out in the previous section, there might be a problem that
one gets stuck in a (non-optimal) vertex x0 in the sense that , from a certain
iteration on, all the primal basic feasible solutions are equal to x0. We have
seen that this can only happen if the basic feasible solution xB is degenerate,
i.e., at least one basic variable is zero. Since λ∗r > 0 we then get a new
solution. Let us first see that the simplex algorithm works if all the vertices
are nondegenerate.

Theorem 3.4 Consider the LP problem max {cTx | Ax = b, x ≥ 0} where
A is of full row rank, and where a basic feasible solution x0 is known. Assume
that all bases are nondegenerate. Then the simplex algorithm, with x0 as the
initial solution, will terminate in a finite number of steps.

Proof. From the discussion of the simplex algorithm, and the nondegeneracy
assumption, we see that the step length λ∗r is strictly positive in each pivot
operation. Therefore, the objective function must strictly increase in each
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iteration (as the reduced cost of the incoming variable xr is positive). But
then we cannot generate a cycle of bases, i.e., eventually end up with a basis
that was considered before (as the objective function has increased in the
meantime). Since the number of bases is finite (at most n!/(m!(n − m)!)),
the simplex algorithm must terminate in a finite number of iterations.

From this proof we see that the crucial step in the finiteness argument was
to assure that we do not get “cycling”, that is, a cycle of bases. Therefore,
in the general situation with possibly degenerate bases, if we can find a rule
preventing cycling, the simplex algorithm will work. It turns out that several
such rules can be found. We shall study a very simple one, called Bland’s
rule.

We first observe that the simplex algortihm, as descibed in Section 3.2,
leaves several choices open for different specifications. First, we have not said
how to choose the new basic variable (entering variable) xr. Secondly, there
may be alternative choices for the leaving basic variable; this happens when-
ever the index set B∗(r) has more than one element. Whenever principles
for making these two decisions have been specified, we have a completely
specified simplex algortihm. Blands’s rule consists of the following simple
principles: (i) as an entering variable we choose the nonbasic variable with
lowest index having positive reduced cost, and (ii) as a leaving variable we
choose the lowest index in B∗(r). It is a remarkable fact that this simple rule
handles the problem of cycling. By a degenerate pivot we mean a pivot,
or simplex iteration, in which λ = 0, so we remain in the same vertex of the
feasible polyhedron. The presentation is largely based on [25].

Theorem 3.5 The simplex algorithm with Bland’s rule terminates.

Proof. A main goal in the proof is to show this result.
Claim: Consider a sequence of degenerate simplex iterations t, t+1, . . . , t′.

Let, in iteration t, the nonbasis index set be N t and assume that the nonbasic
variable xq enters the basis. Let N t

> = {j ∈ N t | j > q}. If xq leaves the
basis in iteration t′, then some r ∈ N t

> must have entered the basis in one of
the intermediate iterations t+ 1, . . . , t′ − 1.

Before we prove the claim, let us explain why it implies the termination
of the simplex algorithm equipped with Bland’s rule. It is clear that if the
algorithm does not terminate, it must cycle, i.e., return to a previously gen-
erated basis and repeat this cycle infinitely. (Otherwise we would go through
all bases and find an optimal one or an unbounded solution; this is due to
the finite number of bases). Consider such a cycle of iterations. Then this
cycle must consist of only degenerate pivots, otherwise we could not return to
the same basis (for the objective function would have changed). So consider
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such a cycle of degenerate iterations and let q be the largest index among
the nonbasic variables that enter in one of these degenerate iterations. But
the claim then gives the desired contradiction due to the maximality of q.
Therefore the algorithm can not cycle, and it terminates as there is only a
finite number of bases.

Thus, it only remains to prove the claim. To do this, assume (as above)
that the iterations t, t + 1, . . . , t′ are all degenerate, and that xq enters the
basis in iteration t and leaves in iteration t′. Let N t and N t

> be as described
in the claim and also let N t

< = {j ∈ N t | j < q}. Assume that there is no xr
with r ∈ N t

> that enters the basis in any of the iterations t + 1, . . . , t′. We
shall deduce a contradiction from this.

Let xp be the nonbasic variable that enters the basis in iteration t′ (when
xq leaves). Let B be the basis index set in iteration t and B′ the basis index
set in iteration t′. Consider now the LP problem in iteration t, relative to
the current basis B:

max{c̄TNxN | xB + ĀNxN = b̄; xB ≥ 0, xN ≥ 0}. (3.8)

Thus, c̄q > 0 as xq enters the basis, and also c̄j ≤ 0 for j ∈ N t
<; this is due to

the “entering principle” of Bland’s rule. We may now view this problem as an
“original LP problem” with coefficient matrix [I, Ā] and objective function
[0, c̄TN ]. Since xp enters in the t′’th iteration, this variable must have positive
reduced cost, i.e.,

c̄p − c̄
T
B′B

′−1
āp > 0. (3.9)

Now, c̄p ≤ 0. (For if c̄p > 0, then xp was nonbasic in iteration t, so p ∈ N t.
But p 6∈ N t

> for, by assumption, no variable with index in N t
> enters in

iterasjon t′ as xp does. Clearly, p 6= q, so we must have p ∈ N t
< and thus

c̄p ≤ 0, see above). Therefore, from (3.9), we get c̄TB′B
′−1āp < 0, or c̄TB′yp < 0

where we define yp = B′−1āp. Let the pivot element be yqp (recall: xp enters,
and xq leaves the basis in this iteration). Then yqp > 0 (otherwise xq would
not leave the basis) and from above we have c̄q > 0. Thus, in the negative
inner product c̄TB′yp the contribution from the q’th component is c̄qyqp > 0,
and we conclude that there must exist some other basic variable r (in B′)
with c̄ryrp < 0. Note that c̄r ≤ 0 for all basic variables except xq in B′ as
all these variables correspond either to indices in N t

< or basic variables in
iteration t (and then c̄r = 0). Therefore, we must have an r ∈ N t

< with
c̄r < 0 and yrp > 0. We have that xr = 0 since the primal solution x have
been unchanged during the intermediate iterations (they were degenerate)
and it was nonbasic in iteration t (and therefore zero). However, this shows
that the r’th basic variable was a candidate for leaving the basis in the ratio
test, and since r < q, we have arrived at a contradiction.
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This proves the claim above and also the theorem.

3.4 Finding an initial vertex

In this section we describe how to find an initial vertex of the polyhedron
P = {x ∈ Rn | Ax = b, x ≥ 0} being the feasible set of the LP problem (P)
given in (3.1).

In (P) we may assume that b ≥ 0; this is accomplished by multiplying
suitable rows by -1. Consider the following LP problem (PI), called the
phase I problem:

min{1T s | Ax+ s = b, x ≥ 0, s ≥ 0} (3.10)

where 1 = (1, . . . , 1). Compared to the original problem (P) the phase I
LP problem contains artificial variables, one for each row, and the objective
is to minimize the sum of these artificial variables. A cruical property is
that v(PI) = 0 if and only if there is a feasible solution (x, s) of (PI) with
s = 0. In this case x is a feasible solution of (P). Thus by solving (PI) one
determines if the problem (P) is feasible, and, if it is, one gets a feasible
solution. Furthermore, it is easy to find an initial basic feasible solution to
(PI) (this is the whole point!); just let x = 0 and s = b. Thus all variables
in s are basic, and the corresponding basis is the identity matrix.

Next we explain how to find, in the case of (P) feasible, a basic feasible
solution through solving (PI). Let (x, s) be the optimal basic feasible solution
of (PI), and assume that (P) is feasible, so v(PI) = 0. Thus we have that
s = 0. If now all the variables in s are nonbasic, the current basis matrix is
in fact a basis matrix in A (i.e. a m × m nonsingular submatrix). In this
case we found an initial basic feasible solution of (P) using this basis.

It remains to discuss the case when at least one artificial variable is basic
in the optimal basic feasible solution of (PI). For notational simplicity, say
that s1, . . . , sk are basic variables in s and that x1, . . . , xt are nonbasic vari-
ables in x. The idea is to use a pivot operation to drive one of the variables
s1, . . . , sk out of the basis such that it is replaced by one of the variables
x1, . . . , xt. Note that in this basis change the objective function is of no in-
terest, but making pivot operations is still possible. In fact, it corresponds
precisely to a pivot operation as in Gaussian elimination on a matrix. In this
way one can gradually switch variables until either (i) all artificial variables
are nonbasic, or (ii) no more switching may be done. In case (i) we have
reached our goal of finding a primal feasible basis, and we may proceed to
phase II of the simplex method. In case (ii) the switching got stuck because
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in the submatrix in which we wanted to choose a pivot element all elements
were zero so no such pivots could be done. One can see that this reveals
that certain rows in Ax = b are linearly dependent on the others. One may
then delete these redundant rows, and the preceeding pivoting has then also
produced a basis in this reduced system. Thus, also in this case a primal
feasible basis was found, and one may proceed to phase II of the simplex
method.
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Chapter 4

Graph optimization

Most problems studied in combinatorial optimization involve looking for cer-
tain structures in graphs. Furthermore, many applied problems in e.g. com-
puter science, VLSI, telecommunications, scheduling etc. are fruitfully mod-
eled by graphs, possibly through some kind of optimization problem in that
graph. In this chapter we give a brief introduction to some basic concepts and
results in graph theory. Then we study some classical optimization problems
in graphs, e.g., the shortest path problem, with focus on the mathematical
ideas underlying efficient algorithms for solving these problems.

For further treatment of graph optimization and combinatorial optimiza-
tion, see [33], [25], [2], [14], [21], [23] and [29]. Some central books in graph
theory are [1],[3] and [14]. It may also be useful to study parts of the book
[15] (discrete mathematics) along with this chapter.

4.1 Graphs and digraphs

We give a very short introduction to graph theory. Books that can be rec-
ommended for further reading include [3], and [1].

A graph is an ordered pair G = (V,E), where V is a finite set with
elements called nodes or points and E is a finite set of unordered pairs
from V ; each such pair is called an edge or a line. Any graph may be
visualized in R2 by drawing the nodes as distinct points and each edge as
a curve joining the two nodes. Such a drawing of the graph is called an
embedding of the graph. The number n of nodes is called the order of the
graph, and the number m of edges is called the size of the graph. In Figure
4.1 a graph of order 8 is indicated.

Graphs are typically used to model finite sets where there is some kind of
association between pairs of elements. For instance, in a computer network
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Figure 4.1: A graph

the nodes may correspond to computers and edges to direct communication
lines as cables. In fact, graphs are well suited for representing communica-
tions systems in other areas as well (railway, roads, electricity). As another
example, consider a matrix A ∈ Rm,n and associate a node i ∈ I with the i’th
row and a node j ∈ J with the j’th column. Let the G = (V,E) have node
set V = I ∪ J and let E contain the edge iff aij 6= 0. This graph represents
the sparsity structure of the graph and may be used in efficient specialized
(e.g.) Gaussian elimination algorithms for solving linear equations Ax = b

with some sort of band structure.
For an edge e = {u, v} ∈ E we normally write e = [u, v] or e = uv. Note

that since this is an unordered pair we have uv = vu. When e = uv we
say that e is between, or joins, u and v and that u and v are incident to
e. Two nodes are adjacent, or neighbors, if there is some edge between
them, and these nodes are called the endnodes of that edge. Two edges
are neighbors if they share a node. A node v and an edge e are incident
if v is an endnode of e. Sometimes a graph is allowed to contain loops of
the form uu. In the graph of Figure 4.1 we see that e.g. nodes u and w
are adjacent, but u and v are not. The edge e is between u and w, and the
edges e and g are neighbors. Two edges are parallel if they have the same
endnodes. Unless otherwise stated we consider only loopless graphs without
parallels. Graphs with parallels are often called multigraphs. Note that
graph terminology varies slightly from one text to another, so definitions
should be studied carefully!

We have already seen that a graph may be used to represent a matrix in a
certain sense. Conversely, there are certain matrices associated with a graph
that are useful for discussing graph properties and graph optimization prob-
lems. Consider a graph G = (V,E) and define the node-edge incidence
matrix A ∈ Rn,m with elements being 0 or 1 as follows. A has one row for
each node i and and a column for each edge e, and ai,e = 1 if i is incident to
e (i.e., i is an endnode of e) and ai,e = 0 otherwise. All the ones in row i of A
are in columns that correspond to the set δ(i) of edges being incident to node
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i; this set is often called the star of node i. The row sum d(i) = di = |δ(i)|
is the number of edges incident to i (= the number of neighbor nodes to i);
we call this number the degree of node i. More generally, for S ⊂ V , we let
δ(S) denote the set of edges with one endnode in S and the other endnode
in S̄ = V \ S; such a set is called a cut.

An isolated node is a node of degree 0, i.e., without neighbors.
A walk (in a graph) is a node-edge sequenceW : v0, e0, v1, e1, . . . , vn−1, en−1,

vn, en, vn+1 where ei = [vi, vi+1] ∈ E for i = 0, . . . , n. The endnodes of W
are v0 and vn, and we also call W a v0vn-walk or a walk between v0 and
vn. Note that in a walk we may have repeated nodes or edges. If, however,
there are no repeated nodes, we call the walk a path between v0 and vn, or a
v0vn-path. Usually, we use the symbol P for paths. All the nodes in a path,
except the two endnodes, are called internal nodes. A walk for which the
endnodes coincide, is called a circuit. A circuit for which all nodes are of
degree two, is called a cycle. A graph without cycles is called acyclic or
a forest. The length of a walk (path etc) is its number of edges. A walk
(path etc) is called odd (resp. even) if it has odd (resp. even) length. A
walk W , a path P and a cycle C is shown in Figure 4.2.

u

v

u’

v’

W

P

C

Figure 4.2: Path, walk and cycle

There is another matrix which may be used to represent the graph. Let
the graph G = (V,E) have node set {v1, . . . , vn}. The adjacency matrix
A ∈ Rn,n is a 0/1-matrix where the (i, j)’th element is 1 if [vi, vj] ∈ E and 0
otherwise. Note that A is symmetric and that it has zeros on the diagonal.
The powers of this matrix contains information about walks in the graph.

Proposition 4.1 Let A be the adjacency matrix of a graph G and let n ≥ 1.
Then the (i, j)’th entry of An, the n’th power of An, equals the number of
different vivj-walks of length n in G.
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Proof. Let Nn be the n × n matrix where Nn
i,j denotes the total number

of vivj-walks of length n in G. Clearly, we have N1 = A. Every vivj-walk
of length n arises from a vivk-walk of length n − 1 by adding the edge vkvj.
Therefore we must have Nn

i,j =
∑

vk∈δ(vj)
Nn−1
i,k =

∑
v∈V N

n−1
i,k ak,j. But this

proves that if Nn−1 = An−1, we also have Nn = An, and the desired result
follows by induction.

We remark that the previous result is similar to a property of the tran-
sition matrix of finite, stationary Markov chains. Let P be the transition
matrix for such a Markov chain on a finite set of states, i.e., Pi,j is the proba-
bility that the process goes from state i to state j in one time step. Then Pn

i,j

is the probability that the process moves from state i to state j in n steps.
The standard proof of this fact is also similar to the proof given above.

Two graphs may have the same structure although node and edge “names”
are different. For most purposes we do not want to distinguish between such
graphs. Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there
is a injective (one-to-one) function φ : V → V ′ such that [u, v] ∈ E iff
[φ(u), φ(v)] ∈ E′.

One may produce new graphs by applying different operations on graphs;
we here mention a couple of such operations. Consider a graph G = (V,E)
and let U ⊆ V and F ⊆ E. The subgraph induced by U , denoted
G[U ], is the graph (U,E[U ]), where E[U ] consists of those edges in E with
both endnodes in U . We then call (U,E[U ]) a node-induced subgraph.
If F ⊆ E the graph G[F ] = (V, F ) is called an edge-induced subgraph.
The complement of a graph G = (V,E) is the graph Ḡ = (V, Ē), where
Ē = {uv : uv 6∈ E}.

Some special graphs are often discussed. The complete graph on n
nodes, denoted Kn, is the graph with n nodes where each pair of nodes are
adjacent. Thus Kn has n(n − 1)/2 edges. A bipartite) graph is a graph
where the nodes may be divided into two sets V1 and V2 such that each
edge has one endnode in V1and the other endnode in V2. More generally,
the k-partite graph K[n1, . . . , nk] is the graph with node set consisting of
(disjoint) sets, or color classes, Vi with |Vi| = ni for i = 1, . . . , k and where
the endnodes of each edge belong to different color classes. Thus, a 2-partite
graph is the same as a bipartite graph, see Fig.4.3. A k-partite graph is
complete if each pair of nodes lying in different color classes are adjacent.

We now consider graphs where the edges have a certain direction. A
directed graph, or digraph, is an ordered pair D = (V,A) where V is a
finite set of nodes (or points) and A is a finite set of ordered pairs of nodes.
Each such ordered pair e = (u, v) is called an arc (or line, (directed) edge)
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I J

Figure 4.3: Bipartite graph

and u is called the initial endnode, or tail, of e and v is called the terminal
endnode, or head, of e. One can define the concepts of directed walk,
path, circuit and cycle as for graphs, but where each arc in the sequence
is directed from the node that precedes it to the node that succeedes it.
For instance, the following is a directed path from u to v with two arcs:
P : u, (u, w), w, (w, v), v, see also Figure 4.4. For each node v we call the set
of arcs with tail v the outgoing star of node v, and it is denoted by δ+(v).
Similarly, the set of arcs with head v is called the ingoing star of v and it
is denoted by δ−(v). More generally, if S ⊂ V , we let δ+(S) denote the set
of arcs with tail in S and head in S̄ = V \ S, and δ−(S) is the set of arcs
with tail in S̄ and head in S. We let d+(v) = |δ+(v)| and d−(v) = |δ−(v)|.

Figure 4.4: A directed path

We can represent a digraph by its node-arc incidence matrixA ∈ Rn,m
where ai,e = −1 (1) if i is the head (tail) of are e and ai,j = 0 otherwise.
Thus each column has exactly two nonzeros, one of these is 1 and the other
-1.

Now, after so many (boring?) definitions, the time has come to give a
result. It is quite natural present what is often called the first theorem of
graph theory.

Theorem 4.2 For any graph the degrees and the number of edges are related
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as follows ∑
v∈V

dv = 2m. (4.1)

Proof. Recall that the degree dv is equal to the number of edges in the star
δ(v) of v. Thus, when we sum all these numbers we will count each edge
twice (once from each end) and therefore the sum must be 2m.

Although this was a easy fact to prove, it is very useful. Let us give one
interesting consequence.

Corollary 4.3 In any graph there is an even number of nodes having odd
degree.

Proof. If the number of odd degree nodes were odd we would get an odd
number on the left-hand-side of (4.1), a contradiction since 2m is even!

This parity argument turns out to be very useful later as well, when we
study combinatorial problems via linear programming. We next give a useful
characterization of bipartite graphs in terms of the parity of its cycles.

Proposition 4.4 A graph is bipartite if and only if it contains no odd cycles.

Proof. By definition, a graph is bipartite iff we can color each node either red
or blue (say) such that no edge has endnodes with the same color. Assume
first that the graph G contains an odd cycle with nodes v1, . . . , v2k+1, and
we may assume that v1 is colored red. Then v2 must be blue, v3 is red etc.
In fact, all odd numbered nodes must be red and even numbered nodes blue.
But then both v1 and v2n+1 are red, and they are joined by an edge, which
proves that no bicoloring is feasible, i.e., the graph is not bipartite.

Conversely, assume that the graph contains no odd cycles. Choose a start
node v1 and traverse the graph using breadth-first-search from v1. Color the
start node red, and in each iteration where, say, node vi is processed give
each of the nodes in δ(vi) a different color than that of vi. This process is
well-defined (i.e., we never assign a different color to an already colored node)
since all cycles are even, Thus the graph is bipartite.

A basic graph property is connectivity. We say that two nodes u and v
in a graph G are connected if G contains an uv-path. This gives rise to an
equivalence relation on V . Let us write uCv if u and v are connected, and
then this binary relation is an equivalence relation so

(i) uCu,

83



(ii) uCv⇒ vCu, and

(iii) (uCv and vCw)⇒ uCw.

This equivalence relation gives rise to a partition of V into subsets V1, . . . , Vp
being the maximal connected subsets of V . These sets are called the (con-
nected) components of G. Thus, two nodes are connected if and only if
they are in the same component. Let c(G) denote the number of components
of G. A graph is called connected if c(G) = 1, i.e., if each pair of nodes is
connected. Note that each isolated node is also a component.

Figure 4.5: A graph with two connected components

What kind of graphs are minimally connected in the sense that if an edge
is removed the connectedness is destroyed? These graphs constitute a very
important class of graphs, called trees, which we study next. First, we make
an important observation: a minimally connected graph can not contain a
cycle, because if it did, an edge could be removed and the graph would still
be connected. Recall that a forest is a graph without cycles. We define a
tree as a connected forest, i.e., a connected graph without cycles. A bridge
is an edge whose removal increases the number of components. Trees can be
characterized in several ways. Remember that we have n = |V | and m = |E|.

Proposition 4.5 Let T = (V,E) be a graph. Then the following statements
are equivalent.

(i) T is a tree.
(ii) T is connected and each edge e ∈ E is a bridge.
(iii) There is a unique path between each pair of nodes.
(iv) T is connected and m = n− 1.
(v) T is a forest and m = n − 1.

The proof is left as an exercise.
We therefore see that the trees are precisely those graphs that are mini-

mally connected. Another simple property of trees will be useful later. For a
tree T we say that a node v ∈ T is a leaf if v is incident to exactly one edge
in T .
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Corollary 4.6 Any tree contains at least two leaves.

Proof. Consider a tree T = (V,E) with n nodes and m edges. Then m =
n − 1, by Proposition 4.5. Any node v in a tree must have at least one
incident edge so dv ≥ 1. From Theorem 4.2 we have that∑

v∈T

dv = 2m = 2(n − 1). (4.2)

Let no N be the number of nodes of degree 1. It follows from (4.2) that
2(n − 1) =

∑
v∈T dv ≥ N + (n − N)2 = 2n − N and therefore N ≥ 2 as

desired.

