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When Kuhn and Tucker proved the Kuhn—Tucker theorem in 1950 they launched the theory of non-
linear programming. However, in a sense this theorem had been proven already: In 1939 by W. Karush
in a master’s thesis, which was unpublished; in 1948 by F. John in a paper that was at first rejected
by theDuke Mathematical Journabnd possibly earlier by Ostrogradsky and Farkas. The questions
of whether the Kuhn-Tucker theorem can be seen as a multiple discovery and why the different oc-
curences of the theorem were so differently received by the mathematical communities are discussed
on the basis of a contextualized historical analysis of these works. The significance of the contexts both
mathematically and socially for these questions is discussed, including the role played by the military
in the shape of Office of Naval Research (ONR) and operations research (©OB)oo Academic Press

En ddmontrant, en 1950, le ¢ébieme qui porte aujourd’hui leur nom, Kuhn et Tucker ont d®nn’
naissanca la théorie de la programmation non-éiaire. Cependant, en un sens, @otéme avaiete
démonte auparavant, d’abord par W. Karush en 1939 dansamaire de méfise inédit, par la suite par
F.John en 1948 dans un article qui avait d'abeiédéje€ par leEDuke Mathematical Journaét peutetre
méme plusot par Ostrogradsky et aussi par Farkas. lespnt article chercteglucider deux questions:
Peut-on consigrer le tiEoeme Kuhn—Tucker comme un exemple @ealiverte multiple? Et pourquoi
le thtoeme a-t-il€t® regu si differemment dans les diverses commueautiatiematiques? Notre
discussion se base sur une analyse historique contextuelle deemiéf'ouvrages. Nous examinons
ici 'importance du contexte, tant du point de vue des reathfiques que du point de vue social, y
compris le ole joug par le secteur militaire dans le cadre de I'Office of Naval Research et de la recherche
opérationnelle. © 2000 Academic Press
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1. INTRODUCTION

Inthe summer of 1950 at the Second Berkeley Symposium on Mathematical Statistics
Probability, held in Berkeley, California, a mathematician from Princeton, Albert W. Tucke
who was generally known as atopologist, gave a talk with the title ‘Nonlinear Programmin
It was based on a joint work of Tucker and a young mathematician, Harold W. Kuhn, w
had just finished his Ph.D. study at Princeton University. The talks were published ir
conference proceedings, and for the first time the name “nonlinear programming”™—
titte Kuhn and Tucker chose for their paper—appeared in the mathematical literature [Kt
and Tucker, 1950]. In the paper Kuhn and Tucker introduced a nonlinear programm
problem (to be explained below) and proved the main theorem of the theory—the so-ca
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“Kuhn—Tucker theorem.” This theorem, which gives necessary conditions for the existe
of an optimal solution to a nonlinear programming problem, launched the mathemat
theory of nonlinear programming.

The result is famous, and not long after its publication people began to talk about it as
Kuhn—Tucker theorem, but apparently Kuhn and Tucker were not the first mathematici
to prove it. In modern textbooks on nonlinear programming there will often be a footnc
telling that William Karush proved the theorem in 1939 in his master’s thesis from tl
University of Chicago, and that Fritz John derived (almost) the same result in a pa
published in 1948 in an essay collection for Richard Courant’s 60th birthday. Today ¢
often sees the theorem referred to as the ‘Karush—Kuhn-Tucker theorem’ to acknowle
the work of Karush. But when he handed in his master’s thesis in December 1939 not}
happened: the work was not published, nobody encouraged him to publish his result,
apparently it was not very interesting. Fritz John’s paper came out only two years bef
Kuhn and Tucker’s paper; again nobody noticed it. In fact John tried to get it publish
earlier in theDuke Mathematics Journdiut they rejected the paper! It is striking that
only two years later when Kuhn and Tucker derived the result, it became famous aln
instantaneously and caused the launching of a new mathematical research area.

These historical facts leads to the following questions. Was it really the same result t
had derived? Is it fair here to talk about a multiple discovery, and in what sense is it
is it not a multiple discovery? Why were the reactions of the mathematical community
different in the three cases? Why did nothing happen the first two times? Or, maybe n
interesting, why did Kuhn and Tucker’s work have such an enormous impact?