4.2 The shortest path problem

In this section we consider weighted graphs, that is, graphs with a nonnega-
tive number associated with each edge. We shall study the problem of finding
a shortest possible path between two given nodes in a weighted graph.

Let G = (V,E) be a weighted graph with weight function w given by w(e)
(or we) for each e ∈ E. The length, or weight, w(P ) of a path P (relative
to w) is defined by w(P ) =

∑
e∈P we where the sum is taken over all the

edges in the path. (Note: a path may be considered as an edge-sequence, a
node-sequence or a node/edge-sequence, depending on the context.) Based
on w we obtain a concept of distance in the graph. Define dw(u, v) as the
length of a shortest path taken over all uv-paths, i.e. dw(u, v) = min{w(P ) :
P is a uv-path}. It is convenient here to define dw(u, v) =∞ if u and v are
not connected. Similarly, we define w(u, v) = ∞ whenever [u, v] 6∈ E. If
w ≥ 0, dw is a pseudometric, and when we > 0 for each e, then dw becomes
a metric and therefore (V, d) is a metric space.

The shortest path problem is the following optimization problem:
given a weighted graph G with weight function w and two nodes u and
v, find a uv-path of minimum length, i.e., a path P with w(P ) = dw(u, v).
We shall only consider nonnegative weights; the general case may also be
solved efficiently, but by other algorithms. (When negative weights are al-
lowed, there may be negative length cycles, so walks using such cycles may
be shorter that paths; this fact requires special treatment.)

We next present the famous Dijkstra’s algorithm for solving the shortest
path problem. It turns out that the algorithm not only finds a shortest path
from a node u0 to a given node v, but it also finds a shortest path from u0

to all other nodes, essentially without extra work.
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Figure 4.6: How weighted graphs give metric spaces

The underlying ideas may be explained as follows. Let u0 be a fixed node
and consider a node set S containing u0. Let S̄ = V \S be the set complement
of S. We define the distance from u0 to S̄ by d(u0, S̄) = minx∈S̄d(u0, x).
Important properties of the function d are given in the next lemma.
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Figure 4.7: Illustration of the shortest path lemma

Lemma 4.7 There is a node v0 ∈ S̄ and a u0v0-path P : u0, u1, . . . , uk, v0

such that

(i) uj ∈ S for j ≤ k;

(ii) the path u0, . . . , uk is a shortest u0uk-path in G and therefore also in
G[S];

(iii) w(P ) = d(u0, v0) = d(u0, S̄), and finally

d(u0, v0) = d(u0, uk) + w(uk, v0) = min{d(u0, u) + w(u, v) : u ∈ S, v ∈ S̄}.
(4.3)

Proof. Confer with Figure 4.7 in this proof. Since V is finite, there is a node
v′ ∈ S̄ such that d(u0, v

′) = d(u0, S̄), and, furthermore, since the number of
paths is finite, there must be a u0v

′-path P ′ with w(P ′) = d(u0, v
′) = d(u0, S̄).

Let P ′ : u0, u1, . . . , uk′, v
′ and let v0 be the first node in this sequence which

is in S̄. Then, by optimality of v′, the edges between v0 and v′ must all
have zero weight, and by defining P to be the subpath of P ′ from u0 to v0
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we obtain w(P ) = w(P ′) = d(u0, S̄). Then P and v satisfy the properties
(i) and (iii) of the lemma. Furthermore, (ii) must hold, because if there
were a shorter u0uk-path Q, then this path could not contain v0 (this would
contradict that v0 is nearest node in S̄ to u0) and then the path obtained by
augmenting Q by the edge ukv0 would be shorter than P , a contradiction.
Thus, properties (i)–(iii) all hold and (4.3) also follows.

Based on this lemma we can solve our problem. Assume that we have
found the distance from u0 to all nodes in a set S. Initially we let S = {u0}.
Unless S = V , in which case we are done, Lemma 4.7 tells us that we can
find a node v0 ∈ S̄ and determine its distance d(u0, v0) from u0. But then we
have calculated the distance to one more node, and can proceed similarly with
S := S∪{v0}. It remains to explain how to determine this new node v0, and
again Lemma 4.7 tells us the answer. We may choose v0 ∈ S̄ and also uk ∈ S
as minimizers in (4.3), i.e., d(u0, uk) + w(uk, v0) = min{d(u0, u) + w(u, v) :
u ∈ S, v ∈ S̄}. In order to find this minimum we only need to consider nodes
uk ∈ S and v0 ∈ S̄ for which [uk, v0] ∈ E (otherwise w(uk, v0) = ∞), so we
actually consider all edges in the cut δ(S) = {[i, j] ∈ E : i ∈ S, j ∈ S̄}.
Finally, when we have found such nodes uk and v0, then a shortest u0v0-path
is obtained by augmenting a shortest u0uk-path by the edge [uk, v0] and the
node v0 (the first path was available from the previous step).

We therefore obtain the following algorithm in which each node v gets a
label (L(v), u) where L(v) is the distance from u0 to v and u is the predecessor
of v on a shortest u0v-path.

Dijkstra’s shortest path algorithm.
Step 0. S := {u0}, L(u0) := 0, L(v) = ∞ for each v ∈ V \ {u0}. If

|V | = 1, stop.
Step 1. For each v 6∈ S do the following: if the minimum of L(u)+w(u, v)

for u ∈ S and [u, v] ∈ E is smaller than L(v), then update L(v) to this
minimum number and let node v get the new label (L(v), u).

Step 2. Determine minv∈S̄L(v) and let v be a node for which this mini-
mum is attained.

Step 3. Update S by S := S ∪{v}. If S = V , then stop; otherwise return
to Step 2.

The correctness of this algorithm is a consequence of Lemma 4.7, and a
detailed proof of this is left as an exercise. The algorithm has complexity
O(n2); see Problem 4.4. We remark that if one is only interested in finding
shortest paths from u0 to each node in some set T of nodes, then one may
terminate the algorithm whenever S contains T . This is possible since at the
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end of each iteration, the algorithm has found shortest paths to all nodes in
S.

4.3 The minimum spanning tree problem

The minimum spanning tree problem is another basic combinatorial
optimization problem, which arises in several applications. Let G = (V,E)
be a graph with nonegative weight function w : E → R+. We assume that
G is connected. The problem is to find a spanning tree of minimum weight.
Here a spanning tree is a tree in G which spans all the nodes, i.e., each node
of V is contained in the tree, and the weight of the tree is defined as the sum
of the weights of its edges. An application of this problem is in the design of
communication networks (telecommunication, computer, railway etc.) where
a set of locations are to be connected by communication lines as cheaply as
possible.

As a preparation for the discussion of an algorithm that solves the mini-
mum spanning tree problem, we study graphs obtained from trees by adding
an edge.

Proposition 4.8 (i) If T = (V,E) is a tree and ij 6∈ E, then the graph
(V,E ∪ {ij}) contains exactly one cycle C ′.

(ii) If C ′ is the unique cycle from (i) and uv ∈ C ′ \ {ij}, then the graph
(V,E ∪ {uv} \ {ij}) is also a tree.

Proof. (i) Any cycle that arises from T by adding the edge ij must consist of
an ij-path in T plus ij. But since T is a tree it contains exactly one ij-path
(see Proposition 4.5), so consequently the augmented graph has exactly one
cycle.

(ii) Since the graph (V,E∪{uv}\{ij}) contains exactly one path between
each pair of nodes, it must be a tree (again by Proposition 4.5).

We shall describe an extremely simple, and efficient, algorithm for solving
this problem due to Kruskal. The algorithm is a greedy algorithm meaning
that one gradually makes the locally best choices in the construction of a
spanning tree. More precisely, in each iteration we add to the current partial
solution another edge with property that it has the lowest possible weight
among all those remaining edges that do not create a cycle when added.
The remarkable fact is that such a simple idea gives an optimal solution, as
proved below.

Kruskals algorithm.
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Step 0. Order the edges according to nondecreasing weights, say that
w(e1) ≤ . . . ≤ w(em). Set F := ∅ and k = 1.

Step 1. If the graph (V, F ∪ {ek}) is acyclic, set F := F ∪ {ek}.
Step 2. If |F | = n − 1, then stop; (V, F ) is a minimum weight spanning

tree. Otherwise, set k := k + 1 and return to Step 1.

Since Step 1 and 2 require O(m) steps, the main work of this algorithm
is sorting the array of edge weights. This may be done in O(m2) steps using,
e.g., the bubblesort algorithm. Note that, in Step 1 of Kruskal’s algorithm,
we have to check if the new graph (V, F ∪{ek}) is acyclic. This can be done
efficiently by maintaining a label for each node saying which component it
belongs to. Initially, we label the nodes 1 to n, and, later, an edge may
be added to F depending on the labels of its two endnodes. If these nodes
have the same label, the edge can not be added as a cycle would be formed.
Otherwise, the edge joins two components. We add this edge and also let all
the nodes in the two components get the same label.

The correctness of Kruskal’s algorithm is shown next.

Theorem 4.9 For any weighted connected graph Kruskal’s algorithm termi-
nates with a minimum weight spanning tree.

Proof. Let T = {e1, . . . , en−1} (with edges chosen in that order) be the
spanning tree at the termination of the algorithm, and assume that T is not
optimal. Let M be a minimum weight spanning tree for which the number
of edges in common with T is maximum. Let ek be the first edge in T which
is not in M (such an edge must exist as the nonoptimality of T implies
that M 6= T ). From Proposition 4.8 the graph M ∪ {ek} contains a unique
cycle, and, furthermore, this cycle must contain an edge e 6∈ T (otherwise
T would not be a tree). It also follows from Proposition 4.8 that M ′ =
M ∪ {ek} \ {e} is a tree. Since M is a minimum weight spanning tree and
w(M ′) = w(M) +w(ek)−w(e), we must have w(ek) ≥ w(e). But in the k’th
iteration of Kruskal’s algorithm the edge ek was chosen in stead of e (and
both were feasible choices; neither lead to a cycle) so we get w(ek) ≤ w(e),
and therefore w(ek) = w(e). It follows that M ′ is also a minimum weight
spanning tree and it intersects T in one more edge compared to M ; this
contradicts our choice of M and therefore T must be optimal.

4.4 Flows and cuts

A number of problems in graphs involve flows and cuts. We introduce these
concepts along with some basic properties.
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Figure 4.8: Proof of Kruskal’s algorithm

We shall first formalize the notion of flow in a network. By a network
we mean a four-tuple N = (V,E, d, b) where

(i) (V,E) is a directed graph (denoted D),

(ii) d : E → R+ is a capacity function where de = d(e) ≥ 0 denotes the
capacity of arc e, and

(iii) b : V → R is a supply function where bv = b(v) denotes the supply
in node v.

We shall also assume that the newtork is connected when arc directions are
ignored. Note that we allow negative values on bv, in which case it may be
viewed as a demand in that node.

We shall use the notation x(F ) :=
∑

e∈F xe whenever F ⊆ E and x =
(xe : e ∈ E) is a vector of variables, one for each arc e. A flow (arc-flow) in
the network N is a vector x ∈ RE that satisfies the following linear system

(i) x(δ+(v))− x(δ−(v)) = bv for alle v ∈ V
(ii) 0 ≤ xe ≤ de for all e ∈ E.

(4.4)
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Figure 4.9: A flow of value 7 from s to t

In Figure 4.9 we indicate a flow for which bs = 7, bt = −7 and the other
bv’s are zero. (The capacities are not drawn).

We call xe, for e = (i, j), the flow in arc e = (i, j) and it should be in-
terpreted as the magnitude of some “flow” entering the arc (i, j) at node i
and leaving this arc at node j. The equation (4.4)(i) are flow balance con-
straints saying that the net flow out of node v, i.e., the difference between
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the total outflow x(δ+(v)) and the total inflow x(δ−(v)), must equal the sup-
ply bv. Whenever bv = 0, we call the corresponding constraint in (4.4)(i) flow
conservation. The inequalities (4.4)(ii) are the capacity constraints, and
note here that we only consider nonnegative flows. A special case is obtained
whenever bv = 0 for all v ∈ V , and then a flow is also called a circula-
tion. Note that whenever bv = 0, flow balance represents Kirchoffs’s law in
electricity; what goes in to a node, must also leave it.

We may represent the linear system (4.4) in matrix form by

Ax = b, 0 ≤ x ≤ d. (4.5)

Here A ∈ Rn,m is the node-arc incidence matrix of D. Thus we see that
the set P of flows, i.e., the solution set of (4.5), is a bounded polyhedron,
i.e. a polytope (by Theorem 2.19). Note that P may be empty, and that a
characterization of the nonemptiness of P may be found using Farkas’ lemma.

We shall study the problem of finding a minimum cost flow in the next
section, but here we shall consider a specialized flow called st-flow. Given
two distinct nodes, a source s and a sink t in V , we call x ∈ RE an st-flow
if x satisfies

(i) x(δ+(v))− x(δ−(v)) = 0 for alle v ∈ V \ {s, t};
(ii) 0 ≤ xe ≤ de for all e ∈ E.

(4.6)

An example is shown in Figure 4.9. We call the f(x) := x(δ+(s)) the value
of the flow x, and note that it must be equal to x(δ−(t)) (why?). An st-flow
may be viewed as a circulation in a certain graph associated with D = (V,E).
Without loss of generality we may assume that D has no arcs with head S
and no arcs with tail t (this will be clear later). Define the augmented
graph D̃ = (V, Ẽ) by adding an “artificial” arc (t, s) to the arcs of D. Then
a circulation x̃ in G̃ correspond to an st-flow through x̃e = xe for each e ∈ E
and the flow value f() equals the flow in the artificial arc (t, s).

As presented above the notion of flow, or st-flow, is expressed via flow
in each arc. However, flows may also be represented in a different, more
combinatorial way, in terms of paths and cycles. This is done through flow-
decomposition, a very useful concept for, in particular, algorithmic develop-
ments.

Let P denote the set of all directed paths in D, and C denotes the set
of all directed cycles in D. Let P ∈ P and assume that P is a st-path.
Then P gives rise to a st-flow of value z given by x = zχP , i.e., xe = z

for each e ∈ P and xe = 0 otherwise. Similarly, each cycle C ∈ C induces
a circulation x = zχC. More generally, we can find an arc flow from a
path and cycle flow function g : P ∪ C → R+; we call g(P ) and g(C)
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the flow on path P and cycle C, respectively. We may view g as a vector
in the space PC := RP∪C+ where each coordinate is a flow on some path or
cycle. Define the linear transformation T : PC+ → RE+ by T (g) = x where
x =

∑
P∈P gPχ

P +
∑

C∈C gCχ
C , i.e. xe =

∑
P :e∈P gP +

∑
C:e∈C gC . It is clear

that whenever g ∈ PC+, then x = T (g) is a an arc flow (for suitable capacity
d and supply b). The next flow decomposition theorem says that the
converse relation also holds, see [33].

Theorem 4.10 Each arc flow x ∈ RE may be decomposed as a path and
cycle flow, that is, x = T (g) for a suitable g ∈ PC+. In fact, g may be
chosen such that (i) if gP > 0 for a path P then this path goes from a supply
node to a demand node, (ii) at most n + m paths and cycles have nonzero
flow, and (iii) at most m cycles have nonzero flow.

Proof. We shall describe an algorithm that successively determines paths
and cycles and assigns numbers to these (flow values) and eventually ends
up with the desired decomposition.

Let x0 = x and b0 = b. We shall determine a path or a cycle with cer-
tain properties. Select, if any, a supply node s0 (meaning that x0(δ+(s0)) −
x0(δ−(s0)) = b0

v > 0). Then there is some adjacent node v1 such that
x((s0, v1)) > 0. If v1 is a demand node (meaning that x0(δ+(v1))−x0(δ−(v1)) =
b0
v < 0), we terminate. Otherwise, we can find a new node v2 with x0((v1, v2)) >

0. In this way we proceeed until we either (i) determine a directed path P 0

from a supply node s0 to a demand node t0 such that x0
e > 0 for each e ∈ P 0,

or (ii) we meet a node we have processed before so we have a directed cycle
C with x0

e > 0 for each e ∈ C. Let H be the path or cycle determined in
this way. ε0 be the minimum value of x0

e for edges in H and, if H = P ,
bv0. Let x1 = x0 − ε0χH and define b1 = b0 if H = C and if H = P we let
b1
s0 = b0

s0 − ε
0, b1

t0 = b0
t0 + ε0 and b1

v = b0
v for all v 6= s0, t0. Then x1 is a flow

in the network (V,E, d, b1).
Observe the crucial fact that either the new flow has been reduced to zero

in some arc or for some original supply node s we have obtained b0
s = 0.

We repeat the process described above until there are no more demand (or
supply) nodes. Then we select, if any, a node with positive flow on some
outgoing arc and can, as above, find a directed cycle with strictly positive
flow. We then reduce the flow on this cycle and repeat this procedure until
we end up with the zero flow. Thus we have found a sequence (xk, bk) for
k = 0, . . . and eventually, for say k = N , we get bN = 0 and then we
terminate. Here the termination follows from the observation as we can
find at most m cycles (in each case a flow on some arc is reduced to zero).
Similarly, we must have N ≤ n + m since there are m arcs and at most n
supply nodes. Furthermore, xN = 0, so 0 = xN = x −

∑N
j=0 εjχ

Hj , and
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therefore we have found the flow decomposition x =
∑N

j=0 εjχ
Hj with all the

desired properties.

s0,5

4
4

3

1

s0,1

t0,3

a) Original flow b) After removing path flow

Figure 4.10: Finding flow decomposition

As a special case we apply flow decomposition to circulations.

Corollary 4.11 A circulation can be decomposed as a cycle flow on at most
m directed cycles.

Proof. This is an immediate consequence of Theorem 4.10 since a circulation
has no supply or demand nodes.

We now turn to a discussion of cuts. A (directed) cut in the digraph D is
an arc set C of the form C = δ+(S) where S is a nonempty node set not equal
to V . Note that δ+(S) = δ−(V \ S̄). Whenever s, t ∈ V , s 6= t and the node
set S satisfies s ∈ S, t 6∈ S, we call δ+(S) an st-cut. When d is a capacity
function defined on E, we call d(C) = d(δ+(S)) =

∑
e∈C de the capacity of

the cut C = δ+(S). The basic property of an st-cut C is that each st-path
P must contain at least one arc in C. More generally, we therefore have the
following result.

Lemma 4.12 The value of an st-flow x is no greater than the capacity of
an st-cut C.

Proof. Let f(x) be the value of the st-flow x, so f(x) := x(δ+(s)), and
let S ⊂ V be such that s ∈ S, t 6∈ S and let C = δ+(S). Since x sat-
isfies the flow conservation equations for all nodes in S \ {s}, we obtain
f(x) =

∑
v∈S[x(δ+(v)) − x(δ−(v))] = x(δ+(S)) − x(δ−(S)) ≤ x(δ+(S)) ≤

d(δ+(S)) = d(C). Here the last two inequalities were obtained from the
capacity constraints (4.6)(ii).

We shall use this inequality in section 4.5 in order to determine a maxi-
mum st-flow.
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4.5 Maximum flow and minimum cut

In this section we study two optimization problems in digraphs equipped with
arc capacities: the maximum flow problem and the minimum cut problem.
It is natural to treat these two problems in parallel as there are efficient
algorithms that solve both problems simultaneously without additional work.

Let D = (V,E) be a directed graph with nonnegative capacity function d
defined on the arcs. Let s and t be two distinct nodes, called the source and
the sink, respectively. The maximum flow problem is to find an st-flow
with maximum value f . Note that this is actually an optimization problem
with continuous variables, the flow xe on each arc e. Thus, in contrast to
the shortest path or spanning tree problems, we now have an infinite number
of feasible solutions. It is therefore not obvious that a maximum flow really
exists. It does, however, as can be seen by a compactness argument. Here
we shall follow the presentation given in [23].

Lemma 4.13 There exists a maximum st-flow x.

Proof. The value of an st-flow x is f(x) = x(δ+(s) =
∑

e∈δ+(s) xe which is a

continuous function of x ∈ RE. Furthermore, the feasible set of the max-flow
problem is the bounded polyhedron P defined by the linear inequalities in
(4.6). Thus P is a compact set (as each polyhedron is also closed), and by
Weierstrass’ theorem the maximum of the continuous function f is attained
in P .

We remark that we obtain another proof of this result by polyhedral
theory. In fact, since the value function is linear, the set of maximum flows
is a nonempty face F of the polytope P . Thus F is also a polytope and
each vertex in F is a maximum flow. This also means that the max flow
problem is a linear programming problem and could be solved using e.g. a
general linear programming algorithm. However, we shall next describe a
faster combinatorial algorithm which is also efficient.

The minimum st-cut problem is to find an st-cut C in D with min-
imum capacity d(C). This problem is closely connected to the max-flow
problem since we obtain upper bounds on the flow value from st-cuts.

Lemma 4.14 The maximum flow value is no greater than the minimum cut
capacity.

Proof. From Lemma 4.12 we have that f(x) ≤ d(C) whenever x is an st-flow
of value f(x) and C is an st-cut. By taking the maximum over all st-flows
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(and this maximum exists by Lemma 4.13), and then taking minimum over
all cuts we obtain the desired result.