This paper is centered on these questions. They will be addressed and discussed ¢
basis of a contextualized historical analysis of the work of John, Karush, Kuhn, and Tuc
Both mathematical and social contexts will be considered, and the paper will end wit
discussion of the role played by the military through the Office of Naval Research (ON
and operations research (OR).

1.1. Mathematical Prerequisites

Let me very briefly explain what is to be understood by the concept of a nonline
programming problem and state more precisely the Kuhn—Tucker theorem. A nonlin
programming problem is an optimization problem of the following type:

Minimize  f(x)

subject to the constraints gj(x) <0 fori=1,...,m
X e X.
Here X is a subset oR", the functionsf, gi, ..., gn are defined onX, and x is an
n-dimensional vectong, . .., X,).%

Thus a nonlinear programming problem is a finite-dimensional optimization proble
where the variables have to fulfil some inequality constraints. A variabdeR", which
satisfies all the constraints is said to be “feasible.”

1 For an exposition on the mathematical theory of nonlinear programming see, for example, [Brziraa
1979, 1993; Luenberger, 1973; Peressiral., 1988].
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THe KunN—Tucker THEOREM.  Suppose X is a nonempty open s&®lLetx be feasible
and the functions f,g..., gn differentiable atx. Suppose the gradient vectoys; (x)
for the binding—or active—constraintse., the constraints gfor which g(x) = 0, are
linearly independent. Then the following will be true

Necessary conditions for(X) to be a minimum for the nonlinear programming problem
above are that there exist scalars (multiplierg) u. ., uy, such that

VI + ) uve® =0, ®
i=1
uigi(i):O i=1,...,m, (2)
uy=>0 i=1....m

These necessary conditions are called “the Kuhn—Tucker conditions.”

The first of these conditions, (1), is recognizable as saying that the correspond
Lagrangian function(x, u) = f(x) + Y " uigi(x), has a critical point inX, u). The sec-
ond condition, (2), ensures thatgf(x) # 0, that is, ifg; is not active inx, then the corre-
sponding multipliew; is equal to 0.

2. THE THEOREM OF KARUSH: A RESULT IN THE CALCULUS OF VARIATIONS

In December 1939 William Karush received a master’s degree in mathematics from
University of Chicago. His master’s thesis had the title “Minima of Functions of Sever
Variables with Inequalities as Side Conditions” [Karush, 1938%bday we would say that
such an optimization problem subject to inequality constraints belongs to the domair
nonlinear programming. But since the latter did not exist at that time, we need to tak
closer look at Karush's thesis in order to determine the field of mathematics to whick
was considered a contribution. This student project was proposed by Karush’s superv
Lawrence M. Graves [Karush, 1975]; so how did it fit in with the activities in the Departme
of Mathematics at Chicago at the time? Why was this problem interesting and what v
Karush trying to do?

In the introduction to his thesis Karush stated the purpose of his work, and he also g
a hint where to look for the motivation behind the proposal of the problem. He wrote:

The problem of determining necessary conditions and sufficient conditions for a relative minimum of
a function f(xq, ..., Xn) in the class of pointx = (x4, ..., Xn) satisfying the equationg,(x) =0
(¢=1,..., m), where the functiong andg, have continuous derivatives of at least the second order,
has been satisfactorily treated [1]. This paper [Karush’s thesis] proposes to take up the corresponding
problem in the class of pointssatisfying the inequalities
%) =20 (@=12..,m),
wherem may be less than, equal to, or greater thafiKarush, 1939, p. 1]
The reference ‘[1]' in the above quotation is to a paper titled ‘Normality and Abnormalit
in the Calculus of Variations’ [Bliss, 1938]. It had been published just the year before

2| am very grateful to the late Professor W. Karush for providing me with a copy of his thesis.
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Gilbert Ames Bliss, who was the head of the department at Chicago. The problem
Karush'’s supervisor proposed for the thesis originated from this paper by Bliss. So the r
of the problem Karush set out to work on was buried in the calculus of variations, a fielc
mathematics that had a special connection to the department.