In fact, the inequality of the previous lemma is an equality, i.e., there
exists an st-flow with value equal to some st-cut. This result, called the
max-flow min-cut theorem is one of the most important results in com-
binatorial optimization and also combinatorics. We shall prove this theorem
constructively. An illustration of a minimum cut in a digraph is given in
Figure 4.11. It has capacity 5. Can you find an st-flow with value 5?
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Figure 4.11: A minimum st-cut

The concept of an augmenting path is useful for modifying a flow into
another flow with larger value. Let x be an st-flow. Let v ∈ V , v 6= s,
and consider an sv-path P in the underlying undirected graph G associated
with D. This graph is obtained by replacing each arc by an edge with the
same end nodes. In D this path P consists of forward arcs and backward
arcs; for the forward arcs the tail is closer than the head to s on P , while
for backward arcs the head is closer. We let P+ and P− denote the set of
forward and backward arcs, respectively. We say that such a sv-path P is
x-augmenting to v if xe < de for each forward arc of P and xe > 0 for each
backward arc of P . If here v = t, we call P an x-augmenting path.

A characterization of whether an st-flow is maximum may be given in
terms of augmenting paths.

Lemma 4.15 An st-flow x is maximum if and only if there is no x-augmenting
path.

Proof. Let the augmenting node set S(x) consist of s and all nodes v for
which there exists an x-augmenting path.

Assume first that there is an augmenting path P , i.e., t ∈ S(x). Define
ε+ as the minimum value among the numbers de − xe for e a forward arc of
P , and ε− as the minimum value of xe for e among the backward arcs e of P ,
and finally let ε = min{ε+, ε−}. Then we have ε > 0 as P is x-augmenting.
Let x̄ be obtained from x by defining x̄e = xe + ε for e ∈ P+, x̄e = xe − ε
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for e ∈ P−, and x̄e = xe for all other e. Then x̄ is an st-flow with value
f(x̄) = f(x) + ε, which proves that x is not a maximum flow.

Conversely, assume that there is no augmenting path, so t 6∈ S(x). We
shall prove that the st-cut C(x) = δ+(S(x)) has capacity equal to the value
of the flow x. In fact, for each arc e = (i, j) ∈ C(x) (meaning that i ∈
S(x), j 6∈ S(x)) we must have xij = dij for otherwise we would have j ∈ S(x).
Furthermore, for each arc e = (i, j) with i 6∈ S(x), j ∈ S(x) we have xij = 0
(otherwise i ∈ S(x)). Thus the flow in each arc in the cut C(x) is at its
upper capacity while the flow in each arc in the reverse cut δ−(S(x)) is zero.
From this (and flow conservation) f(x) =

∑
v∈S(x)[x(δ+(v)) − x(δ−(v))] =

x(δ+(S(x))) − x(δ−(S(x))) = x(δ+(S(x))) = d(δ+(S(x))) = d(C(x)). Thus
the value of the flow x equals the capacity of the cut δ(S(x)). But by Lemma
4.14 it follows that x is a maximum st-flow, as desired, and also that C(x)
is a minimum st-cut.

From this result we obtain the max-flow min-cut theorem, discovered
independently in 1956 by Ford and Fulkerson and by Elias, Feinstein and
Shannon.

Theorem 4.16 For any directed graph with arc capacity function and dis-
tinct nodes s and t the value of a maximum st-flow equals the minimum
st-cut capacity.

Proof. Let x be a maximum flow which is known to exist by Lemma 4.13.
Then, according to Lemma 4.15, there is no augmenting path and the flow
value f(x) equals the capacity of the cut C(x) as defined in the proof of that
lemma. Then it follows from Lemma 4.14 that C(x) is a minimum st-cut,
and the theorem follows.

This theorem is an example of a minmax theorem: the maximum value
of some function taken over a class of objects equals the minimum value of
some other function for another class of objects. In several interesting cases
such results can be obtained by combining linear programming duality with
the concept of total unimodularity. We return to this in chapter 5, and, in
fact, we shall show that the max-flow min-cut theorem may be obtained via
these methods.

Based on augmenting paths we can give the following generic algorithm
for solving the maximum flow problem. We use the notation introduced in
connection with Lemma 4.15.

Generic max-flow algorithm. Step 0. Let x = 0.
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Step 1. Determine the augmenting node set S(x). If t 6∈ S(x), terminate;
the current st-flow x is optimal. Otherwise, let P be an augmenting path.

Step 2. Update the flow x by increasing the flow by ε on each forward arc
of P , and reducing the flow by ε on each backward arc of P . Return to Step
1.

We remark that this algorithm may not terminate in case of irrational
data. Whenever d is rational, we may replace the problem by one with integer
capacities, simply by multiplying each capacity by some suitably large integer
M . Then the problem is scaled and the optimal flow in the original problem
is reconstructed by dividing flows by M .

A very important corollary of Theorem 4.16 is that there exists an integral
maximum st-flow whenever d is integral. Recall that we say that a vector is
integral whenever all its components are integral.

Corollary 4.17 Whenever the capacity function d is integral, the generic
maximum flow algorithm terminates with an integral flow, i.e. the flow on
each arc is an integer.

Proof. We note that in each iteration the flow augmentation ε is an integer.
This follows from the fact that the first flow is integral and each of the
magnitudes de−xe are integral, and the integrality of each flow follows from
a simple induction argument.

Note that we also obtain a solution of the minimum cut problem as a
byproduct of the max-flow algorithm above. Again this relates to the minmax
result of Theorem 4.16.

A very important corollary of the max-flow min-cut theorem is Menger’s
theorem (originally from 1927, see [27]) which is a central result in combi-
natorics involving connectivity in graphs. We say that a set of dipaths in a
digraph are arc-disjoint if each arc belongs to at most one of these paths.

Theorem 4.18 The maximum number of arc-disjoint st-dipaths in a di-
rected graph equals the minimum number of arcs in an st-cut.

Proof. Let each arc in the digraph have capacity 1. Then the capacity of a
cut equals its number of arcs. Furthermore, it is easy to see that an st-flow
x of integral value k may be written as a sum of unit flows on arc-disjoint st-
dipaths P1, . . . , Pk: x =

∑k
j=1 χ

Pj . Therefore a maximum st-flow corresponds
to a maximum number of arc-disjoint st-dipaths. Thus the desired result
follows from Theorem 4.16.
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We conclude this section by a few remarks concerning efficient implemen-
tations of the maximum flow algorithm. We consider a digraph D = (V,A).

Data structures. In many graph algorithms one needs, typically within
one or more loops, to find a path from some given node to some other node
(or several nodes). It is therefore important to be able to determine the
neighbor nodes of a given node fast. Except for small problems, this rules
out using the adjacency matrix as a data structure (it often takes up too
much storage as well). In stead one can use adjacency lists as sketched
next. We describe this for digraphs; graphs may be handled similarly by
replacing each edge by two opposite arcs. One introduces two data types,
say type node and type arc. The nodes in the digraph is stored as a linked list
of nodes. For each node V one also stores a linked list of arcs; this is the set
of arcs having v as tail (initial endnode). Thus both the data types contain
next-pointers, and in addition one typically has data fields for possible name,
number and a field for storing a label (binary). The label may e.g. be used
for marking the nodes visited in some search so that the same node is not
visited (or processed) more than once.

Search. Say that we have a digraph respresented as in the previous para-
graph, and that we want to find a st-path. This may be done using breadth-
first-search as follows. Initially we give all nodes the label unscanned, and
we shall manipulate a queue Q of nodes which initially is empty. First we
visit all the neighbor nodes of s by traversing the adjacency list of s; each of
these nodes are put into Q in the order visited, say that the first node is on
top of the queue. We then relabel s as scanned. In the next step, we consider
the node v1 on top of Q and traverse its adjacency list as we did for s. We
put each unscanned neighbor node v with v 6∈ Q onto Q. Having finished
this we label v1 scanned and proceed with the next node on the top of Q in
similar way. Eventually we either meet t as one of the neighbor nodes, in
which case there is a st-path, or we terminate because the queue is empty,
and then there is no st-dipath. Note the we can construct the desired st-path
by simply marking each node being put onto the queue by its predecessor
node (the node from which it was visited).

Max-flow implementation. We now return to the implementation of
our generic maximum flow algorithm. First, we note how the problem of
finding an augmenting path (which, as we recall, contained both forward
and backward arcs) may be transformed to finding a directed st-path. Let
x be an st-flow and define Af(x) = {(i, j) : (i, j) ∈ A, xij < dij} and
Ab(x) = {(j, i) : (i, j) ∈ A, xij > 0}. The elements in Af are called forward
arcs and the elements in Ab(x) are called backward arcs. Note that if
the flow in (i, j) is strictly between its lower and upper bounds, then we
have (i, j) ∈ Af(x) and (j, i) ∈ Ab(x). The augmenting digraph is the
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digraph D(x) with node set V and arc set A(x) = Af(x) ∪ Ab(x). An st-
path in D(x) is called an augmenting path in D(x). The key property
is the one-to-one correspondence between augmenting dipaths in D(x) and
augmenting paths in G (as defined previously). Therefore, the max-flow
algorithm consists in iteratively using e.g. breadth-first-search in D(x) to
find, if any, an augmenting dipath in D(x), and the update the flow as
explained before. The result is a new st-flow with larger value, and the
new augmenting network is determined, and the process continues until no
augmenting path can be found. In that case the current flow is maximum,
and we also have labeled a set of nodes which induce a minimum cut.

It should be said that some care must be takes to make this into a poly-
nomial algorithm. This can be done by making sure that one finds an aug-
menting path which is shortest possible; here length refers to the number of
arcs in the path. This is accomplished by the breadth-first-search since this
search determines consecutive layers of nodes in the network with respect to
the distance from s.

For extensive discussions on max-flow algorithms and their implementa-
tion, we refer to [33].

4.6 Minimum cost network flows

In this section we treat the minimum cost network flow problem, a problem
with many real-world applications and which also contains the maximum
flow problem as a special case.

In Section 4.4 we defined a (network) flow in a network N = (V,E, d, b)
as a feasible solution of the linear system Ax = b, 0 ≤ x ≤ d, where A is
the node-arc incidence matrix, b is the supply vector and d is the capacity
vector. We now consider a linear cost associated with each flow x; the cost
of flow x is cTx =

∑
e∈E cexe. The minimum cost network flow problem

(MCNF) may be formulated as the following linear programming problem:

min{cTx : Ax = b, 0 ≤ x ≤ d}. (4.7)

Since the MCNF problem is an LP problem, it can be solved with e.g., the
general simplex method. However, one may improve this algorithm by ex-
ploiting the network structure of the coefficient matrix. Before we discuss
these matters, it is useful to point out some applications of the MCNF prob-
lem.

Example 4.1 The transportation problem may be presented as follows.
Assume that we have a set of customers J where customer j ∈ J has demand
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of sj units of some product, say oil (and a unit may be one litre). In addition
there is a set of suppliers I, and supplier i ∈ I has available ri litres of
the same product. We assume that the cost of transporting xij litres of oil
from supplier i to customer j is cijxij; so the cost is proportional to the
amount transported. The question is: how should all the demands be met
(satisfied) in order to minimize total costs and not exceeding the available
supplies. We assume that the total supply is equal to the total demand, i.e.,∑

i∈I ri =
∑

j∈J sj = T . This transportation problem can be modeled as a
MCNF problem by introducing a digraph D with node set D = (I ∪ J,E)
where E contains the arcs (i, j), for each i ∈ I and j ∈ J . The nodes in I
and J corresponds to the suppliers and customers. We let the cost function
be given by the unit cost cij on arc (i, j), for i ∈ I, j ∈ J . The supply
function is bi = ri for i ∈ I and bj = sj for j ∈ J . The capacities may be set
to ∞ (or, if one prefers, a finite capacity dij = M where M is some number
e.g. greater than maxi∈Iri). Consider the MCNF problem in this network,
and note that for feasible flow x the total flow into each node j ∈ J must
equal sj , and the total flow out of node i ∈ I must equal ri. We see from
this that the MCNF correctly models the transportation problem, and in the
optimal solution xij tells us the amount of oil to be transported from supplier
i to customer j.

We remark that the transportation problem allows for some slight gener-
alizations. First, it would be easy to introduce capacities on the amount of
goods that can be transported from each supplier to each customer. We just
add the proper upper capacity on the flow in arc (i, j) for i ∈ I and j ∈ J .
Secondly, we could also handle the situation where the total supply exceeds
the total demand, so

∑
i∈I ri >

∑
j∈J sj. This can be done by adding an arti-

ficial customer node v with demand
∑

i∈I ri −
∑

j∈J sj (and infinite capacity
on the arc (v, t)), and we are back to the balanced situation. The opposite
situation, where total supplies are not large enough to satisfy all demands is
treated in an exercise.

Example 4.2 The maximum flow problem can be viewed as a MCNF prob-
lem. Recall from Section 4.4 that finding a maximum st-flow in the digraph
D = (V,E) with capacity function d could be viewed as finding a circulation
in the augmented graph D̃ with maximum flow through the augmented arc
(t, s). Consider the network with digraph being this augmented graph, supply
function b = 0 and capacities on all ordinary arcs (e ∈ E) given by d while
we let the augmented arc (t, s) have infinite capacity (or, for those who dis-
like ∞, let the capacity be c(δ+(s); the maximum flow cannot exceed this cut
capacity). We let the cost function c be all zero, except again for the arc (t, s)
where we let cts = −1. The MCNF problem in this network is therefore to

100



find a circulation in the augmented graph with the flow in arc (t, s) as large
as possible, i.e., we have the maximum flow problem.

For many interesting applications of the MCNF problem we refer to [33].
We now proceed with a description of how the simplex algorithm may be

adapted to a specialized algorithm for solving the MCNF problem. The first
topic is to study the structure of basic feasible solutions of the LP problem
4.7. We shall assume that the digraph is connected (more precisely, the un-
derlying graph where each arc is replaced by an undirected edge is connected).
As usual n and m denotes the number of nodes and arcs, respectively.

Proposition 4.19 We have that rank(A) = n− 1. Furthermore, if Ã is the
matrix obtained from A by deleting one row in A (no matter which one), then
the rows of Ã are linearly independent.

Proof. Note first that we must have m ≥ n − 1 (otherwise the underlying
graph would be disconnected, see Proposition 4.5). The sum of all the row
vectors in A equals the zero vector, so these row vectors are linearly depen-
dent, and therefore rank(A) ≤ n− 1. Let Ã be obtained from A by deleting
the row corresponding to some node i0.

We shall use a kind of elimination procedure on a tree, where leaf after
leaf is eliminated, and gradually we construct a lower triangular matrix with
desired properties.

Let S = (V,E[S]) be a spanning tree in D (in the sense that the arc
direction is ignored), and let ÃS ∈ Rn−1,n−1 be the submatrix of Ã induced
by the columns that correspond to arcs in S. Let i1 6= i0 be a leaf in S; such
a leaf exists according to Corollary 4.6 (S contains at least two leaves, so one
must be distinct from i0). The row in ÃS corresponding to i1 is then a unit
vector with a 1 in, say, column j1 (so the remaining elements of that row
are 0). Using row and column permutations on ÃS we move the (i1, j1)’th
element to position (1, 1) of this matrix, and then the first row and column
both consist of zeros except for entry (1, 1) which is 1.

Next, we delete node i1 (and the incident arc j1) from the tree S. The new
tree has a leaf i2 6= i0, and the i2’th row in ÃS has at most two nonzeros, one
corresponding to an arc j2 in the new tree, and possibly one corresponing
to j1 (which happens if j1 = [i1, i2]). We permute rows and columns so
we get the i2’th row as a new second row, and the column j2 as a new
second column in ÃS. Now the modified matrix ÃS has the property that
its principal submatrix consisting of the first two rows and columns is lower
triangular with diagonal elements being 1 or -1. We repeat this procedure
to the last tree, and eventually ÃS is modified into a matrix which is lower
triangular with 1’s and -1’s on the diagonal. The determinant is therefore 1
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or -1 and the matrix is nonsingular. This proves that the row-rank of Ã is
n− 1. i.e., the rows are linearly independent, and therefore we also get that
rank(A) = n− 1.

In fact, the previous proof also leads to a description of the largest non-
singular submatrices of the node-arc incidence matrix A.

Proposition 4.20 Choose a node i0 ∈ V (called root node), and let Ã be
the matrix obtained from the node-arc incidence matrix A by deleting the
row corresponding to i0. Then there is a one-to-one correspondence between
the spanning trees in D and the bases in Ã (i.e., nonsingular submatrices of
dimension (n− 1)× (n− 1)).

Proof. The proof of Proposition 4.19 shows that every spanning tree in D
gives rise to a basis in Ã. We shall prove the converse, that each basis arises
in this way. So let B ∈ Rn−1,n−1 be a basis in Ã, say that it corresponds
to the n− 1 columns E′ ⊂ E. Then the columns of B are linearly indepen-
dent, and this implies that also the corresponding columns in A are linearly
independent.

Consider the subgraph D′ = (V,E′). We claim that D′ contains no cycle
(in the underlying graph). For, assume that C is such a cycle with arcs
j1, . . . , jt. Choose an orientation of the cycle, so each arc is either a forward
arc or a backward arc. Define λi = 1 if ji is a forward arc, and λi = −1 if
ji is a backward arc, and let aj denote the j’th column of A. Then we have
that

∑t
i=1 λiaji = 0 which contradicts that the columns in A corresponding

to E′ are linearly independent, and the claim follows.
Therefore D′ is an acyclic graph with n nodes and n − 1 arcs, and by

Proposition 4.5 D′ is a tree.

We are now prepared to describe the specialized simplex algorithm for
the MCNF problem. Or, rather, in order to make things a bit easier, we
assume that all upper bounds are ∞:

min{cTx : Ax = b, x ≥ 0}. (4.8)

This is therefore an LP problem on standard form. We remark that the
MCNF problem with upper bounds on the flow can be treated similarly by
an adoption of the simplex algorithm with upper bounds (where upper bounds
are treated implicitly as lower bounds, and nonbasic variables are on one of
the two bounds).

Let A and Ã be as in Proposition 4.20 (for a chosen root node i0). We
shall apply the simplex algorithm to this “reduced problem”:

min{cTx : Ãx = b̃, x ≥ 0}. (4.9)

102



where b̃ is obtained from b by deleting the i0’th coordinate. We first describe
the basic solutions in (4.9), so consider a basis in Ã and the corresponding
spanning tree S (confer Proposition 4.20). How can we compute the corre-
sponing basic solution xS? Here the triangularity of the basis, seen in the
proof of Proposition 4.19, makes this an easy task, in fact, it is a simple back-
substitution as we know from the Gaussian elimiation algorithm for solving
linear equations. First, all the nonbasic variables are zero, so for all e 6∈ S
we have xSe = 0. Let i1 ∈ V be a leaf of S, and let e1 be the unique arc in S
incident to i1. Then we get from the flow balance equation in node i1 that
xSe1 equals bi1 (resp. −bi1) if i1 is the tail (resp. head) of e1. We then proceed
similarly: consider the subtree T \ {i1}, find a leaf and determine the flow in
the unique tree-arc incident to the leaf based on flow balance and the flow in
all the other arcs incident to i1.

Example 4.3 Consider the digraph D and the supply vector b shown in Fig-
ure 4.12 (a). A spanning tree S is indicated in (b) with the associated basic
solution xS. This solution may be found as follows. Let (for instance) w be
the root node, and consider the leaf t of S. The flow in arcs (s, v), (v, w) and
(u, t) are all zero (nonbasic). From flow balance in t we get that xSwt = 5.
“Deleting” w we select another leaf, say v and find that xSuv = 2. Continuing
in this manner we find the indicated solution.

v,-2 w,0

t,-5

s,7 u,0

(a) D and b

55
2

7

v,-2 w,0

t,-5

s,7 u,0

(b) S and x

Figure 4.12: A basic solution in the network flow problem

We remark that we are free to use the root node as a leaf in the calculation
of the basic solution, since flow balance holds in this node as well.

The basic solution we found in the example was in fact feasible, so xS

is a vertex of the polyhedron defined by the constraints Ax = b, x ≥ 0.
However, there are also nonfeasible basic solutions, i.e., basic solutions for
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which some arc flow is negative; try to find one in the example! Next, we
explain how to determine dual basic solutions. Let B be a basis in Ã, so
B corresponds to some spanning tree S in D. The dual solution yS is the
solution of (yS)TB = cTB . Here yS contains a dual variable yi for each i 6= i0.
However, it is convenient in the description of the algorithm to introduce
a “dual variable” yi0 associated with the root node, and e.g., let yi0 = 0.
Then (yS)TB = cTB is equivalent to ySi − y

S
j = cij for each (i, j) ∈ T . This

system may also be solved using back-substitution due to the triangularity of
B (more precisely, a suitable permutation of B is lower triangular). In fact,
for each node v which is adjacent to i0 in S we may determine yv directly
using the equation for the arc connecting i0 and v and that yi0 = 0. We
may then proceed to consider further nodes similarly, and finally, as S is a
spanning tree, we have determined all the dual variables.

The overall simplex algorithm for solving the MCNF problem (without
upper bounds) is as follows:

The network simplex algorithm. Step 0. Let x0 be a basic feasible
solution corresponding to a tree S.

Step 1. Calculate the dual variables ySi , i ∈ V by solving the equations
ySi − y

S
j = cij for each (i, j) ∈ S (using ySi0 = 0). The reduced cost for the

nonbasic variable xij, (i, j) 6∈ S is then c̄ij = cij − (ySi − y
S
j ).

Step 2. If c̄ij ≥ 0 for all (i, j) 6∈ S; stop, the current solution is optimal.
Otherwise, go to Step 3.

Step 3. Choose a nonbasic arc xi,j 6∈ S with c̄ij < 0. Let C be the
unique cycle formed by adding (i, j) to S. Adjust the flow by increasing the
flow around the cycle C such that xij is increased as much as possible, until
another arc e ∈ C, e 6= (i, j) gets zero flow. Then update the basis tree to
T := T \ {(i, j)} ∪ {e}, and return to Step 1.

To start this algorithm we need a basic feasible solution which may be
found by solving a maximum flow problem. Using suitable data structures
(lists) the network simplex algorithm may be implemented so that it is sig-
nificantly faster than the standard simplex algorithm on the same problem.
For further implementation details, see e.g., [33], [25] or [2].

4.7 Exercises

Problem 4.1 Give relations between the incidence matrix AG of a graph and
the incidence matrix of G’s different subgraphs.

Problem 4.2 Prove Proposition 4.5.
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Problem 4.3 Work out a correctness proof for Dijkstra’s algorithm, based
on Lemma 4.7.

Problem 4.4 Determine the complexity of Dijkstra’s algorithm.

Problem 4.5 Implement Dijkstra’s algorithm and test on a few examples.

Problem 4.6 Modify the greedy algorithm so that it solves the maximum
weight spanning tree problem. Prove the correctness of the algorithm.

Problem 4.7 Determine a the complexity of Kruskal’s algorithm.

Problem 4.8 Consider a weighted graph G (nonnegative weights) which
may not be connected. Consider the problem of finding a maximum weight
forest in G. What happens if you apply the greedy algorithm to this problem?

Problem 4.9 A matroid is a pair (E,M) where E is a finite set andM is
a class of subsets of E such that (i) ∅ ∈ M, (ii) if X ∈M and Y ⊆ X, then
Y ∈M, and (iii) if X, Y ∈M with |X| = |Y |+1, there is an x ∈ X\Y such
that Y ∪{x} ∈ M. We call each F ∈M a feasible set or an independent
set.

Let now G = (V,E) be a graph and let M consist of the edge set of all
forests in G. Prove that (E,M) is a matroid. We call this the graphic
matroid.

Next, let E be a finite set of vectors in Rn, and let M consist of all the
subsets of these vectors that are linearly independent. Prove that (E,M) is
a matroid. We call this the linear matroid.

Let (E,M) be a (general) matroid with nonnegative weights defined on
E. Consider the problem of finding a maximum weight feasible (independent)
set, i.e. max {w(F ) : F ∈ M}. Try to generalize the greedy algorithm to
this problem. One can show that such an extension correctly solves the men-
tioned problem. Interprete the algorithm for the linear matroid. Do you think
that the greedy algorithm also works (is correct) for all/other combinatorial
optimization problems?

Problem 4.10 Let (E,M) be a matroid. A basis in this matroid is a max-
imal feasible set, i.e. a set F ∈M such that F ∪{e} 6∈ M for all e ∈ E \F .
Prove that all bases have the same cardinality. Next, prove that a set system
(E,M) satisfying properties (i) and (ii) in our definition of a matroid in
Problem 4.9 is in fact a matroid if and only if for all A ⊆ E all maximal
feasible subsets of A have the same cardinality. What are the bases for the
graphic and the linear matroids? One final point: let B and B ′ be bases of
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a matroid and let x ∈ B \ B′. Prove that there is an y ∈ B′ \ B such that
(B\{x})∪{y} is a basis. Can you interprete this result for the two mentioned
matroids?

Problem 4.11 Consider a digraph D = (V,E) and let s and t be distinct
nodes in D. Assume that (i) d+(v) = d−(v) for all v 6= s, t and (ii) d+(s) =
k + d−(s) for some positive number k. Prove that D contains k arc-disjoint
st-dipaths.

Problem 4.12 Figure out a small, but interesting (!) maximum flow exam-
ple and solve the problem using our generic max-flow algorithm.

Problem 4.13 Try to find an example of a maximum flow problem where
an “unlucky” choice of the augmenting paths leads to a high number of aug-
mentations.

Problem 4.14 Figure out a small, but interesting (!) minimum cost net-
work flow example and solve the problem by hand using the network simplex
algorithm. Then use CPLEX to solve the same problem (with and without
Netopt).
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Chapter 5

Combinatorial optimization
and integral polyhedra

In polyhedral combinatorics one studies combinatorial problems by using
concepts and results from convex analysis, polyhedral theory and linear pro-
gramming.

One of the important contributions of polyhedral combinatorics is that
it gives a general scheme for finding a combinatorial minmax relationship
between ”associated” combinatorial optimization problems. This procedure
is based on combining results on integral polyhedra (i.e., polyhedra with in-
tegral vertices) with linear programming duality. These minmax results may
often be used to develop a combinatorial algorithm for solving these optimiza-
tion problems. In many cases it seems difficult, or impossible, to find such
minmax relations, but the theoretical results may still lead to fast algorithms
for solving interesting problem instances to optimality, or near-optimality. In
the next chapter we discuss polyhedral methods based on the theory outlined
here. Today, polyhedral combinatorics is a very active mathematical disci-
pline and it may be viewed as a geometric study of certain classes of integral
polyhedra.

For further reading in polyhedral combinatorics see [32], [29], [35] and [5].

5.1 A basic approach

We discuss a basic “work plan” in polyhedral combinatorics and illustrate
with an example.

Consider the combinatorial optimization problem (CO) defined in Section
4. We have a class F of feasible sets each being a subset of a finite ground
set E. The nonnegative weight function is w and the optimization problem
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is max {w(F ) : F ∈ F}.
The following approach is often used in polyhedral combinatorics, see [32].

The basic idea is to translate the (CO) problem into a linear programming
problem in RE.

A basic approach:

1. Represent each F ∈ F by its incidence vector χF in RE, and let P be
the polytope defined as the convex hull of these incidence vectors. Some-
times one prefers to study the polyhedron being the vector sum of this
polytope and the cone being the nonnegative orthant to this polytope).

2. Find a complete linear description of P .

3. Apply LP duality to obtain a minmax theorem.

4. Develop an algorithm using the minmax theorem as a stopping crite-
rion.

The most difficult part of this process is Step 2, so often one is only able
to find partial descriptions of P (e.g., only a subclass of the facet defining
inequalities are known). However, even such a partial description may be of
great interest, both theoretically and practically.

We illustrate the approach by the problem of finding a maximum weight
forest F in a given connected graph G = (V,E) with weight function w;
this example is from [32]. Note that if all weights are nonnegative this is
equivalent to the spanning tree problem. With negative weights present, the
optimal solution may be a forest and not a tree. In Chapter 4 we explained
how the spanning tree problem can be solved in polynomial time by the
greedy algorithm. The idea was to iteratively extend a forest by adding a
minimum weight edge which does not introduce any cycles. This algorithm
(see below) also solves the maximum weight forest problem, provided that
we terminate whenever the next edge has nonpositive weight.

First we define the polytope of interest, so we let the forest polytope
F (G) be the convex hull of the incidence vectors of all forests in G. Jack
Edmonds showed in [10] the following theorem which gives a complete linear
description of F (G).

Theorem 5.1 F (G) ⊂ RE is the solution set of the following linear system

(i) xe ≥ 0 for all e ∈ E;
(ii) x(E[S]) ≤ |S| − 1 for all S ⊆ V .

(5.1)
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Proof. We follow the presentation of [32]. The idea of this proof, due to
Edmonds, is to use the greedy algorithm on the LP dual to the problem of
maximizing cTx subject to the linear system (5.1). Also, via complementary
slackness, an optimal primal solution is constructed.

Let Q denote the polytope being the solution set of (5.1), and we shall
prove that Q = F (G). Note that the integral vectors in Q are precisely the
incidence vector of forests since the inequalities (5.1)(ii) prevents cycles. By
convexity this implies that F (G) ⊆ Q.

To prove the reverse inclusion, let x̄ be a vertex of Q, i.e., this point is
the unique optimal solution an LP problem max {cTx : x ∈ Q} for suitable
c ∈ Rn. The LP dual of this problem is

min
∑

S⊆V yS(|S| − 1)
subject to
(i)

∑
S:e∈E[S] yS ≥ ce; for all e ∈ E;

(ii) yS ≥ 0 for all S ⊆ V .

(5.2)

Consider the greedy algorithm applied to the primal problem, and assume
that the edges found are F = {e1, . . . , es} in that order. Thus, in the i’th
iteration the edge ei is added and it joins two components of the current
solution and forms the new component Vi. (For instance, when i = 1 we
have n components and ei = [u, v] joins the components {u} and {v}, so
V1 = {u, v}.)

The dual solution y is defined next. We let yS = 0 for all sets S not among
the Vi, i = 1, . . . , s. The values for the sets Vi are determined in the reverse
order as follows. Let yVr = c(er). Consider the primal greedy solution x′

found above. The complementary slackness condition for edge e says, as x′er >
0, that

∑
S:er∈E[S] yS = c(er). With our definition of yVr this equality already

holds, and we are forced to define yS = 0 for all other sets S that contain both
endnodes of er. To define the remaining components of y, let, for each j ∈
{1, . . . , r − 1}, I(j) = {i : j + 1 ≤ i ≤ r and both end nodes of fj are in Vi}
and define yVj = c(ej)−

∑
i∈I(j) yVi for j = r − 1, r − 2, . . . , 1.

One can now check that y is dual feasible, x′ is primal feasible and that
the complementary slackness condition holds. Thus it follows from LP theory
that both these solutions are optimal in the respective problems. But x̄ was
also optimal in the primal, and due to the uniqueness, we must have x̄ = x′,
which proves that every vertex of Q is integral and we have Q = F (G) as
desired.

This proof idea has later been applied to show other theorems in polyhe-
dral combinatorics. In fact, Edmonds showed the result above in the more
general setting of matroid theory.
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As mentioned it may be difficult to find a linear desription of P . However,
it is usually easy to find a polyhedron whose integer points correspond to the
feasible sets of interest. We shall describe a general technique for this, see
[26]. Combining this with LP duality we also obtain problems that give
bounds on the optimal value.

Consider again a general combinatorial optimization problem (CO) with
ground set E, family F of feasible sets and nonnegative weight function w:
min w(F ) : {F ∈ F}. Since w is nonnegative, we may assume that each
F ∈ F is minimal with respect to set inclusion, i.e., it does not strictly
contain another feasible set. Such a family F is called a clutter. We define
the blocker BL(F) of F as the class of subsets B ⊂ E with B∩F nonempty
for each F ∈ F . Note that this definition applies to any set system (familiy
of subsets of E) F . Thus a set in BL(F) intersects all the feasible sets. From
the definition we see that BL(F) is a clutter. A useful property is that

BL(BL(F)) = F . (5.3)

so F consists precisely of those sets blocking BL(F). As an example, let F
consist of the (edge sets of) st-paths in a graph G = (V,E), for two distinct
nodes s and t. Then BL(F) consists of the edge-minimal st-cuts. Then (5.3)
says that the st-paths are the minimal sets intersecting all st-cuts.

Define the polyhedron

P = conv({χF : F ∈ F}) + RE+. (5.4)

so the (CO) problem may be viewed as min {wTx : x ∈ P}. From (5.3) it
follows that an integer linear programming formulation for (CO) is

minimize wTx

subject to
(i) x(B) ≥ 1 for all B ∈ BL(F);
(ii) xe ≥ 0 for all e ∈ E;
(iii) xe integral for all e ∈ E.

(5.5)

Let PL be the polyhedron defined by (5.5)(i), (ii). It is easy to verify that
PL
I = P , i.e., the integer hull of PL is P . In particular we therefore have

that P ⊆ PL, but the inclusion may be strict. If P = PL, we say that F has
the max-flow min-cut property, and later we shall study conditions that
assure this. The name comes from the fact that the clutter (described above)
of st-dipaths in a graph has the max-flow min-cut property.
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The LP dual to the linear relaxation of problem (5.5) is

maximize
∑

B∈BL(F) yB
subject to
(i)

∑
B∈BL(F):e∈B yB ≤ we for all e ∈ E;

(ii) yB ≥ 0 for all B ∈ BL(F).

(5.6)

Let DL denote the polyhedron being the feasible region of (5.6). The follow-
ing proposition contains important inequalities between values of different
optimization problems related to F .

Proposition 5.2 The following inequalities hold

min{w(F ) : F ∈ F} =
min{wTx : x ∈ P} =
min{wTx : x ∈ PL, x integral} ≥
min{wTx : x ∈ PL} =
max{

∑
B∈BL(F) yB : y ∈ DL} ≥

max{
∑

B∈BL(F) yB : y ∈ DL, y integral}.

(5.7)

Proof. This result follows from the discussion above and LP duality.

We see that the last two problems in Proposition 5.2 give rise to lower
bounds on v(CO) = max{wTx : x ∈ P}. For instance, if y is a feasible
solution of one of the two mentioned problems, then

∑
B∈BL(F) yB is a lower

bound on v(CO). One may interprete the integer linear programming prob-
lems in (5.7) in terms of so-called hypergraphs. A hypergraph is an ordered
pair H = (E,F) where E is a finite set and F a set system on E (a finite
family of subsets of E). The elements in E are then usually called nodes
and each F ∈ F is an hyperedge. A graph is obtained when all hyperedges
have cardinality two. The (CO) problem is to find an hyperedge of minimum
weight, where the weight of a hyperedge is the sum of the weights of its el-
ements. Alternatively, this problem is to find a minimum weight node cover
for BL(F): choose a minimum weight node subset (F ⊆ E) such that each
hyperedge in BL(F) is covered. In the last problem of (5.7) we choose an
integer for each B lying in the blocker BL(F) and the constraint says that
the number of times a node e ∈ E is selected must not exceed the “capacity”
we. Thus this problem is an edge packing problem for the clutter BL(F).
The LP problems of (5.7) are fractional versions of these two combinatorial
covering/packing problems. An interesting question to study is conditions
that assure (or characterize) when one or both of the inequalities in (5.7)
are equalities. We shall study this problem in Section 5.3, where we give
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such conditions in terms of certain determinant properties of a matrix (total
unimodularity).

Note that if we have equalities throughout in (5.7), a combinatorial min-
max theorem is obtained: the minimum weight of a feasible set in F equals
the maximum cardinality of an hyperedge packing w.r.t. w. Several impor-
tant combinatorial theorems arise in this way, for some examples see Section
5.4. For a thorough discussion of theoretical results and further examples,
see [26].

5.2 Integral polyhedra and TDI systems

Let P ⊆ Rn be a nonempty polyhedron. We define its integer hull PI by

PI = conv(P ∩ Zn) (5.8)

so this is the convex hull of the intersection between P and the lattice Zn
of integral points. Note that PI may be empty although P is not. If P
is bounded, it contains a finite number of integral points, and therefore PI
is a polytope. By the finite basis theorem for polytopes (Theorem 2.19) it
follows that PI is a polyhedron. The next result (see [35]), says that the same
conclusion holds even in the unbounded case, provided that P is a rational
polyhedron (that is, defined by linear inequalities with rational data).

Theorem 5.3 If P is a rational polyhedron, then PI is a polyhedron. If PI
is nonempty, char.cone(PI) = char.cone(P ).

Proof. Let P = {x ∈ Rn : Ax ≤ b}. According to the decomposition
theorem for polyhedra we have that P = Q+ C where Q is a polytope and
C = char.cone(P ) = {x ∈ Rn : Ax ≤ 0}. Choose a finite set of integral
generators G = {g1, . . . , gm} for C so C = cone(G), see Problem 5.1 and
consider the set

M = {
m∑
j=1

µjgj : 0 ≤ µj ≤ 1 for j = 1, . . . ,m}. (5.9)

M is a polytope, it coincides with the convex hull of the vectors
∑m

j=1 µjgj
where µj ∈ {0, 1} for j = 1, . . . ,m.

We shall prove that
PI = (Q+M)I + C. (5.10)

Let p be an integral vector in P , so p = q + c for some q ∈ Q and c ∈ C.
Then c =

∑
j≤m µjgj = c′ + c′′ where we define c′ =

∑
j≤m(µj − bµjc)gj and

112



c′′ =
∑

j≤mbµjcgj ∈ C. Then c′′ is integral and c′ ∈M (as 0 ≤ µj−bµjc ≤ 1).
This gives p = (q + c′) + c′′ ∈ (Q + M)I + C because q + c′ ∈ Q + M and
q + c′ = p − c′′ which is integral. We have therefore shown that PI ⊆
(Q + M)I + C. Furthermore, since Q + M ⊂ P and C = CI we obtain
(Q+M)I + C ⊆ PI + CI ⊆ (P + C)I = PI . This proves (5.10).

The proof can now be completed by applying the decomposition theorem
for polyhedra. In (5.10) Q + M is a bounded polyhedron (i.e., a polytope)
and therefore (Q+M)I is polytope. Thus, by (5.10), PI is algebraic sum of
a polytope and a convex cone which proves that it is a polyhedron. Further-
more, if PI is nonempty, we also get char.cone(PI) = char.cone(P ) (from the
uniqueness of polyhedral decomposition).

A polyhedron is called integral if P = PI , i.e. it equals the convex hull of
its integral vectors. (For convenience, we also say that the empty polyhedron
is integral.) Integral polyhedra are interesting in connection with integer
linear programming. In fact, we have in general that

max{cTx : x ∈ P, x is integral} =
max{cTx : x ∈ PI} ≤
max{cTx : x ∈ P}.

(5.11)

If P is integral the inequality in (5.11) can be replaced by equality, and the
values of the ILP and the corresponding LP coincide. In fact, among the
optimal solutions of the LP problem max {cTx : x ∈ P} there is an integral
one.

Some equivalent descriptions of integral polyhedra are listed next; the
proof is left for an exercise.

Proposition 5.4 The following conditions are all equivalent whenever P ⊆
Rn is a nonempty polyhedron.

(i) P is integral.
(ii) Each minimal face of P contains an integral vector.
(iii) max {cTx : x ∈ P} is attained for an integral vector for each c ∈ Rn

for which the maximum is finite.
Furthermore, if P is pointed (e.g., if P ⊆ Rn+), then P is integral if and

only if each vertex is integral.

There are some further equivalent conditions describing the integrality of
a polyhedron. One such interesting condition is that the optimal value is
integral for any LP over the polyhedron with integral objective function. This
result leads to the concept of total dual integrality which gives a method for
proving that a polyhedron is integral.
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Proposition 5.5 Let P be a rational polyhedron in Rn. Then P is integral
if and only if max{cTx : x ∈ P} is an integer for each c ∈ Zn such that
v(LP ) is finite.

Proof. In order to simplify a bit, we only prove this result for the situation
with P pointed. Assume that P is integral, and consider max{cTx : x ∈
P} with c ∈ Zn and assume that the optimal value is finite. Then, from
Proposition 5.4 this LP has an optimal solution x∗ which is integral. But
then clearly the optimal value cTx∗ is an integer, which proves the “only if”
part.

We prove the converse implication by contradiction. So assume that P
is not integral. As P is pointed this means that there is a vertex x̄ of P
with a fractional component x̄j. Therefore, there is an c̄ ∈ Rn such that x̄
is the unique optimal solution of max {c̄Tx : x ∈ P}. One can then show
(see Problem 5.3) that there is an ε > 0 such that for each c′ ∈ B(c̄, ε) x̄
is the unique optimal solution of the problem max {(c′)Tx : x ∈ P}. For
a suitably large positive integer s we have that d = c̄ + (1/s)ej ∈ B(c̄, ε).
Note that x̄ is the optimal solution of the LP problem over P with objective
function sd = sc̄+ej and therefore its optimal value equals sdT x̄ = sc̄T x̄+x̄j.
But then one of the two optimal values sdT x̄ and sc̄T x̄ must be fractional
(as x̄ is fractional), i.e., there is an integer objective function such that the
corresponding optimal value is fractional; a contradiction. This completes
the proof.

We call a linear system Ax ≤ b totally dual integral, or TDI for
short, if for all integral c with max{cTx : Ax ≤ b} finite, the dual LP
problem min{yT b : yTA = cT , y ≥ 0} has an integral optimal solution.
Note here that this definition concerns a given linear system and not the
corresponding polyhedron P = {x ∈ Rn : Ax ≤ b}. In fact, a polyhedron
may be represented by both a TDI system and another non-TDI system.
The importance of the TDI property is seen from the next result.

Corollary 5.6 Assume that the system Ax ≤ b is TDI and that b is integral.
Then the associated polyhedron P = {x : Ax ≤ b} is integral.

Proof. By definition of TDI the dual problem (D) min{yT b : yTA = cT , y ≥
0} has an integer optimal solution y∗ for each c ∈ Zn with max{cTx : Ax ≤ b}
finite. But as b is integral we get that the optimal value v(D) = (y∗)T b is
also integral for such problems. By the LP duality theorem, this shows that
max{cTx : x ∈ P} is an integer for each c ∈ Zn such that v(LP ) is finite,
and P is integral by Proposition 5.5.
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Note here that the fact that Ax ≤ b is TDI is not sufficent to guarantee
that P = {x : Ax ≤ b} is integral, because with fractional b the optimal
value of the dual problem may be fractional (although the optimal solution
is integral). It can be shown that if Ax ≤ b is a rational linear system,
then there is an integer M such that the scaled system (1/M)Ax ≤ (1/M)b
is TDI. As a consequence, we see that each rational polyhedron has a TDI
representation.

An example of a TDI system is

x(δ+(U)) ≥ 1 for all U ⊂ V , r ∈ U ;
x ≥ 0

(5.12)

where r is a given node in a directed graph D = (V,E). The solution set
of this system is the dominant of the convex hull of incidence vectors of
r-arborescences in D. An r-arborescence is an arc set F such that the
subgraph (V, F ) contains a directed rt-path for each node t 6= r and where
each such node t has exactly one ingoing arc in F . We remark that these
graphs are of interest in the design of certain transportation or communica-
tion networks.

5.3 Totally unimodular matrices

In the previous section we studied the integrality of a polyhedron in connec-
tion with TDI linear systems. The topic of the present section is to study
a stronger property, namely for the matrix A alone, which assures the inte-
grality of the associated polyhedron.

An m × n matrix A is called totally unimodular, TU for short, if
the determinant of each submatrix is -1, 0 eller 1. Thus, in particular, a
TU matrix has entrys being -1, 0 or 1. Such matrices arise naturally in
connection with graphs, see Section 5.4.

A relation between integrality of a polyhedron and total unimodularity
is given next.

Theorem 5.7 Let A ∈ Rm,n be a TU matrix and b ∈ Rm an integral vector.
Then the polyhedron P = {x ∈ Rn : Ax ≤ b} is integral.