2.1. The Chicago School in the Calculus of Variations

The mathematical department at the University of Chicago was founded with the oper
of the university in 1892. The first leader of the department was Eliakim H. Moore (186
1932), who in cooperation with the two Germans Oskar Bolza (1857-1936) and Heinr
Maschke (1853—-1903) created a mathematical environnement that soon became the le
department of mathematics in the USA [Parshall and Rowe, 1994].

It was Bolza who introduced the calculus of variations as a major research field at
department. His own interest in the topic stemmed from Weierstrass's famous lecture
1879, and Bolza taught the subject to graduate students at Chicago. From 1901 B
also turned his own research toward the calculus of variations. This indicated a shif
research direction, caused by a series of talks Bolza gave at the third American Matheme
Society (AMS) symposium. The purpose of these AMS meetings was to give an overv
of selected mathematical topics for a broader audience of mathematicians and the
suggest directions for new research. Chosen as one of the main speakers for the
meeting, Bolza was asked to talk about hyperelliptic functions; but instead he chos
give talks on the calculus of variations. Interesting unsolved problems became visible,
from then on Bolza was deeply involved in research in that field [Parshall and Rowe, 19
p. 394].

Bolza was very popular as a thesis advisor, often guiding his students to work in the f
in which he was currently doing research himself. The result was that he created a <
foundations for research in the calculus of variations at Chicago—the so-called Chic
School of the calculus of variations [Parshall and Rowe, 1994, p. 393].

In 1908 Maschke died, and two years later Bolza returned to Germany. Chicago thus
two of its leading mathematicans, and from 1910 on there seems to have been a decli
the reputation of the mathematics department. According to some Chicago mathematic
this decline was caused by a too narrow focus on the calculus of varidfidres:new team”
at Chicago consisted of Bliss, Dickson, and Wliczynski. It was Bliss who, as a student
Bolza, continued the calculus of variations tradition.

Bliss was head of the department from 1927 to 1941 and this period in the life of
institute was characterized by intensive research in the calculus of variations. In the 10-
period from 1927 to 1937 the department produced 117 Ph.D. theses. Bliss supervise
of these, and 34 fell within the calculus of variations [MacLane, 1989, p. 138]. Seve
mathematicians connected with Chicago later held a very critical view of Bliss’s progrz
in the calculus of variations. They seem to share the following view put forward by A.
Duren, who himself was a student of Bliss and wrote a Ph.D. in this field:

The subject itself had come to be too narrowly defined as the study of local, interior minimum points
for certain prescribed functionals given by integrals of a special form. Generalization came only at the
cost of excessive notational and analytical complications. It was like defining the ordinary calculus to
consist exclusively of the chapter on maxima and minima [Duren, 1976, p. 245].

3 See for example [MacLane, 1989; Browder, 1989; Stone, 1989; Duren, 1976].
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This is of course a characterization of the Chicago School under Bliss with hindsig
but it tells something about how extensive the research in the field was in the departme
the time, and that it was quite narrowly defined there. As a student in Chicago Karush \
a product of this tradition, and his master’s thesis must be analyzed and discussed wi
that context:

2.2. Karush's Master’s Thesis

The purpose of Karush’s work was to determine necessary and sufficient conditions
a relative minimum of a functiorf (xs, ..., Xp) in the class of pointx = (Xa, ..., Xn)
satisfying the inequalitieg, (x) > 0 for (¢ =1, 2, ..., m), where the functionsf and
0. are subject to various continuity and differentiability conditions. He carried out th
work in 1939 at a time when the research in Chicago was centered on variational calct
problems withinequalitiesas side conditions. Viewed in that context, Karush’s problen
can be interpreted as a finite-dimensional version of such a problem.

At first sight it can seem a little strange to have asked Karush—who was a promis
student—to work on a finite-dimensional version of the real focus of attention, which I
in infinite dimensions. Karush did not explain the importance of his work in a broad
perspective, but from his introduction it is clear that he viewed it as an extension of t
work of Bliss, mentioned above, from the year before. From the mid-1930s Bliss had be
interested in some properties called “normality” and “abnormality” for the minimizing ar
of anequality-constrained problem in the calculus of variations. The purpose of the pay
by Bliss which Karush took as point of departure was to

[...] analyze, more explicitly than has been done before, the meaning of normality and abnormality for
the calculus of variations. To do this | have emphasize§llibelow the meaning of normality for the
problem of a relative minimum of a function of a finite number of variables. [Bliss, 1938, p. 365]

Because as Bliss wrote,

The significance of the notion of abnormality in the calculus of variations can be indicated by a study
of the theory of the simpler [finite-dimensional] problem. [Bliss, 1938, p. 367]

Hence, Bliss’s idea was that valuable insight into the general more complicated cases ¢
be obtained through a thorough study of the finite-dimensional case. In the light of thit
is reasonable to presume that the same would hold true fim¢lg@ality-constrained case.
This shows that even though the problem proposed for Karush'’s thesis did not fell direc
in the main research area in the calculus of variations at the department, it would still h
made sense to examine it.

The theorem which relates to the Kuhn—Tucker theorem appears in the third section of
thesis. Here Karush examined the minimum problem under the condition that the functi
f andg,, that is, the objective function and the contrained functions, &reiGctions near
a pointx®,

Before he proved the theorem which is now recognized as the Kuhn—Tucker theoren
showed its less restricted version:

4 For more information on the mathematical institute at Chicago under the leadership of Moore see [Pars
and Rowe, 1994; Duren, 1989]. For the history of the calculus of variations see [Fraser, 1992, 1994].
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Treorem 3.1. If f(x%) is a minimum then there exist multipliets I, not all zero such that the
derivatives k of the function
F(x) =lof(X) +1a9u(x)
all vanish at . [Karush 1939 pp. 12-13]°

Note that there is no sign restriction on the multipliers in these first necessary conditic
Also, the multiplierly associated with the objective functidncan take the value zero, in
which case® is called an “abnormal” point. In order to avoid the abnormal case some Kkil
of regularity conditions or “constraint qualification,” as Kuhn and Tucker later called it,
needed.

The concepts which Karush introduced to construct such a regularity condition w
“admissible direction,” “admissible curve,” and “normal point.” By an admissible directio
Karush understood a nonzero vectoe (11, Ag, ..., An) that solved the inequality system

[Karush, 1939, p. 11]. In other words, he considered a direction admissible if the directic
derivatives of the constrained functiogsin the direction of. are nonnegative, which means
that “you stay” in the feasible area if “you walk” fronf in the direction ofr.. He called a
regulararc(t)(i =1,2,...,n; 0 <t <tpy) an admissible arc if

0.(x(t)) > 0 forall« andt

[Karush, 1939, p. 11]. This means that a regular arc is admissible if “you stay” feasi
when “you move” along the arc. Finally, he called a poifinormal if the Jacobian matrix
for g has rankm atx°, that is, if the gradients

Vgl(xo)’ ng(XO), s ng(XO)

are linearly independent.
Karush then formulated the “Kuhn—Tucker theorem” in the following way:

THeorREM3.2.  Suppose that for each admissible directiothere is an admissible arc issuing from
x% in the directioni. Then a first necessary condition fox?) to be a minimum is that there exist
multipliers L, < 0 such that the derivativesFof the function

F=f+1,0¢
all vanish at . [Karush 1939 p. 13]

By a curvex; (t) (0 <t < to), “issuing fromx? in the directiom.” he meant thak; (0) = x°
andx/(0) = A; [Karush, 1939, p. 13].

5Karush used the Einstein summation symbolism: iF(X) = lo f () + 4G (X) meansF(x) = lo f(x) +
Y1 laGu(X).
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His idea was to use Farkas’s lemfita guarantee the existence of nonpositive multipliers
l., and the assumptions in the theorem—the regularity condition—ensure precisly that
lemma can be brought into action.

2.3. The Acknowledgment of Karush’s Thesis in Nonlinear Programming

Karush'’s theorem looks indeed very much like the version of the Kuhn—Tucker theor:
showninthe Introduction. Thatis, there should exist multipligfssuch that the Lagrangian
function F has a critical point ax°, (I,,). The conditionl, g, (x°) = 0 is missing because
Karush only considered the active constraints, i.e., constraints for wgh{f) = 0.