Proof. First we recall Cramer’s rule for finding the inverse of a nonsingular
matrix C: the (j, i)’th element of C−1 is given by (−1)i+jdet(Cij)/det(C)
where Cij is obtained from C by deleting the i’th row and the j’th column.
It follows that if C is integral and det(C) is either 1 or -1, then C−1 will be
integral.

115



Let F = {x ∈ Rn : A′x = b′} be a minimal face of P (so A′x ≤ b′ is a sub-
system of Ax ≤ b). We may assume that the m′ equations in A′x ≤ b′ (or the
rows of A′) are linearly independent (otherwise we could remove redundant
constraints without changing the solution set). Then A′ contains at least
one m′ ×m′ nonsingular submatrix B so (after permutation of columns) we
may write A =

[
B N

]
. Therefore a vector x in F is given by xB = B−1b,

xN = 0 where xB and xN are the subvectors corresponding to B and N ,
respectively. But since B is a nonsingular submatrix of A and A is TU, it
follows that B must be integral and its determinant is 1 or -1. Then, by
Cramer’s rule, B−1 is integral, and therefore xB is integral. Thus F contains
an integral vector x which proves that P is integral.

The TU property is preserved under a number of matrix operations, for
instance

• transpose;

• augmenting with the identity matrix;

• deleting a row or column which is a coordinate vector;

• multiplying a row or column by -1;

• interchanging two rows;

• duplication of rows or columns;

• adding a row to another row.

We leave the proof of these facts for an exercise.
An important connection between integrality for dual LP problems and

total unimodularity is discussed next.

Corollary 5.8 Let A ∈ Rm,n be a TU matrix and b ∈ Rm and c ∈ Rn two
integral vectors. Then each of the dual LP problems in the duality relation

max{cTx : Ax ≤ b} = min{yT b : yTA = cT , y ≥ 0}. (5.13)

has an integral optimal solution.

Proof. From Theorem 5.7 it follows that the primal polyhedron {x ∈ Rn :
Ax ≤ b} is integral. Therefore, by Proposition 5.4, the primal LP has an in-
tegral optimal solution. The dual LP problem may be viewed as the problem
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min {bTy : Dy ≤ d} where D is given by D =

 AT

−AT

−I

. and d =

 c
−c
0

.

Note that D is obtained from A by using operations that preserve the TU
property (see above), so D is TU. Since d is integral, the dual polyhedron is
integral and the dual LP has an integral optimal solution.

Corollary 5.9 Assume that A ∈ Rm,n is a TU matrix. Let b, b′, d, d′ be
integral vectors with b ≤ b′ and d ≤ d′ where we allow components to be either
−∞ or ∞. Then the polyhedron P = {x ∈ Rn : b′ ≤ Ax ≤ b, d′ ≤ x ≤ d} is
integral.

Proof. We have that P = {x : Cx ≤ c} where

C =


A
−A
I

−I

 , c =


b
−b′

d

−d′

 .
Note that whenever a component of b, b′, d, d′ is −∞ or∞, the corresponding
constraint is dropped. Now, C is TU as it is obtained from A by TU preserv-
ing operations and also c is integral, so P is integral according to Theorem
5.7.

As we have seen, polyhedra defined by a TU matrix are integral. An
interesting converse result due to Hoffman and Kruskal (1956) is given next
without proof.

Theorem 5.10 Suppose that A is an integral matrix. Then A is TU if and
only if the polyhedron {x : Ax ≤ b, x ≥ 0} is integral for every integral b.

In order to determine if a matrix is TU the following criterion due to Ghouila-
Houri (1962) may be useful. For a proof, see e.g. [29].

Proposition 5.11 A matrix A ∈ Rm,n is TU if and only if for each J ⊆
{1, . . . , n} there is a partition J1, J2 of J (where J1 or J2 may be empty) such
that

|
∑
j∈J1

aij −
∑
j∈J2

aij| ≤ 1 for i = 1, . . . ,m. (5.14)
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5.4 Applications: network matrices and min-

max theorems

We give some basic examples of TU matrices in connection with graphs, and
derive important combinatorial minmax theorems.

Consider first an (undirected) graph G = (V,E) and let AG ∈ {0, 1}V×E

be its node-edge incidence matrix, i.e., the column of AG corresponding to the
edge e = [u, v] has only two nonzeros, namely for the two rows corresponding
to u and v. Note that since AG is an incidence matrix (all elements are 0 or
1), it may be totally unimodular. The precise answer is that it is TU exactly
when the graph contains no odd cycles.

Proposition 5.12 AG is TU if and only if G is bipartite.

Proof. Let first G be bipartite with the two color classes I1 and I2. We shall
then show that AG is TU using Ghouila-Houri’s TU characterization. Let I
be a subset of the rows of AG, and let I ′1 = I ∩ I1 and I ′2 = I ∩ I2. Let a
be the vector obtained by summing the rows of AG associated with I ′1 and
subtracting the rows associated with I ′2. The component ae of a correponding
to an edge e = [u, v] must be either 1 (if one of the endnodes is in I ′1 and
the other is not in I ′2), -1 (the converse situation) or 0 (if both or none of
the endnodes lie in I). This a is a vector with componenents -1,0 and 1 and
therefore AG is TU according to Proposition 5.11.

Conversely, assume that G is not bipartite. It follows from Proposition
4.4 that G has an odd cycle C. Let B be the square submatrix of AG

indiced by the rows and columns corresponding to the nodes and edges of C,
respectively. With suitable permutations we transform this matrix into the
circulant matrix C2,t where t is the length of the cycle. (This is a 0,1-matrix
where the i’th row, for i = 1, . . . , t − 1 has two nonzeros (1’s) namely in
position i and i+ 1, while the two nonzeros (1’s) of row t are in the first and
last position). One can show that |det(C2,t)| = 2 and it follows that AG is
not TU.

The previous result may be combined with Corollary 5.8 to get important
combinatorial minmax theorems. We illustrate this for problems concerning
packing and/or covering of nodes and edges of a graph. First, we give a more
“symmetric” integrality/LP theorem derived from Corollary 5.8.

Corollary 5.13 Let A ∈ Rm,n be a TU matrix and b ∈ Rm and c ∈ Rn two
integral vectors. Then each of the dual LP problems in the duality relation

max{cTx : Ax ≤ b, x ≥ 0} = min{yT b : yTA ≥ cT , y ≥ 0}. (5.15)
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has an integral optimal solution provided that the optimal values are finite.

Proof. We apply Corollary 5.8 to the matrix
[
A −I

]
which is TU as A

is TU. The primal problem becomes max {cTx : Ax ≤ b, x ≥ 0} as desired.
The dual problem is

min{yT b : yTA− z = cT , y ≥ 0, z ≥ 0} =

min{yT b : yTA ≥ cT , y ≥ 0}.

Note here that there is an optimal integral solution (y, z) of the first problem
if and only if there is an optimal integral solution y of the second problem.
The result then follows from the duality relation.

Let G be a bipartite graph, so by the previous proposition, its incidence
matrix AG is TU. Consider the LP duality relation (5.15) with A replaced
by AG and with c = 1 and b = 1. We then obtain

max{1Tx : AGx ≤ 1, x ≥ 0} = min{yT1 : yTAG ≥ 1T , y ≥ 0}. (5.16)

We know that each of these two problems has an integral optimal solution
and we interprete this combinatorially. First, we note that in the system
Ax ≤ 1, x ≥ 0 we have one variable xe for each edge e ∈ E, and that x is
a solution if and only if x is nonnegative and satisfies x(δ(v)) ≤ 1 for each
v ∈ V . Thus an integer solution here must in fact be 0,1-valued, and it
represents a matching in G. A matching in a graph is an edge subset such
that no node is incident to more than one edge. Therefore, the maximization
problem in (5.16) is to find a maximum cardinality matching in the bipratite
graph G. This is a classical problem which is polynomially solvable by e.g.
a combinatorial algorithm called the Hungarian algorithm. Now, we turn
to the minimization problem, and observe that there is only one variable xv
for each node v ∈ V . An integer feasible solution of this problem assigns a
nonnegative integer to each node in such way that each edge has an endnode
with a strictly positive integer. Clearly, we may restrict our attention to such
integers that are 0 or 1, and the the minimization problem becomes: find a
node cover in G of minimum cardinality. A node cover is a subset V0 of
the nodes such that each edge has at least one endnode in V0. Therefore,
due to integrality, the relation (5.16) says that the maximum cardinality of
a matching in a bipartite graph equals the minimum cardinality of a node
cover. This result is known as the König-Egervary theorem and dates to
1931.

As a second application of Corollary 5.13 we study the effect of the choice
A = AT

G, i.e., the transpose of the node-edge incidence matrix of G. Again
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we use c = 1 and b = 1. We shall assume that G contains no isolated node
(otherwise one of the problems studied would become infeasible). We then
obtain (when we let the role of x and y be changed)

max{1Ty : AT
Gy ≤ 1, y ≥ 0} = min{xT1 : xTAT

G ≥ 1T , x ≥ 0}. (5.17)

We recall the interpretations above and see that an integral feasible y in the
maximization problem corresponds to a node packing (also called inde-
pendent set or stable set). Thus this problem may be viewed as to find
a maximum cardinality node packing in G. A node packing is a subset S
of the node set such that no pair of nodes are adjacent. As remarked above
in connection with the node cover problem, one may restrict the attention
to 0-1 valued solutions in the minimization problem of (5.17). The problem
therefore reduces to that of finding a minimum cardinality edge cover. An
edge cover is a subset of the edge set such that each node is incident to
one of the chosen edges. The interpretation of the minmax relation of (5.17)
then becomes: the maximum cardinality of a node packing in a bipartite graph
equals the minimum cardinality of an edge cover. This result is also due to
König (1933) and is often called König’s covering theorem.

Note that all of the four combinatorial problems discussed above are
polynomially solvable in bipartite graphs. In fact, it follows from the results
above that they may be solved by a polynomial algorithm for LP which finds
optimal vertex solutions (and such algororithms do exist, e.g., based on the
ellipsoid method). There are also purely combinatorial algorithms for each
of these problems that are polynomial, see e.g. [23].

We next study problems in directed graphs. Let D = (V,E) be a directed
graph and let AD be its node-arc incidence matrix.

The basic tool is the following result.

Proposition 5.14 AD is TU for each digraph D.

Proof. We give an elegant and short proof of this fact due to Veblen and
Franklin (1921), see [35].

We prove by induction that each subdeterminant is -1, 0 or 1. Assume
that this is true for all submatrices of dimension t, and let N be a t × t
submatrix of AD. If N contains a column with all zeros, then det(N) = 0.
If a column of N contains exactly one nonzero, this number is either -1
or 1, and when we expand the determinant for this column we get that
det(N) ∈ {−1, 0, 1} by the induction hypothesis. Finally, if each column of
N contains two nonzeros, the sum of all row vectors is the zero vector, so the
row vectors ar linearly dependent and det(N) = 0.
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Using this fact combined with Corollary 5.13 we obtain that

max{cTx : ADx = 0, 0 ≤ x ≤ d, x integral} =
min{yTd : zTAD + y ≥ cT , y ≥ 0, y, z integral}.

(5.18)

We here assume that c and d are integral vectors and allow components of
d to be ∞ (in which case the corresponding dual variable is not present).
An interpretation may be given as follows. Recall that x ∈ RE is called a
circulation if ADx = 0. Thus the primal problem is to find a nonnegative
integral circulation inD obeying arc capacities d and maximizing the “profit”∑

e∈E cexe. In the dual problem we may interprete zas node variables zv for
v ∈ V and then the constraints zTAD + y ≥ cT says that zu − zv + ye ≥ ce
for each arc e = uv ∈ E.

Consider next the special case when the profit function is all zero except
for on one arc (t, s) where cts = 1. In addition we let dts =∞. Then the cir-
culation problem coincides with the maximum st-flow problem. Thus we see
(due to Corollary 5.13) that the maximum flow problem has an integral opti-
mal solution, so this gives a new proof of Corollary 4.17. Furthermore, (y, z)
is feasible in the dual problem if and only if (y, z) is integral, y nonnegative
and

zu − zv + ye ≥ 0 for all e = (u, v) 6= (t, s);
zt − zs ≥ 1 for all e 6= (t, s)ce.

(5.19)

Note that the last inequality is due to the fact that dts = ∞. Therefore
zt ≥ zs + 1. Define the node set W = {v ∈ V : zv ≥ zt} and note that
t ∈ W while s 6∈ W . In addition we have for each e = (u, v) ∈ δ−(W )
that zv ≥ zt, zu ≤ zt − 1 (due to integrality) so from feasibility we get
ye ≥ zv − zu ≥ zt − zt + 1 = 1. Since y is nonnegative we therefore obtain
yTd ≥

∑
e∈δ−(W ) yede ≥

∑
e∈δ−(W ) de. This proves that the optimal value of

the dual problem is no less than the capacity d(δ−(W )) of the cut δ−(W ). On
the other hand the value of the primal problem is not larger than d(δ−(W ).
But from (5.18) the values of these two problems coincide, and it follows that
there exists an st-cut with capacity equal to the maximum flow from s to t.
Thus we have given a new proof of the max-flow min-cut theorem Theorem
4.16. Note that the proof in Section 4.5 used combinatorial ideas, while
the present proof was based on total unimodularity of incidence matrices of
digraphs combined with LP duality.

5.5 Exercises

Problem 5.1 Let C ⊆ Rn be a convex cone. Show that there is a finite set
G of rational vectors generating C so C = cone(G).

121



Problem 5.2 Show that the set M as defined in (5.9) is equal to the convex
hull of the vectors

∑m
j=1 µjgj where µj ∈ {0, 1} for j = 1, . . . ,m.

Problem 5.3 Let x̄ be a vertex of a polyhedron P ⊂ Rn. Show that there
is an c ∈ Rn and an ε > 0 such that for each c′ ∈ B(c, ε) x̄ is the unique
optimal solution of the LP problem max {(c′)Tx : x ∈ P}.

Problem 5.4 Prove that the operations mentioned in the beginning of Sec-
tion 5.3 all preserve the TU property.

Problem 5.5 Prove Proposition 5.4.
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Chapter 6

Methods

In this chapter we discuss several methods for actually solving (numerically)
combinatorial optimization and integer linear programming problems. This
is a very active research area and many interesting techniques are available.
The general integer linear programming problem is NP-hard, so it is quite
unlikely that one can find an efficient algorithm (polynomial running time)
for this problem. However, the class of integer linear programs is very large
and contains important subclasses with specific properties that algorithms
may and should exploit. It is therefore important to have different basic
algorithmic principles at hand in order to develop a suitable algorithm for a
problem of interest. We shall give a brief presentation of some main tech-
niques that are commonly used for solving integer linear programming and
combinatorial optimization problems.

The main focus is on polyhedral methods, or cutting plane meth-
ods. These methods are based on approximating a certain “target” integral
polyhedron P by simpler polyhedra containing P . But we also present some
other methods, heuristics and Lagrangian relaxation, and for the latter we
relate it to the polyhedral approach. Finally, as an important example, we
consider the famous Traveling Salesman Problem.

A very good reference book for various methods in integer linear pro-
gramming and combinatorial optimization is [29]. For algorithms in network
flows, see [33].
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6.1 From integer programming to linear pro-

gramming

We consider a general integer linear programming problem (ILP) of the fol-
lowing form:

maximize cTx

subject to
(i) Ax ≤ b;
(ii) x is integral.

(6.1)

Let S be the feasible set of this problem, i.e.,

S = {x ∈ Zn : Ax ≤ b} = P ∩ Zn (6.2)

where P = {x ∈ Rn : Ax ≤ b}. We are also interested in the LP-relaxation
(LP) of (ILP) which is given by

max{cTx : x ∈ P}. (6.3)

Clearly we have v(ILP ) ≤ v(LP ) since S ⊆ P , but unfortunately this in-
equality may be strict. As a simple (and rather extreme) example, let n
be a natural number and consider max {x1 : x1 ≥ 0, x2 ≥ (1/n)x1, x2 ≤
1− (1/n)x1, x is integral} (draw a picture!). The optimal value is zero and
optimal solutions are (0, 0) and (1, 0). The (unique) optimal solution of the
LP relaxation is (n/2, 1/2) so the optimal value is n/2. Thus, the bound ob-
tained from the LP relaxation is indeed very bad. As discussed below (using
polyhedral theory) we can, at least theoretically, close this gap by adding
other linear inequalities. In practice, it is usually impossible to close this gap
completely, but we shall discuss principles that often lead to very good upper
bounds on the optimal value. In addition to finding bounds like this we also
need to explain how one can find feasible solutions that are near-optimal.

Recall the results in Section 5.2. The integer hull PI of P is defined
as the convex hull of the integer points in P , i.e., PI = conv(S). Since
the objective function cTx is linear, (ILP) is equivalent to the optimization
problem max {cTx : x ∈ PI}. The crucial fact is that this problem is a linear
programming problem. This is a consequence of Theorem 5.3 which says
that PI is a rational polyhedron (recall that we assume that P is a rational
polyhedron). Thus, there is a (rational) linear system Āx ≤ b̄ such that
PI = {x ∈ Rn : Āx ≤ b̄}. Furthermore, the original problem (ILP) has been
“reduced” to the linear programming problem

max{cTx : Āx ≤ b̄}. (6.4)
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This might be confusing since we know that integer linear programming is
NP-hard while linear programming is polynomial. However, our reduction
merely says that there exists such a linear system Āx ≤ b̄, so, e.g., it may
be much larger than the original system Ax ≤ b. In fact, when we formulate
combinatorial problems as integer programs these new systems Āx ≤ b̄ often
(usually) grow exponentially as a function of the natural size of the original
problem. For instance, for the matching problem in a graph with n nodes
there are 2n facet defining inequalities for the matching polytope PI (the
convex hull of incidence vectors of matchings). For the Traveling Salesman
Problem the most common integer linear programming formulation contains
even an exponential number of inequalities in the formulation (subtour elim-
ination constraints) and several other, and larger (!) classes of facet defining
inequalities are known for the Traveling Salesman Polytopes, see [22].

Thus one problem when using this reduction of (ILP) to (LP) for some
practical problem is that the number of new inequalities may become very
large. A more basic problem is how to find these inequalities, both in theory
and practice.

Concerning the first question, it turns out that one may still optimize fast
over a polyhedron although the number of inequalities is large (e.g., exponen-
tial relative to the input size). The main thing is how fast we can separate for
these inequalities, i.e., finding for a given point a violated inequality of that
class, or proving that no such inequality exists. Moreover, if this separation
problem can be solved polynomially, then the optimization problem is also
polynomial. This is a main result in the recent theory of linear programming
over implicitly described polyhedra using the ellipsoid method, see [26].

The problem of finding additional inequalities will be discussed in the next
section. These techniques are important because although we may not find
a complete system Āx ≤ b̄ as above (defining PI), even a partial system may
produce good bounds on the optimal value and lead to good approximate
solutions.

In this Chapter we omit some proofs of theorems in order to keep the
length of the presentation limited. For proofs of similar results, confer [29]
or [35].

6.2 Finding additional valid inequalities

We discuss some methods for finding classes of valid inequalities for a set of
integral points. Ideally we would like to have methods for going from a poly-
hedron P to its integer hull PI . We shall mention a theoretical result which
says that this is indeed possible although the construction is far from prac-
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tical. Thus we shall also discuss other general techniques that are applicable
to any integer linear programming problem.

First we fix some terminology. Let S be some subset of Rn and let aTx ≤
α be an inequality with a 6= 0. We say that aTx ≤ α is valid for S if
S ⊆ H≤(a, α) = {x ∈ Rn : aTx ≤ α}, i.e., each point of S satisfies the
inequality in question. We use the notation ai,. to denote the i’th row of
A ∈ Rm,n viewed as a column vector. Similarly, a.,j denoted the j’th column
of A.

The Chvátal-Gomory procedure.

Let P = {x ∈ Rn : Ax ≤ b} be a given polyhedron in Rn with A, b
rational. We are interested in the problem of finding valid inequalities for
the integer hull PI . Clearly, each inequality in Ax ≤ b is valid for PI , and the
purpose is to provide methods for finding additional ones. The basic idea to
be discussed is based on the simple fact that if an integral number x satisfies
x ≤ α, then it also satisfies x ≤ bαc. This strengthening of the inequality is
called integer rounding.

Geometrically, as PI is spanned by the integer points in P , what we need
is some procedure for “pushing” a hyperplane defined by an inequality in the
system Ax ≤ b as far as possible towards PI . Ideally, we would like to push
until we meet a point in PI , but in higher dimensions this may not be so easily
achieved. What we can do in stead is to push the hyperplane until an integer
point is met (although this point is outside P ). For instance, if x1 + 2x2 ≤
10/3 is a valid inequality for P , then the “rounded inequality” x1 + 2x2 ≤
b10/3c = 3 is also valid for PI . Note that none of the parallel hyperplanes
defined by the inequalities x1 + 2x2 ≤ γ contain integral points for 3 < γ ≤
10/3. Two simple algebraic facts are that (i) multiplying a valid inequality
by a positive number gives another (equivalent) valid inequality, and that
(ii) the sum of valid inequalities is again a valid inequality. We remark that
these properties may be expressed in terms of convexity as follows. Let P̄
be the subset of Rn+1 consisting of points (a, α) for which aTx ≤ α is a valid
inequality for P . The mentioned algebraic properties of valid inequalities
simply mean that P̄ is a convex cone inRn+1. If we combine the rounding idea
with the cone property of the valid inequalities we get the following procedure
for finding a valid inequality. For simplicity, we assume that P ⊆ Rn+, i.e.,
that xj ≥ 0 for j ≤ n are valid inequalities for P . Multiply the i’th inequality
aTi,.x ≤ bi by λi for each i ≤ m and sum all the inequalities. This gives the
new inequality (

∑
i≤m λia

T
i,.)x ≤

∑
i≤m λibi. If we let λ = (λ1, . . . , λm)T this

new inequality is (
∑

j≤n λ
Ta.,j)xj ≤ λT b. This inequality is redundant (as it

is implied by Ax ≤ b), but now we may apply integer rounding. Thus we
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see that
∑

j≤nbλ
Ta.,jcx ≤ λT b is valid for P as we assumed that each x ∈ P

satisfies x ≥ 0. But if we insert an integral point x in P on the left-hand-side
of this inequality we get an integer (all numbers are then integers). Thus we
may round the right-hand-side down to the nearest integer and still have a
valid inequality, namely ∑

j≤n

bλTa.,jcx ≤ bλ
T bc. (6.5)

The procedure leading to (6.5) is called the Chvátal-Gomory procedure
and we also call (6.5) a Chvátal-Gomory inequality.

Note that the Chvátal-Gomory procedure may be applied repeatedly and
thereby generating gradually larges classes of valid inequalities. How far may
we reach by doing this? A remarkable fact is that every valid inequality for
P may be generated in this way (possibly by increasing the right-hand-side)
provided that suitably many repetitions are taken. More specifically, for each
linear system Ax ≤ b defining the polyhedron P = {x ∈ Rn : Ax ≤ b} we
can find a finite family of linear systems A(k)x ≤ b(k) for k = 0, . . . , t such
that (i) A(0) = A, b(0) = b, (ii) each inequality in A(k)x ≤ b(k) is derived from
A(k−1)x ≤ b(k−1) using the Chvátal-Gomory procedure for k = 1, . . . , t, and
(iii) PI = {x ∈ Rn : A(t)x ≤ b(t)}. For a proof of this result, see [35] or [29].

As an example we consider the matching problem. A matching in a
graph G = (V,E) is a subset M of the edge set E such that d(V,M)(v) ≤ 1 for
each node v ∈ V , i.e., each node is the endnode of at most one edge inM . One
can check that the set of integral vectors satisfying 0 ≤ x ≤ 1 and x(δ(v)) ≤ 1
for each v ∈ V coincides with the set of incidence vectors to matchings in G.
Let Ax ≤ b denote this linear system. It defines a polyhedron which is called
the fractional matching polytope. We have that PI is the matching
polytope, i.e., the convex hull of the incidence vectors of perfect matchings.
Let S ⊂ V consist of an odd number of nodes, say |S| = 2k + 1. Then
the inequality x(E[S]) ≤ k is clearly valid for PI as each matching contains
no more than k pairs of nodes in S. Thus, the validity is due to a simple
combinatorial argument. However, this inequality may also be obtained using
the Chvátal-Gomory procedure on the original system Ax ≤ b. Consider the
inequalities x(δ(v)) ≤ 1 for v ∈ S and the inequalities −xe ≤ 0 for e ∈ δ(S).
If we multiply each of these inequalities by 1/2 and add them together, we
get the (valid) inequality x(E[S]) ≤ k + 1/2. By integer rounding we get
the desired inequality x(E[S]) ≤ k which proves that this inequality may be
obtained by the Chvátal-Gomory procedure applied to the system consisting
of the degree inequalities and simple bounds. The matching polytope is
completely described by the degree inequalities, simple bounds and the odd
set inequalities x(E[S]) ≤ b|S|/2c for S ⊆ V and S odd. Thus, all the
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facet defining inequalities for the matching polytope are obtained by adding
“one round of cutting planes” and we say that the original polyhedron P has
Chvátal-Gomory-rank 1.

A feature of the Chvátal-Gomory procedure is that it may be affected
by scaling of the inequalities. For instance, if P = {x ∈ R : x ≤ 3/2} then
PI = {x ∈ R : x ≤ 1} and the inequality x ≤ 1 is obtained by integer
rounding from x ≤ 3/2. However, P is also the solution set of the (scaled)
inequality 2x ≤ 3, and rounding directly on this inequality does not change
the inequality. From this we realize that integer rounding should be preceded
by a proper scaling of the inequality, i.e., dividing by the greatest common
divisor of all the numbers involved. For a single inequality this produces the
integer hull as the next result says. The proof is left to the exercises.

Proposition 6.1 Let P = {x ∈ Rn :
∑n

j=1 ajxj ≤ α} where all the aj’s are
integers. Let d be the greatest common divisior of a1, . . . , an. Then PI =
{x ∈ Rn :

∑n
j=1(aj/d)xj ≤ bα/dc}.

Boolean implications.

Sometimes one can find new inequalities by detecting logical (boolean)
implications of one or more constraints of the original system.

From Chapter 0 we recall the knapsack problem max {
∑n

j=1 cjxj :∑n
j=1 ajxj ≤ b, 0 ≤ x ≤ 1} where all the data are positive integers. Let

P = {x ∈ Rn :
∑n

j=1 ajxj ≤ b, 0 ≤ x ≤ 1}, so PI is the knapsack poly-
tope. As a specific example let n = 3, a1 = 3, a2 = 3, a3 = 2 and b = 7.
Let C = {1, 2, 3} and note that a(C) =

∑
j∈C aj = 8 > b. We call C a

dependent set or cover. Since a(C) > b, no feasible integral solution in
P can have all variables in C equal to 1. Thus x(C) ≤ |C| − 1 is a valid
inequality for PI which is often called a cover inequality. These inequali-
ties have proved to be very useful for solving several different combinatorial
optimization problems since cover inequalities may be derived for individual
constraints in the integer linear programming formulation. We also remark
that for the polyhedron P above (the linear relaxation of the knapsack prob-
lem) all the vertices may be described in a simple way, see Problem 6.2.

Note that any linear inequality in 0-1 variables may be transformed to the
situation just treated. A general linear inequality with rational data may be
written (after suitable scaling)

∑
j∈J1

ajxj +
∑

j∈J2
ajxj ≤ b with aj, j ∈ J1

positive integers and aj, j ∈ J2 negative integers (j’s with aj = 0 are not
of interest for the analysis). We make the affine transformation zj = 1− xj
for j ∈ J2, and the transformed inequality is

∑
j∈J1

ajxj +
∑

j∈J2
(−aj)zj ≤

b −
∑

j∈J2
aj. Here all coefficients are positive, so we may establish (e.g.)
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cover inequalities as above and finally transform these back into new valid
inequalities for the original problem.

Another type of constraint that is often met in applications is

(i)
∑

j∈N yj ≤ nx;

(ii) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1;
(iii) x ∈ {0, 1}.

(6.6)

The logical contents of the constraints is that x = 1 whenever the sum of
the continuous variables yj, j ∈ N is positive. However, this means that
all the inequalities yj ≤ x for j ∈ N are also valid for the solution set of
(6.6). By adding these new constraints we cut off fractional solutions (from
the continuous relaxtion of (6.6)) like e.g., y1 = 1, yj = 0 for j ∈ N \ {1},
x = 1/n since the inequality y1 ≤ x is violated. For more about related
mixed integer sets like the variable upper-bound flow models, confer [29].

Combinatorial implications.

For combinatorial polyhedra, i.e., polyhedra with vertices corresponding
to some class of combinatorial objects, one may find valid inequalities by
exploiting these combinatorial properties. The example with the matching
polytope given in the previous paragraph fits into this framework. Here we
give some other examples.

First, we consider the set covering problem (see e.g., [6]). This problem
is of relevance to many applications. For instance, in airline crew scheduling
each flight must be covered; in allocating student classes to rooms, each class
must get a room, or in network design a number of capacity “bottlenecks”
(like cuts) must be covered. Let I and J be the color classes of a bipartite
graph G, so each edge in the edge set E joins some node in I to some node in
J . Let cj for j ∈ J be given nonnegative weights. By a cover we understand
a subset S of J such that each node in I is adjacent to at least one node
in S. (Of course, we assume that G allows this to happen, i.e., each node
in I is adjacent to some node in J). The set covering problem is to find a
cover of minimum weight, where the weight w(S) of a cover S is defined as
w(S) =

∑
j∈S wj. This problem is NP-hard. The polyhedral approach to this

problem may start by introducing the set covering polytope PSC as the
convex hull of vectors χS where S is a cover. An integer linear programming
formulation of the set covering problem is obtained by letting xj indicate
whether node j is in the cover to be determined. For i ∈ I we let Γ(i) denote
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the set of nodes in J that are adjacent to i.

minimize
∑

j∈J cjxj
subject to
(i)

∑
j∈Γ(i) xj ≥ 1 for all i ∈ I;

(ii) 0 ≤ xj ≤ 1 for all j ∈ J ;
(iii) x is integral.

(6.7)

Thus the constraint (6.7)(i) assures that each node in I is covered. Let P
be the solution set of (6.7)(i)–(ii), so the integer hull PI of this polytope
is precisely the set covering polytope PSC . Due to the hardness of the set
covering problem, it is to ambitious to find a complete linear description of PI .
However, in order to numerically solve practical set covering problems one
may need to find some of these inequalities and add them to the description of
P . In other words, the LP relaxation using P may give poor lower bounds on
the true optimal value of the set covering instance of interest. For example,
consider a graph with nodes I = {i1, i2, i3} and J = {j1, j2, j3}, and with
the six edges [i1, j1], [i1, j2], [i2, j2], [i2, j3], [i3, j3], [i3, j1]. Note that each node
in J covers two consecutive nodes in I . Assume that the objective function
is c = (1, 1, 1). Then an (in fact, the) optimal solution of the LP relaxation
is x̄ = (1/2, 1/2, 1/2) with objective value 3/2. The optimal value of the
integer program, and therefore the set covering problem, is 2. Thus, some
valid inequality for PSC is required to cut off this fractional vertex of P .
Such an inequality may be deduced from a simple combinatorial argument:
no single node in J can cover all the nodes in I , therefore at least two nodes
in J must be chosen. Thus the inequality x1 + x2 + x3 ≥ 2 is valid for PSC
(as it holds for all vertices and then, by convexity, for all points of PSC).
Also, it is violated by x̄. If we add this inequality to our current linear
program and reoptimize we get an optimal integer solution, say (1, 1, 0). The
inequality we just identified actually belongs to a large class of valid, and
often nonredundant, inequalities for set covering polytopes: the odd cover
inequalities. It may seem that we only get a few inequalities in this way,
but for a given graph G there may be many subgraphs that are isomorphic to
the one of our example, and each of these produce several valid inequalities
called lifted odd cover inequalities. The procedure involved is called
lifting and makes it possible to find facets of a higher dimensional polytope
via facets of lower dimensional ones (namely projections of the polytope of
interest), see [29].

As another example we consider the node packing problem. A node
packing (independent set, stable set) in a graph G = (V,E) is a subset
S of the nodes such that no pair of nodes is adjacent. The node packing
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polytope (see [26]) is the convex hull PNP of the incidence vectors of node
packings in G. Note that this polytope depends on G. A binary vector
x ∈ RV is the incidence vector of a node packing iff xu + xv ≤ 1 for each
[u, v] ∈ E. Thus PNP = PI where P = {x ∈ RV : 0 ≤ x ≤ 1, xu +
xv ≤ 1 for each [u, v] ∈ E}. It can be shown that P = PI iff the graph
G is bipartite. Thus, for general graphs further inequalities are needed to
define the node packing polytope. For instance, consider a clique which is a
complete subgraph, i.e., a subset V0 of V such that [u, v] ∈ E for all distinct
u, v ∈ V0. Clearly any node packing contains at most one node in such a
clique, so the clique inequality x(V0) ≤ 1 is valid for PNP . Note that
this inequality is stronger than the inequalities xu + xv ≤ 1 for u, v ∈ V0.
This means that each of these inequalities is implied by the clique inequality
and the nonneativity constraints. Next, consider an odd cycle C with, say,
2k + 1 nodes. Then at most every second node can lie in a node packing,
so exploiting the parity property we get the valid inequality x(C) ≤ k. A
major research topic in polyhedral combinatorics is the study of those graphs
for which the the clique constraints and the nonnegativity constraints are
sufficient to describe the node packing polytope, see [29], [23]. Such graphs
are called perfect graphs.

6.3 Relaxations and branch-and-bound

A relaxation of an optimization problem is obtained by enlarging the set of
feasible solutions. This is done to get an optimization problem which is easier
to solve and thereby obtain a bound on the optimal value of interest. We
discuss relaxations in general and give a generic algorithm for integer linear
programming problems based on that concept. Later we shall use relaxations
in cutting plane algorithms and Lagrangian relaxation.

Consider a general optimization problem (Q) max {f(x) : x ∈ A} where
A ⊆ Rn and f : A → R. If A ⊆ B ⊆ Rn and g : B → R is such that
g(x) ≥ f(x) for each x ∈ A, we say that the optimization problem (R)
max {g(x) : x ∈ B} is a relaxation of (Q). We then have that v(R) =
supx∈Bg(x) ≥ supx∈Ag(x) ≥ supx∈Af(x) = v(Q). Thus, by solving (R) in
stead of (Q) we obtain an upper bound on the optimal value in (Q). We
may also find an approximate optimal solution. For a real number ε ≥ 0 we
say that a point x̄ ∈ A is an ε-optimal solution of (Q) if f(x̄) ≥ v(Q)− ε.
Assume now that x̄ ∈ A is such that f(x̄) ≥ v(R)− ε. Then x̄ is an ε-optimal
solution of (Q) because v(R) ≥ v(Q). This provides a tool for estimating
the quality of a feasible solution and also gives a possible stopping criterion.
Note that one often uses relaxations where f = g so only the feasible sets
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differ.
If (S) is a relaxation of (R) and (R) a relaxation of (Q), then (S) is also

a relaxation of (Q) (“transitivity of relaxations”). We then say that (R) is
a finer relaxation of (Q) than (S) is, and then we have v(S) ≥ v(R) ≥
v(Q). Consider an integer linear programming problem (Q) max {cTx : x ∈
P, x integral}. The relaxations of interest in cutting plane algorithms are
LP problems of the form max {cTx : x ∈ P ′} where PI ⊆ P ′ ⊆ P .

A generic relaxation algorithm for the integer linear programming prob-
lem (Q) max {cTx : x ∈ P, x integral} may be described as follows. Again
we let S = P ∩ Zn. During the algorithm zL and zU are lower and upper
bounds on v(Q), respectively.

General relaxation algorithm.

Step 1. (Initialization) Set zL = −∞ and zU = ∞ and choose an initial
relaxation (R0) max {f0(x) : x ∈ S0} of (Q). Set k = 0.

Step 2. (Optimality test.) Solve the relaxation (Rk) and let xk denote an
optimal solution. If xk ∈ S and cTxk = v(Rk) (remark: if fk(x) = cTx, then
this last condition is automatically fullfilled), then xk is an optimal solution
of (Q). Otherwise, set zU = v(Rk).

Step 3. (Refinement.) If xk ∈ S, set zL := max{zL, cTxk}. Let (Rk+1)
max {fk+1(x) : x ∈ Sk+1} be a finer relaxation of (Q) than Rk; set k := k+1
and go to Step 2.

Some suitable termination criterion should be added to this algorithm,
e.g., by introducing a maximum number of iterations. Note that a straight-
forward modification of the algorithm finds an ε-optimal solution of (Q) in
stead. An important property of the relaxation algorithm is that the upper
bounds are monotonically decreasing, i.e., zkU ≥ zk+1

U where the superscript
indicates iteration number. Many specific algorithms fall into this relaxation
framework by suitable spesification of how the refinement of the current re-
laxation is determined. Note that the relaxation algorithm could be applied
to any optimization problem, not just integer programming.

Relaxations are often combined with an enumerative approach. To de-
scribe the idea we consider a 0-1 linear programming problem, i.e., an integer
linear program where all variables are binary, say (Q) max {cTx : x ∈ S}
where S = P ∩ {0, 1}n and P = {x ∈ Rn : Ax ≤ b}. Note that S is a finite
set. Let S(u), u ∈ V be a partition of S, so these sets are pairwise disjoint
and their union equals S. Then we have that

v(Q) = max v(Q(u))

where (Q(u)) is the restricted problem max {cTx : x ∈ S(u)}. Also, by solv-
ing the restricted problems and comparing we can find an optimal solution
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of (Q). A natural way of partitioning S is to fix variables to either 0 or 1.
For instance, we can let S0 (S1) be those vectors in S with x1 = 0 (x1 = 1).
Furthermore, one can establish partitions recursively by fixing new variables
based on the previous partition. For instance, let S0,0 (S0,1) be those x ∈ S
with x1 = 0 and x2 = 0 (x1 = 0 and x2 = 1). For simplicity in the presenta-
tion we shall assume that there is a predetermined ordering of the variables
which is followed when variables are fixed.

The recursive partitioning may be organized in an enumeration tree
with nodes correponding to subsets of S and edges indicating subdivision.
The nodes are partitioned into n layers; in the k’th layer the first k variables
are fixed. Thus there are 2k nodes in the k’th layer correpond to all possible
ways of fixing the k first variables. For each node the subset S(v) of S
consists of those vectors in S that satisfy the variable fixing specified in that
node. The restricted optimization problem max {cTx : x ∈ S(u)} associated
with node u will be denoted by (Q(u)). The single node vr in layer 0 is
called the root node and each of the nodes in the n’th layer are called
bottom nodes. When u is a bottom node the problem (Q(u)) is trivial as
all variables are fixed. The edges go between two consecutive layers. More
precisely, a “mother node” on layer k have two adjacent nodes (“children”)
in layer k + 1 and they are obtained from the variable fixing in the mother
node by fixing xk+1 to either 0 or 1. The bottom nodes represent a complete
enumeration of all the feasible solutions in the problem (Q).

no fixing

x1=0 x1=1

x1=0,x2=0 x1=0,x2=1 x1=1,x2=0 x1=1,x2=1

Figure 6.1: A branch-and-bound tree

Thus even for moderate values of n the enumeration tree is too large for
practical purposes. The key idea is that we may only need to consider a small
part of this tree in order to solve the problem. For a nonroot node u the tree
contains a unique path P (u) between u and the root node. For each nonroot
node w ∈ P (u) we say that u is below w or that w is above u. Under certain
conditions a node u may be pruned which means that we need not solve any
of the problems (Q(u′)) for nodes u′ that are below u. This happens when
we know that these problems can not improve on the current best solution.
The following pruning criteria should be clear.
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Proposition 6.2 A node u in the enumeration tree may be pruned if one of
the following conditions holds.

(i) (Infeasibility.) S(u) is empty.
(ii) (Optimality.) An optimal solution of Q(u) is known.
(iii) (Value dominance.) v(Q(u)) ≤ v(Q).

One way of deciding if node u can be pruned is therefore to solve the re-
stricted program Q(u). This is usually not desirable as Q(u) is a difficult
(although smaller-dimensional) integer program. In stead one may solve a
(much simpler) relaxation of Q(u). This leads to the following pruning cri-
teria. We let R(u) denote a relaxation of Q(u), and (for simplicity) assume
that the objective functions of these problems coincide.

Proposition 6.3 A node u in the enumeration tree may be pruned if one of
the following conditions holds.

(i) (Infeasibility) R(u) is infeasible.
(ii) (Optimality.) We have an optimal solution x̄ of R(u) satisfying x̄ ∈

S(u).
(iii) (Value dominance.) v(R(u)) ≤ zL where zL is the objective function

for some point in S.

We are mainly interested in the case when all the relaxations R(u) are LP
relaxations, i.e., they are obtained by dropping the integrality constraints in
the integer linear programming problems. Then we know from LP duality
that the value v(R(u)) may be found by solving the LP dual D(u) of R(u)
as we have v(D(u)) = v(R(u)) (provided that at least one of the problems
is feasible). Therefore, if D(u) is unbounded, then R(u) must be infeasible
and the node u may be pruned. Secondly, if we find a feasible solution ȳ of
D(u) with (dual) objective value which is no greater than zL, then we may
prune due to value dominance (as this implies that v(D(u)) ≤ zL).

This leads to an enumerative algorithm based on linear programming. It
consists in processing nodes (solving associated optimization problems) in
the enumerative tree. We never process a node before all the nodes above
that node have been processed. In the algorithm Vn is a list of nodes that
remains to be processed. The algorithm is called branch-and-bound as we
branch in the nodes and determine bounds on the optimal value in each of
the nodes.

Branch-and-bound algorithm. Step 1. (Initialization) Let Vn = {vr},

zL = −∞ and zU =∞.
Step 2. (Termination.) If Vn = ∅, the current best solution x∗ is optimal;

terminate.
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Step 3. (Node selection and processing.) Select a node u in Vn and set
Vn := Vn \ {u}. Solve the LP relaxation R(u), possibly via solving the dual
D(u). Let z(u) and x(u) denote the optimal value and an optimal solution
of R(u), respectively.

Step 4. (Pruning.) (i) If z(u) ≤ zL, go to Step 2. (ii) If x(u) 6∈ S(u), go
to Step 5. (iii) If x(u) ∈ S(u) and cTx(u) > zL, update the best solution by
setting x∗ = x(u) and zL = cTx(u). Update Vn by removing all nodes with
zU(v) ≤ zL. If cTx(u) = zU , go to Step 2; otherwise go to Step 5.

Step 5. (Division.) Add two new nodes u0 and u1 to Vn each being
a child of node u such that S(u0) and S(u1) is a partition of S(u). Let
zU(u0) = zU(u1) = z(u) and go to Step 2.

Division often consists in branching on a fractional variable. For instance,
if the optimal solution found in node u has two fractional variables x1, x4

one selects one of these, say x4, and introduces the new node u0 with the
additional constraint x4 = 0 and another new node u1 with the additional
constraint x4 = 1. There are other natural ways of introducing new partitions
as well, see [29].

One important point is the strength of the LP relaxations. That is, if
the LP (optimal value) bounds are too far away from the optimal integer
value one cannot prune the enumeration tree and the algorithm becomes
slow, maybe too slow for all practical purposes, see Exercise 6.3.

Two main issues in the development of branch-and-bound algorithms are
node selection and variable selection.

Whenever we have solved the relaxation R(u), and we do not terminate,
we have to select the next node to be processed (also called the next active
node). In this node selection problem several strategies exist, some are based
on a priori rules and others are adaptive (depending on the calculations). For
instance, a common strategy is breadth-first-search plus backtracking where
one always chooses the next node as a child node and backtracks if the node
is pruned. In the variable selection problem one decides how to make the
partitioning that determines the (two or more) children problem. Empirically
one knows that this choice affects the over-all speed of the algorithm, but still
it is hard to find good rules for selecting “critical variables”. A useful strategy
is to predetermine some ordering of the variables based on the coupling in the
constraints. For instance, the variables may fall into two classes such that
fixing all the variables in the first class makes the remaining ones integral.
In such a case it makes sense to branch on fractional variables in the first
class whenever possible. Other possible techniques are discussed in [29].
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6.4 Cutting plane algorithms

We discuss a general method for solving integer linear programming problems
called a cutting plane algorithm. The idea is to add cutting planes to a
linear program, i.e., valid inequalities, in order to approximate the underlying
integer program.

Historically, an early version of this class of algorithms was the Gomory
cutting plane algorithm from around 1960 (see [29] for a presentation of this
work as well as references to the original papers). It is a finitely convergent
algorithm that generates a new inequality from a fractional solution using
the information of the linear programming tableau (basis description). The
convergence speed of Gomory’s algorithm is not good, so it is not practical
for solving large problems. For integer programs coming from combinatorial
optimization a main difficulty is that a huge number of constraints are needed
to describe the convex hull of the integer points of interest. In a very impor-
tant paper ([9]) by Dantzig, Fulkerson and Johnson in 1954 they solved some
instances of the traveling salesman problem by adding just a few of the facet
defining inequalities of the underlying polytope. They actually solved, to
proven optimality, a TSP problem of finding the shortest round trip through
48 cities in the United States. This line of research was not persued at that
time, probably because one did not see how to overcome the problem of the
large number of inequalities and also one did not have mathematical theory
for describing traveling salesman polytopes.

A new interest for cutting plane algorithms arose in the seventies and
eighties with, in particular, the work of M. Padberg and M. Grötschel. This
work was based on the work of Dantzig, Fulkerson and Johnson and also the
recent new ellipsoid method for solving linear programming problems. A key
feature of the ellipsoid method is that one does not need all the inequalities
of a linear program explicitly, but may treat them implicitly by generating
them “on the fly”. More precisely, in each iteration of the ellipsoid method
one must find, if any, a violated inequality for the current solution in order to
proceed. Such an inequality is then used for “halving” an ellipsoid surround-
ing the feasible region, a new smaller ellipsoid is constructed and its center is
the new candidate solution. Thus, it was observed that the ellipsoid method
(discovered by Khachian in 1979) was excellent for handling problem with
a large number of constraints. This was just the thing needed for integer
programs!

The new approach to cutting plane algorithms consisted in finding theo-
retically a class of strong valid inequalities for an integral polytope before the
computations started, and then constructing separation algorithms for test-
ing whether some current solution violates one of these inequalities. Thus,
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the principle is to combine problem specific inequalities with the general
framework of separation and optimization. We shall explain further how this
is done.

Consider an integer linear programming problem (Q) max {cTx : x ∈
P, x integral} where P = {x ∈ Rn : Ax ≤ b}. Let S be the feasible solution,
i.e., S = P∩Zn. We shall only consider relaxations having the same objective
function as (Q). In iteration k we consider a polyhedron P k in Rn and these
polyhedra are nested in the sense that

PI ⊆ . . . ⊂ P k+1 ⊂ P k ⊂ . . . ⊂ P 0 = P.

The polyhedron P k may be viewed as the current approximation of the target
polyhedron PI . In each iteration we optimize over the current polyhedron
and add, if needed, more inequalities to obtain the next polyhedron. For sim-
plicity we assume that none of the LP’s involved have unbounded solutions
for the given objective function. Let Π be a (finite) class of valid inequalities
for PI that are known. Ideally, this class is a complete linear description of
PI , but, more frequently, it gives only a partial description of PI .

Fractional cutting-plane (FCP) algorithm.

Step 1. (Initialization) Set zU =∞, A0 = A, b0 = b and k = 0.
Step 2. (Optimization.) Solve the LP problem max {cTx : Akx ≤ bk}

and let xk be an optimal solution. If xk is integral, it is an optimal solution
of (Q); terminate.

Step 3. (Separation.) Test if xk satisfies all the inequalities in Π. If
it does, terminate. Otherwise, let Ak+1x ≤ bk+1 be the system obtained by
adding one or more violated inequalities in Π to the current system Akx ≤ bk.
Let k := k + 1 and go to Step 2.

The FCP algorithm is finite as the number of inequalities that can be
added is finite. Note that, unless Π defines PI , we are not guaranteed to
find an integer solution by this algorithm. We may very well end up with
a fractional optimal solution which then satisfies all the inequalities in the
original system Ax ≤ b and in Π, but not all the inequalities needed to define
PI . A possibility is then to proceed by using branch and bound method with
the last LP problem as the problem of the root node. If, however, we obtained
an integral optimal solution in Step 2, we have found an optimal solution of
(Q) (since it is optimal in a relaxation having the same objective function,
see Section 6.3). In any case we have an upper bound on the optimal value
of (Q): v(Q) ≤ cTxN where xN is the final solution.

A natural theoretical measure of the success of the FCP algorithm for a
problem instance is the optimality gap cTxN − v(Q). Since v(Q) is usually
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unknown (this is what we want to find!), one may in stead consider an upper
bound ∆ on the gap. The number ∆ may then be used after the computations
to evaluate the algorithm empirically. Another useful idea is to evaluate ∆
in each iteration of the algorithm and terminate if ∆ lies below some chosen
level. This is often done as follows. In each iteration we use some algorithm
(a heuristic) to produce a feasible solution x̂k ∈ S. Define ∆ = cTxk − cT x̂k

as the desired upper bound on the optimality gap.
Consider the separation stage of the FCP (Step 3). For simplicity we

identify the inequalities πTx ≤ π0 in Π with the vectors (π, π0) ∈ Rn+1. The
separation problem is to check if the current solution x̄ satisfies

πT x̄ ≤ π0 for all (π, π0) ∈ Π. (6.8)

and, if it does not, find at least one violated inequality. This problem may
be viewed as the optimization problem

max{πT x̄− π0 : (π, π0) ∈ Π}. (6.9)

The difficulty of this optimization problem is clearly dependent on the prop-
erties of the class Π. For instance, assume that Π together with Ax ≤ b
determines PI , i.e., PI = {x ∈ Rn : Ax ≤ b, πTx ≤ π0 for all (π, π0) ∈ Π}.
Then the the integer program (Q) is NP-hard (resp. polynomial) if and only
iff the problem (6.9) is NP-hard (resp. polynomial). In practice, the class Π
naturally falls into subclasses Π1,Π2, . . . where each class consists of inequal-
ities having a similar structure. Them it may happen that the separation
problem is easy for one class and difficult for another. An interesting point is
that although the separation problem for a class of inequalities is NP-hard,
there may exist a larger class of valid inequalities (i.e., containing the first
class) for which the separation problem is polynomial. Ideally, one would
like to find large classes of inequalities that both give rid to good bounds (on
the optimal value) and also with a tractable separation problem. Of course,
this may be difficult or impossible, but at least these two aspects should be
taken into account in the construction of a cutting plane algorithm.

A remark on complete descriptions of integral polyhedra is in order. Usu-
ally, in practice, one can not find a complete description of PI , but it is easy
to find a valid integer linear programming formulation (this gives P ). Possi-
bly, one can strengthen this using some of the methods described in Section
6.2 and end up with an additional class of inequalities Π. A priori it is diffi-
cult to say much about the strength of the relaxtion obtained in this way, so
it makes sense to implement a cutting plane algorithm and judge from some
numerical experiments. If the lower bounds are bad for small-scale prob-
lems (that can be solved using branch-and-bound), one should look for other
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classes of inequalities. The fractional optimal solutions obtained may then
be useful in “guessing” on such inequalities. In fact, looking at the structure
of the fractional variables one may discover, e.g., a combinatorial property
that all the integer points in P have, but such that the linear inequality that
expresses this property is violated by the fractional solution. Such a empiri-
cal approach in solving specific problems makes sense, because this tends to
lead to inequalities that are “relevant”, i.e., they may be active in an optimal
solution.

We comment on relations between a cutting plane algorithm and branch-
and-bound. The simplest way of combining these methods is to use the
last LP from FCP (assuming that it had a fractional optimal solution) as
the root LP in the branch-and-bound algorithm. An alternative, and more
powerful, approach is to integerate the cutting plane approach with branch-
and-bound into what is known as branch-and-cut. Briefly, this approach
is to follow a branch-and-bound scheme, but in each of the nodes of the
enumeration tree one also generates cutting planes. Thus, one runs a FCP
algorithm in the active node. Usually this is done by separation w.r.t. classes
of inequalities that are valid for the main polyhedron of interest PI , as this
produces inequalities that are valid in all the nodes and they can therefore
be used in the remaining process. [Remark: since the integer program in a
tree-node contains variable fixing, there are further equalities and, possibly,
inequalities that define that integer polyhedron. However, it is complicated
to exploit this information constructively in the branch-and-cut, although it
may be done in theory.]

A good introduction on some practical aspects of polyhedral methods
is of [31] or [20]. There is a vast literature on the polyhedral approach to
specific combinatorial problems, see e.g., [31], [17], [7], [30], [36].

6.5 Heuristics

A heuristic is an approximate algorithm, i.e., an algorithm that “solves”
an optimization problem by finding a solution that may not be optimal,
but hopefully good enough for some purpose. The idea is that what one
gives away concering optimality shall be gained in terms of the speed of the
algorithm. Since many combinatorial problems are NP-hard, heuristics are
often used for such problems.

Typically a heuristic for a certain combinatorial optimization problem is
designed by specializing general algorithmic principles to capture the specific
structure of the problem studied. Consider a combinatorial optimization
problem of the form (CO) max {w(F ) : F ∈ F} where F is a class of feasible
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subsets of the finite ground set E and w is a nonnegative weight function
defined on E. A heuristic for this problem may be divided into two stages:
(i) finding an initial feasible solution, and (ii) improving the solution by local
search techniques.

Finding an initial feasible solution. This may be difficult, depend-
ing on the problem characteristics. Many problems, however, has a certain
monotonicity property that helps. We say that F is an independence sys-
tem if each subset of a feasible set is also a feasible set. For instance, the
set of matchings in a graph is an independence system. Another example is
the set of all independent sets in a graph. We should remark that any set
system (class of subsets of E) can be made into an independent set by adding
all subsets of feasible sets; this is called monotonization. This transforma-
tion may, at least, be useful in the analysis of the problem. For instance, in
the Traveling Salesman Problem, we may consider the class of edge sets be-
ing subsets of Hamilton cycles. Or in the Steiner problem (find a minimum
weight tree, called a Steiner tree, that connects given terminal nodes in a
graph) we can consider the subsets of Steiner trees as the feasible solutions.

For an independence system the greedy algorithm may be used to
construct a feasible solution:

Greedy algorithm
Step 1. Order the elements in E in a sequence e1, . . . , em such that

w(e1) ≥ . . . ≥ w(em). Set F := ∅.
Step 2. While F ∈ F add the next element in the sequence to F .

This algorithm terminates with a feasible solution, and it is simply called
the greedy solution. It can be shown (see [32]) that this solution is optimal
if and only if the independence system is also a matroid. This applies, for
instance, to the spanning tree problem, see Chapter 4. For general inde-
pendence systems, the greedy solution may be far from optimal so further
improvements are needed, see below. The greedy idea may also be used
for finding a feasible solution in an integer linear programming problem by
first solving the LP relaxation and then systematically rounding fractional
variables up or down (depending on the structure of the feasible region).

Improving the solution. Say that a feasible solution F ∈ F has been
constructed. Then we may try to improve this solution by making “small”
modifications that preserve feasibility, but increases the total weight. One
way of doing this is to apply k-interchanges which is to replace k elements
in F by k elements outside F provided that the new solution is feasible
and better. This simple idea (with small adjustments) could be tailored to
any combinatorial optimization problem. By applying such an improvement
routine several times one gets a sequence of gradually better solutions. For
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the Traveling Salesman problem the k-interchange heuristic of Lin-Kernighan
([22]) has proved to be a very good heuristic (for k = 2 or 3), it usually gives
near-optimal solutions withing reasonable times for interesting problems. For
k = 2 one has a current tour (Hamilton cycle) T and swaps a pair of edges uv
and wz in T with the new edges uw and vz when this gives a better tour. In
this case one can test fast if the swap gives a new tour, while this may become
too time-comsuming for larger values of k (because there are many ways
of “glueing” together the different pieces of a tour obtained after the edge
removal). The k-interchange idea is an example of local search. Briefly,
local search consist in searching through some specified neighbourhood of
the current solution for a better one. If one finds such a solution the search
continues in the neighbourhood of the new solution etc. Eventually, one
ends up with a solution that is locally optimal. Note that this notion of local
optimality is relative to the chosen neighborhood system. Thus, different
heuristics are distinguished by their neighborhood systems.

We also briefly mention another general idea that may lead to good heuris-
tics for integer linear programming problems. It is based on complementary
slackness. One then considers the LP relaxation (LP) max {cTx : Ax ≤ b}
of the integer program and its dual (D) min {yT b : yTA = cT , y ≥ 0}. As-
sume that we have a feasible solution y in (D); it may have been constructed
using a greedy algorithm. By complementary slackness, assuming that y is
optimal, we know that an optimal solution x in (LP) must satisfy aTi x = bi
for all row indices i with yi > 0. These constraints may guide us in choosing
a primal solution x that pair up with y. And, of course, we make sure that
the solution x is integral. Similarly, we may use complementary slackness
to construct a dual solution y from a primal solution x. Therefore, we may
combine ascent heuristics in the integer program or (LP), decent heuristics
in (D) to get another heuristic for the integer program using dual informa-
tion. One nice feature of this approach is that one obtains both upper and
lower bounds on the optimal value. This idea has been very successful on
the simple plant location problem, see [29] for a further elaboration of the
details in this method.

Heuristics may be compared by a performance measure which is the worst
possible ratio between the true optimal value and the value of the final so-
lution found by the heuristic. This ideal measure can then be estimated to
get some idea about the quality of the method.

141



6.6 Lagrangian relaxation

In Section 6.3 we discussed relaxations of optimization problems in a general
setting. We here consider one specific type of relaxation that has turned out
to be of great value in finding near-optimal solutions to (several) combinato-
rial optimization problems. The idea in Lagrangian relaxation is to exploit
the underlying structure of an optimization problem in order to produce
bounds on the optimal value.

Consider the 0-1 linear programming problem with feasible set S = P∩Zn
where P = {x ∈ Rn : Ax ≤ b, 0 ≤ x ≤ 1} and A ∈ Rm,n. (The following
development also works more generally, in fact for S = P ∩X where X is any
subset of Rn). Assume that the system Ax ≤ b is split into two subsystems
A1x ≤ b1 and A2x ≤ b2 where Ai has mi rows and m1 + m2 = m. One can
think of A2x ≤ b2 as “complicating constraints” in the sense that if they were
dropped an easier problem would be obtained. Thus we have P = {x ∈ Rn :
A1x ≤ b1, A2x ≤ b2, 0 ≤ x ≤ 1}. The 0-1 linear programming problem (Q)
may be written as follows.

max cTx

subject to
(i) A1x ≤ b1;
(ii) A2x ≤ b2;
(iii) 0 ≤ x ≤ 1;
(iii) x is integral.

(6.10)

The purpose of this constraint splitting is to open up for an associated and
simpler 0-1 LP problem where the constraints A2x ≤ b2 have been moved
to the objective function with penalties. We consider the following problem
LR(λ)

max cTx+ λT (b2 − A2x)
subject to
(i) A1x ≤ b1;
(ii) 0 ≤ x ≤ 1;
(iii) x is integral.

(6.11)

where λ = (λ1, . . . , λm2) consists of nonnegative weights or “penalties”, usu-
ally called the Lagrangian multipliers. Thus, in LR(λ) a feasible point x̄
may violate a constraint aTi x ≤ bi in A2x ≤ b2 but this increases the objec-
tive function by the amount of λi(bi − aTi x̄). On the negative side, we see
that we get an “award” in the objective by satisfying an inequality strictly.
This is an unavoidable problem when we want to maintain a linear objective
function.
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We call the problem LR(λ) the Lagrangian relaxation (or Lagrangian
subproblem) w.r.t. the constraints A2x ≤ b2. As the name indicates this
Lagrangian relaxation is really a relaxation of (6.10) for any λ ∈ Rm+ . To see
this we note that the feasible region of the Lagrangian relaxation contains the
feasible region of the original problem. In addition, if x̄ is feasible in (6.10),
then, in particular, we have A2x̄ ≤ b2 and therefore also cT x̄+λT (b2−A2x̄) ≥
cTx as λ is nonnegative. Thus we obtain an upper bound on the optimal value
of interest:

v(Q) ≤ v(LR(λ)).

Since this holds for all λ ∈ Rn+, the best upper bound obtained in this way
is given by solving the so-called Lagrangian dual problem (LD) (w.r.t.
A2x ≤ b2)

min{v(LR(λ)) : λ ≥ 0} (6.12)

and we get the important inequalities

v(Q) ≤ v(LD) ≤ v(LR(λ)) for all λ ∈ Rn+. (6.13)

The Lagrangian dual problem may be viewed as a nondifferentiable con-
vex minimization problem as v(LR(λ)) is a piecewise linear and convex func-
tion (it is the pointwise minimum of a finite number of affine functions).
Algoritmically one tries to solve the Lagrangian dual problem by some kind
of multiplier adjustment technique. The basic principle is to adjust the mul-
tiplier according to the current optimal solution x. If x violates the con-
straint, the penalty (multiplier) is increased, but if x satisfies the constraint,
the penalty is decreased. Different ideas are used for deciding how much
these adjustments should be, and for this good stategies are problem depen-
dent. For a discussion of one such general technique, called the subgradient
method, see [29].

We consider an application which illustrates the idea of Lagrangian re-
laxation.

The degree-constrained spanning tree problem (DCST) is to find
a minimum weight spanning tree satisfying given degree constraints. More
specifically, let w be a nonnegative weight function defined on the edges of a
graph G = (V,E) and let bv for v ∈ V be given positive integers. We want
to find a spanning tree T satisfying the degree constraints dT (v) ≤ bv for
each v ∈ V and with minimum total weight w(T ) =

∑
e∈T we. (Of course,

this problem is infeasible if the bv’s are “too small”). This problem is known
to be NP-hard, see [12]. But we know that the spanning tree problem is
tractable, i.e., polynomial, and this can be exploited as follows. It is possible
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to write down a linear system A1x ≤ b1 with 0-1 solutions that correspond
to the incidence vectors of sets F ⊆ E such that (V, F ) contains a spanning
tree. Finding such a system is left as an exercise, but here we only need to
know that the system exists. Then our problem (DCST) may be written as
(6.10) with c = −w and the system A2x ≤ b2 being

x(δ(v)) ≤ bv for all v ∈ V . (6.14)

The Lagrangian relaxation w.r.t. the degree constraints (6.14) is essentially
a spanning tree problem. The objective function to be minimized in this
problem is

wTx+
∑
v∈V

λv(x(δ(v))− bv).

This means that the weight of a spanning tree T becomes (use x = χT )

−
∑
v∈V

λvbv +
∑

[u,v]∈T

(wuv + λu + λv).

This objective will therefore tend to give spanning trees having low degrees.
The Lagrangian relaxation can for each λ be solved by, e.g., Kruskal’s al-
gorithm. Thus, combined with a suitable multiplier technique we can solve
the Lagrangian dual and obtain a lower bound on the optimal value of the
DCST problem. Also, if we are lucky and find an optimal spanning tree
in the final Lagrangian relaxation which satisfies all the degree constraints
(6.14), then this solution is also an optimal solution of (6.14). Otherwise, one
usually constructs a feasible spanning tree solution by some kind of heuristic
method based on the last subproblem. This also produces a bound on the
optimality gap.

We return to the general theory of Lagrangian relaxation. Consider again
the Lagrangian relaxation w.r.t. A2x ≤ b2 given in (6.11). The objective
function cTx+ λT (b2 − A2x) = (cT − λTA2)x+ λT b2 is an affine function of
x, i.e., a linear function c(λ)x (with c(λ) := cT − λTA2) plus some constant.
Since the constant may be removed from the optimization, the problem (6.11)
consists in maximizing a linear function over the 0-1 vectors in the polyhedron
defined by A1x ≤ b1. As discussed in the introduction to this chapter we may
convexify such a problem and obtain an equivalent LP problem

max{c(λ)Tx : x ∈ P 1
I }

where P 1
I is the integer hull of the polyhedron P 1 = {x ∈ Rn : A1x ≤ b1, 0 ≤

x ≤ 1}. Thus the Lagrangian relaxation corresponds to “integralization”
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with respect to the system A1x ≤ b1, 0 ≤ x ≤ 1 and translating the objective
function with some linear combination of the row vectors in A2. To proceed,
it follows from Motzkin’s theorem that P 1

I = conv({xk : k ∈ K}) where xk,
k ∈ K is a finite set of vectors in Rn; these are the vertices of P 1

I . Therefore
we obtain

v(LD) = min{v(LR(λ)) : λ ≥ 0} =

minλ≥0[maxx∈P1
I
(cT − λTA2)x+ λT b2] =

minλ≥0[maxk∈K(cT − λTA2)xk + λT b2] =

minλ≥0[min{η : η ≥ (cT − λTA2)xk + λT b2, for all k ∈ K}] =

min{η : λ ≥ 0, η + λT (A2xk − b2) ≥ cTxk, for all k ∈ K} =

max{cT
∑
k∈K

µkxk : A2
∑
k∈K

µkxk ≤ b2
∑
k∈K

µkxk;
∑
k∈K

µk = 1;µ ≥ 0} =

max{cTx : A2x ≤ b2, x ∈ P 1
I }.

The second last equality was obtained using linear programming dual-
ity. Note also the transformation used for converting the inner maximization
problem into an LP problem of minimizing an upper bound. We have there-
fore shown the following result.

Theorem 6.4 The Lagrangian dual problem (6.12) may be viewed as the
dual of the LP problem max{cTx : A2x ≤ b2, x ∈ P 1

I }. In particular, the
optimal values of these problems coincide.

This result is the main result on Lagrangian relaxation. It says that the
bound obtained from solving the Lagrangian dual equals the one obtained
by the LP problem with feasible set is based on integralization only w.r.t.
the constraints that are not relaxed. Define the three polytopes

P 1,2
I := {x ∈ Rn : 0 ≤ x ≤ 1, A1x ≤ b1, A2x ≤ b2}I ;

(P 1
I )2 := {x ∈ Rn : 0 ≤ x ≤ 1, A1x ≤ b1}I ∩ {x ∈ Rn : A2x ≤ b2};

P 1,2 := {x ∈ Rn : 0 ≤ x ≤ 1, A1x ≤ b1, A2x ≤ b2}.
(6.15)

Maximizing cTx over P 1,2
I correponds to the original integer program

(more precisely, transformed into an LP); maximizing over (P 1
I )2 corresponds

to solving the Lagrangian dual and, finally, maximizing over P 1,2 is simply
the LP relaxation of the integer program (6.10). Let LP denote the last
program. Since we have

P 1,2
I ⊆ (P 1

I )2 ⊆ P 1,2
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we get the following ordering of the optimal values in these optimization
problems

v(Q) = max{cTx : P 1,2
I } ≤

max{cTx : (P 1
I )2} = v(LD) ≤

max{cTx : P 1,2} = v(LP ).

This means that the Lagrangian bound may improve on the bound com-
ing from the LP relaxation. Note, however, an important consequence of
Theorem 6.4 concerning the bounds.

Corollary 6.5 If the polyhedron P 1 is integral, i.e., has integral vertices,
then v(LD) = v(LP ).

Thus, if integrality may be dropped in the Lagrangian subproblems (i.e.,
{x ∈ Rn : A1x ≤ b1} is integral), then we will not improve compared to the
bound obtained by solving the original LP relaxation. Usually, in such cases,
Lagrangian relaxation is not used unless it is viewed as more practical than
solving the LP. However, if the polyhedron is not integral, then, depending on
the objective function, the value of the Lagrangian dual will improve on the
LP relaxation bound. Consequently, this should be taken into account when
deciding on the splitting on the constraints, so as to make the Lagrangian
subproblems “simple, but not too simple”.

6.7 The Traveling Salesman Problem

In order to exemplify some of the principles and methods presented above,
we discuss the Traveling Salesman Problem (TSP) in this section. Our pre-
sentation is very brief. A more detailed presentation is given in [29] and, of
course, in the “TSP-book” [22].

The TSP has been studied a lot during the last 50 years by mathemati-
cians and computer scientists. The problem is of interest in certain real-world
applications, like vehichle routing and computer chip production, but it has
also an attraction from a theoretical point of view. One reason is that it is
easy to formulate, but difficult to solve!

The TSP problem is to find a shoutest trip through a given set of cities.
More precisely, we have given an undirected graph G = (V,E) with nonneg-
ative weights (costs) on the edges: ce, e ∈ E. A tour is a Hamilton cycle,
i.e., a cycle going through all the nodes of G and passing through each node
exactly once. The length of a tour is the sum of the weights of its edges. The
problem is to find a shortest tour. The TSP is NP-hard, and even deciding if
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a graph contains a Hamilton tour is NP-complete. Even worse, the problem
is also hard to approximate as it is NP-hard to solve the TSP with any given
performance guarantee. That is, for any given positive number r it is “hard”
to find a tour of length at most (1 + r) times the optimal length. However,
some special cases of the TSP are polynomially solvable, see [22].

Heuristics.

Many heuristics have been developed for the TSP. We present some basic
ones. These heuristics may not work for all graphs as some kind of density
of the edges is required, but here we just assume that such properties are
present. We have already mentioned the k-interchange heuristic for improv-
ing a tour. Thus we here concentrate on methods for generating an initial
tour.

First, we give some methods based on the greedy principle. The greedy
feasible algorithm gradually builds up a tour by adding the cheapest edge
to a partial solution F so as to maintain the properties that F is acyclic and
each node in (V, F ) has degree at most 2. The nearest neighbor heuristic
extends a path P : v1, . . . , vj by a new node vj+1 with [vj, vj+1] shortest
possible. Initially, a single node is selected (e.g., endnode of a cheapest edge)
and finally the tour is constructed by adding the edge [vn−1, v1]. (This last
edge may have high cost!). In the nearest insertion algorithm one extends
a cycle by instering a new node between two adjacent nodes on the current
cycle. What all these heuristics have in common is that they are simple, but
normally do not produce good solutions.

If the costs satisfy the triangle inequality

cuw ≤ cuv + cvw

many algorithms perform better. In particular, in this case, we have a more
sophisticated heuristic called the double spanning tree heuristic. As a
preparation we need some graph teory. An euler tour in a graph is a walk
with the same start and endnode and containing each edge of the graph
exactly once. If a graph contains an euler tour it is called eulerian. It was
shown by Leonard Euler (in 1736, “the first paper of graph theory”, [11])
that a graph is eulerian if and only if it is connected and each node has even
degree.

The double spanning tree heuristic works as follows. First, we find
a minimum weight spanning tree in G. Make a copy of each of the edges in
a tree, so we get a graph G′ (with multiple edges) having 2(n− 1) edges; G′

is called a double spanning tree. Let each new edge have the same cost
as its original edge. Note that G′ is eulerian as it is connected and each
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node in V has even degree due to the edge copying. Now we can easily find
an euler tour in the double spanning tree G′. Furthermore, from this euler
tour we can construct a Hamilton tour by moving along the edges and avoid
node repetitions by going to the next node. Note that such node jumps will
never increase the length compared to going along the double spanning tree
due to the triangle inequality. This leads to the following result.

Theorem 6.6 If the weights of G are nonnegative and satisfy the triangle
inequality, then a tour found by the double spanning tree heuristic is no longer
than twice the length of a minimum spanning tree.

We remark that a rather similar algorithm which also uses perfect match-
ings has the better performance guarantee of 3/2. (Note that this only applies
to the case of nonnegative weights satisfying the triangle inequality; without
this assumption, any algorithm “fails”).

Integer linear programming formulation.

The following model is a valid integer linear programming formulation of
the TSP:

min
∑

e∈E cexe
subject to
(i) x(δ(v)) = 2 for all v ∈ V ;
(ii) x(δ(W )) ≥ 2; for all W ⊂ V , W 6= ∅, W 6= V ;
(iii) 0 ≤ x ≤ 1;
(iv) x is integral.

(6.16)

The contraints (i), (iii) and (iv) assures that a solution x is of the form
x = χF where F ⊂ E and d(V,F )(v) = 2 for each v ∈ V ; such a set F is called
a 2 − matching (or 2-factor). Clearly, every tour is a 2-matching, so all
these inequalities are valid. However, in general a 2-matching is a union of
disjoint cycles, so it may not be a tour. The 2-connectivity inequalities
(ii) eliminate such a possibility, i.e., a 2-matching that satisfies (ii) is a tour
(otherwise we could let W be the node set of one subtour, and we would get
a violated inequality). From this it is not difficult to see that the feasible
solutions in (6.16) are precisely the incidence vectors of tours, see Problem
6.4.

An equivalent set of constraints that can replace (6.16)(ii) is the set of
subtour elimination constraints:

x(E[S]) ≤ |S| − 1 for all W ⊂ V , W 6= ∅, W 6= V .
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These constraints were introduced in the 1954 paper by Dantzig, Fulk-
erson and Johnson [9]. Note that the number of 2-connectivity inequalities,
or subtour elimination constraints, grows exponentially as a function of the
number of nodes.

Relaxations.

A simple relaxation of (6.16) is obtained by removing the 2-connectivity
constraints (6.16)(ii) and using the same objective function cTx. This re-
laxation can be transformed into a matching problem in a bipartite graph
(the assignment problem) and therefore solved efficiently. This relaxation
may be combined with a suitable branch-and-bound scheme with partition-
ing that assures the 2-connectivity. This approach is called the assignment
problem/branch-and-bound algorithm.

Consider the graph G and choose a node, say node 1. A 1-tree in G is
a set F ∪ {e, f} where (V \ {1}, F ) is a spanning tree and e and f are two
edges incident to node 1. Observe that each Hamilton tour is a 1-tree, but
the converse inclusion is false. The important property of 1-trees is that they
are connected, and that the following characterization of tours is valid: F is
a tour if and only if it is both a 2-matching and a 1-tree. Now, the incidence
vectors of 1-trees are the feasible solutions of the following set of constraints:

(i) x(δ(v)) = 2 for v = 1;
(ii) x(E[W ]) ≤ |W | − 1 for all W ⊂ V \ {1}, |W | ≥ 3;
(iii) x(E) = |V |;
(iv) 0 ≤ x ≤ 1;
(v) x is integral.

(6.17)

If we here add the degree constraints x(δ(v)) = 2 for v ∈ V \ {1}, we get the
(incidence vectors of) tours as solutions. In stead of doing this, we relax these
degree constraints using Lagrangian relaxation. We introduce Lagrangian
multipliers λv (that are unrestricted in sign, as we have equalities) where
λ1 = 0 and get the following Lagrangian relaxation:

2
∑
v∈V

λv + min{
∑
uv∈E

(cuv−λu−λv)xuv : x is the incidence vector of a 1-tree}.

Let v1T (λ) be the optimal value of this problem. The Lagrangian dual is
then (LD) max {v1T (λ) : λ ∈ RV , λ1 = 0} with optimal value v(LD). Based
on Corollary 6.5 it can be shown that zLD equals the value of the linear
programming relaxation of (6.16). To solve the Lagrangian subproblems one
needs to find a minimum weight 1-tree. This is done by solving a minimum
spanning tree problem in the subgraph G\{1} and then one finds the shortest
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pair of edges incident to node 1. The updating of the multipliers to solve the
Lagrangian dual is done so that λv is increased if the degree of node v is 1
in the 1-tree, and decrease λv is the degree is larger than 2.

A polyhedral approach.

A polyhedral approach to the TSP may be based on the integer hull PI
of the polyhedron P defined by the linear inequalities in (6.16). Thus PI , or
PTSP as we denote it, is the convex hull of the incidence vectors of tours, and
it is called the Traveling Salesman Polytope. It can be shown that most
of the inequalities defining P also define facets of PTSP . We first describe
some further facet defining inequalities and then briefy discuss some main
components in a cutting plane algorithm for solving the TSP.

It is convenient to assume that G is the complete graph. This is a com-
mon technical assumption (often used in polyhedral combinatorics) which
simplifies polyhedral arguments. Then the dimension of PTSP is m−n where
n = |V | and m = |E| = n(n−1)/2. (This is not trivial to show, but the easy
thing is that dim(PTSP ) ≤ m− n since the n degree inequalities are linearly
independent.) We also assume that n ≥ 4 (otherwise PTSP is either empty or
consists of one point only.) The subtour elimination constraints define facets
for PTSP whenever the node set W satisfies 2 ≤ |W | ≤ bn/2c, see e.g., [29]
or [17].

If n is either 4 or 5, the Traveling Salesman Polytope is completely de-
scribed by the trivial bounds, degree constraints and subtour elimination
constraints. For larger number of nodes, other facets come into play. One
such large class of inequalities is descibed next.

A comb in G is a class of sets H, Ti for i ≤ k all being subsets of the
node set V and satisfying

• H ∩ Ti is nonempty for i = 1, . . . , k;

• Ti \H is nonempty for i = 1, . . . , k;

• the sets Ti for i ≤ k are pairwise disjoint;

• k ≥ 3 is an odd number.

The set H is called the handle of the comb, and the Ti’s are the teeth.
Associated with each comb is a valid inequality for PTSP which may be
derived using the Chvátal-Gomory procedure as follows. Consider the valid
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H

T1 T2 T3

Figure 6.2: A comb

inequalities

(i) x(δ(v)) = 2 for all v ∈ H;
(ii) x(E[Ti]) ≤ |Ti| − 1 for i = 1, . . . , k;
(iii) x(E[Ti \H]) ≤ |Ti \H| − 1 for i = 1, . . . , k;
(iv) x(E[Ti ∩H]) ≤ |Ti ∩H| − 1 for i = 1, . . . , k;
(iv) −xe ≤ 0 for e ∈ δ(H) \ ∪iE[Ti].

(6.18)

If we add all these inequalities and divide the result by 2, we get the inequality

x(E[H]) +
k∑
i=1

x(E[Ti]) ≤ |H|+
k∑
i=1

(|Ti| − 1)− k/2.

Now, due to integrality since k is odd, we may round the right-hand-side down
and still have a valid inequality for PTSP . This gives the comb inequality

x(E[H]) +
k∑
i=1

x(E[Ti]) ≤ |H|+
k∑
i=1

(|Ti| − 1)− (k + 1)/2. (6.19)

These inequalities were introduced by Grötschel and Padberg (1979) as a
generalization of the simple comb inequalities found by Chvátal; simple
combs are combs where each H ∩ Ti consists of one node. It was shown by
Edmonds and Johnson that the solution set of (i) the simple bound inequali-
ties (0 ≤ x ≤ 1), (ii) the degree constraints and (iii) the comb inequalities for
which each tooth has cardinality two is precisely the convex hull of the inci-
dence vectors of 2-matchings in G. This 2-matching polytope is actually
an interesting relaxation of PTSP .

The comb inequalities may be generalized into the so-called clique-tree
inequalities where more handles are allowed and these are organized in a
tree-like fashion, see [18]. Furthermore, the clique inequalities is a subset
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of the bipartition inequalities; other inequalities are called star inequalities,
binested inequalities and so on. In fact, a lot of work has been done on
understanding the facial structure of Traveling Salesman Polytopes and a
main goal is to get a unifying understanding of the structure, not just many
strange classes of inequalities. A recent survey in this area is given in [28].

We now leave the presentation of valid inequalities and discuss briefly
how these are useful in cutting plane algorithms for solving TSP’s.

It is common to first solve a simple LP relaxation containing the simple
bounds and the degree constraints. The optimal solution may violate some
2-connectivity constraint, so we need to separate for these. A very useful
fact is that this problem reduces to a set of maximum flow problems so it
can be solved in polynomial time. For a given solution x̄ we consider the
weighted graph with edge weights x̄e for e ∈ E. Then all the 2-connectivity
constraints hold, i.e.,

x̄(δ(W )) ≥ 2

for node sets W if and only if the minimum cut weight (with weights as just
described) is no smaller than 2. This can be checked by solving a minimum
cut problem, or equivalenly a maximum flow problem, for each pair of dis-
tinct nodes in G. If possible, this algorithm also finds one or more violated
inequalities, and then these are added to the LP problem to be solved in
the next iteration. We mention that there are faster algorithms for solving
the minimum cut problem than using n(n− 1)/2 max flow calculations, for
instance based on the so-called Gomory-Hu tree.

At present no polynomial separation algorithm is known for the comb
or clique inequalities. However, for a fixed number of teeth, a polynomial
algorithm was found recently. There is also a polynomial algorithm for a
special subclass of the comb inequalities where |H ∩Ti| = 1 and |Ti∩H| = 1
for each i (assuming that the point to be separated satisfies 0 ≤ x ≤ 1 and
all the degree constraints). This algorithm solves the so-called minimum odd
cut-set problem based on minimum cut calculations. See [31] for a description
of this algorithm.

In practice, one uses different heuristics for solving the separation prob-
lems approximately (except possibly for the subtour inequalities). This
means that one is not guaranteed to find violated inequalities, but those
found are of course violated. This is done because it may be difficult to
find exact separation algorithms, or they are complicated to implement, or,
finally, they may be too slow.

Note that although the number of facets for TSP polytopes is enourmous,
we only need a suitable set of m linearly independent valid inequalities to
prove the optimality of a certain tour (vertex of PTSP ). For instance, in 120
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city TSP problem originating from cities in Germany was solved to optimality
by a cutting plane algorithm where 13 LP were solved and the final LP
contained 36 subtour and 60 comb inequalities, see [16]. The current “world
record” was a TSP problem with more than 8100 nodes solved to optimality
using a very sophisticated cutting plane algorithm (running i parallel on
about 50 computers).

6.8 Exercises

Problem 6.1 Give a proof of Proposition 6.1.

Problem 6.2 Consider the knapsack problem max {
∑n

j=1 cjxj :
∑n

j=1 ajxj ≤
b, 0 ≤ x ≤ 1} where all the data are positive integers. Define the knapsack
relaxation polyope by P = {x ∈ Rn :

∑n
j=1 ajxj ≤ b, 0 ≤ x ≤ 1}. Assume

that the variables have been ordered such that c1/a1 ≥ c2/a2 ≥ . . . ≥ cn/an.
Try to guess an optimal solution and prove the optimality by considering the
dual problem. Use this result to characterize all the vertices of P . What
about the cover inequalities in relation to these vertices?

Problem 6.3 Consider the branch-and-bound algorithm. Consider a node u
in the enumeration tree with v(R(u)) > v(Q) where Q is the integer program
and R(u) is the LP relaxation in node u. Can we prune node u?

Problem 6.4 Prove, in detail, that (6.16) is a valid integer linear program-
ming formulation of the TSP problem. Then do the same for the model
obtained by replacing the cut inequalities by the subtour inequalities.

Problem 6.5 Try to figure out what the odd cover inequalities might be based
on the example given for the set covering problem.

Problem 6.6 Consider the degree-constrained spanning tree problem. Find
a valid integer linear programming formulation of this problem.

Problem 6.7 Consider the following problem. We shall decide location of
sevice centers among a finite set of possible locations I. There is given a
(finite) set J of customers, and each shall be connected to exactly one service
centre. The cost of building a service centre at location i ∈ I is ci and
the cost of connecting customer j to centre location i is di,j. The simple
plant location problem is to decide in which locations service centres should
be built and the connection of customers to centres so as to minimiize the
total cost (design + connection cost). Model this problem as an integer linear
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programming problem. Figure out some data for a small example and solve
the LP relaxation as well as the ILP on a computer using an optimization
package (e.g., CPLEX).

Problem 6.8 Consider again the simple plant location problem from the
previous problem. Suggest a Lagrangian relaxation algorithm for this problem.
Discuss its properties (e.g., integrality).

Problem 6.9 Develop some simple heuristics for the simple plant location
problem.
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combinatorial optimization problem,

5
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cut, 80
cutting plane algorithm, 136, 137
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87
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discrete optimization, 2
discrete optimization problem, 4
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dual basic solution, 69
dual problem, 40

edge, 58, 78
edge cover, 120
enumeration tree, 133
equivalent linear systems, 36
euler tour, 147
eulerian graph, 147
extreme point, 46
extreme ray, 47

face, 55
facet, 57
Farkas’ lemma, 38
Farkas-Minkowski-Weyl theorem, 52
feasible problem, 3
feasible region, 3
feasible solution, 3
finite basis theorem for polytopes,
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finitely generated cone, 22
first theorem of graph theory, 82
flow, 90
flow balance, 90

flow decomposition theorem, 92
forest, 80
forest polytope, 108
fractional matching polytope, 127
Fredholm’s alternative, 37

general relaxation algorithm, 132
generalized simplex, 26
graph, 78
graphic matroid, 105
greedy algorithm, 88, 140

halfspace, 28, 36
heuristics, 147
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hypergraph, 111
hyperplane, 14, 28

ILP, 4
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independence system, 140
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leaf, 84
limit point, 11
line, 12
lineality space, 46
linear equation (equality), 35
linear inequality, 35
linear matroid, 105
linear programming, 2
linear programming problem, 4
linear rank, 16
linear subspace, 13
linear system, 35
local search, 141
loop, 79
LP problem, 4
LP-relaxation, 124

matching, 6, 119, 127
matching polytope, 127
matroid, 105
max-flow algorithm, 96
max-flow min-cut theorem, 95
maximal face, 57
maximum flow problem, 94
maximum weight forest, 108
Menger’s theorem, 97
minimal face, 57
minimal system, 60
minimum cut problem, 94
minimum spanning tree problem,

88
minmax theorem, 96
monotonization, 140
Motzkin’s representation theorem,

53
multigraph, 79

neighbors, 79
network, 90
network simplex algorithm, 104
node, 78

node cover, 119
node packing polytope, 131
node packing problem, 130
node-edge incidence matrix, 79
nodepacking, 120
nonbasic variables, 68

objective function, 3
open ball, 11
open set, 11
optimal solution, 3
optimal value, 3
optimization problem, 3
order of a graph, 78
orthogonal complement, 14

packing, 6
parallel, 79
partition, 6
path, 80
phase I problem, 76
pointed polyhedron, 46
polar cone, 22
polyhedral combinatorics, 2
polyhedral cone, 52
polyhedral methods, 123
polyhedral theory, 2
polyhedron, 2, 36
polytope, 22
primal basic solution, 68
primal problem, 40
proper face, 55
proper separation, 31
pruning, 133

ray, 47
reduced cost vector, 70
relative boundary, 12
relative interior, 12
relative topology, 12
relaxation, 131
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set covering polytope, 129
set covering problem, 129
shortest path problem, 85
simplex, 26
simplex algorithm, 68, 72
size of a graph, 78
standard simplex, 18
star, 80
strong separation, 31
subgraph, 81
supporting inequality, 55

topological space, 11
totally dual integral, 114
totally unimodular, 115
tour, 146
Traveling Salesman Polytope, 150
Traveling Salesman Problem, 5, 146
tree, 84
triangle inequality, 147
trivial face, 55
TSP, 5, 146

unbounded problem, 3

valid inequality, 22, 55
vertex, 46

walk, 80
weak duality, 41
weak separation, 30
Weierstrass’ theorem, 12
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