In 1975 Harold Kuhn wrote a letter to Karush saying:

Firstletme say that you have clear priority on the results known as the Kuhn—Tucker conditions (including
the constraint qualification). | intend to set the record as straight as | can in my talk. [Kuhn, 1975a]

Kuhn was referring to a talk that he had been asked to give on the history of nonl
ear programming at an AMS symposium. He became aware of the work of Karush throt
Takayama’s book “Mathematical Economics” [Takayama, 1974]; [Kuhn, 1976, p. 10]. Dt
ing the research for the AMS talk Kuhn made contact with Karush and offered a par
publication of the master’s thesis as an appendix to Kuhn's historical paper in the AMS p
ceedings that was to be published after the meeting. In this paper Kuhn announced Kart
thesis as an unpublished classic in the field of nonlinear programming [Kuhn, 1976].

Just looking at Karush’s result independent of the context of discovery, one can o
agree with Kuhn and say that Karush actually had the later Kuhn—Tucker theorem. In
light of its later importance one is then naturally led to the questions: Why was Karus|
result not valued at the time? Why was it not published?

As we have seen, the main interest in Chicago at the time was variational calcu
with inequality contraints, and if Karush’s work is evaluated in this context then it we
only a minor, finite-dimensional result, some “cleaning up” in a research direction whe
variational calculus with inequality constraints was the main field. Neither the posed probl
nor the result was special. The interesting questions in this field were different from the
that were to be important and later guided the research in nonlinear programming.

The letter from Kuhn to Karush quoted above also suggests how important the theol
was considered to be in the community of mathematicians working in nonlinear progra
ming. Kuhn tells in the letter that Richard Cottle, who was among the organizers of t
AMS symposium, made the following remark about Karush when he heard about Kuh
intentions of “setting the record straight”:

“you must be a saint” not to complain about the absence of recognition. [Kuhn, 1975a]

Kuhn also writes about Tucker’s reaction when he learned of the result in Karush’s the
Tucker was truly amazed that Karush had never told him about his work when they r
at the RAND Coperation [Kuhn, 19754Richard Bellman wrote the following to Kuhn
when he learned about Kuhn’s forthcoming talk:

6 For a short historical account of Farkas’s lemma see [Brentjes, 1976a]. To consult Farkas's own work
[Farkas, 1901].

7 Project RAND emerged just after the Second World War with the purpose of continuing the cooperat
between researchers in academia and in industry and the military which took place during the war. For fur
information see [Smith, 1969; Hourshell, 1997].
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I understand from Will Karush that you will try and set the record straight on the famous Kuhn—Tucker
condition. | applaud your effort. Fortunately, there is enough credit for everybody. It would certainly
be wonderful if you wrote it as the Kuhn—Tucker—Karush condition. Like many important results, it is
not difficult to establish, once observed. That does not distract from the importance of the condition.
[Bellman, 1975]

Also the mathematician Phil Wolfe informed Kuhn how pleased he was that Karush'’s wi
would now be recognized [Kuhn, 1975b].

From the letters it is clear that the mathematicians working in the field were truly amaz:
that Karush had not come forward to claim if not priority then at least recognition. To tt
Karush himself gave the following explanation:

That does not answer the question of why | did not point to my work in later years when nonlinear
programming took hold and flourished. The thought of doing this did occur to me from time to time, but

| felt rather diffident about that early work and | don’t think | have a strong necessity to be “recognized.”

In any case, the master’s thesis lay buried until a few years ago when Hestenes urged me to look at it
again to see if it shouldn't receive its proper place in historySo | did look at the thesis again, and

| looked again at your work with Tucker. | concluded that you two had exploited and developed the
subject so much further than |, that there was no justification for my announcing to the world, “Look
what | did, first.” [Karush, 1975]

From the point of view of the history of mathematics I think Karush is right here. He d
derive a result that was comparable to the Kuhn—Tucker theorem, but he did not explore
subject further, and his work wamt nonlinear programming but occurred in a completely
different context. The department at Chicago had became under Bliss a place with focu
avery narrowly defined calculus of variations research programme, and within this rese
direction nobody was interested in exploring the possibilities for applications of Karus|
result.

3. THE THEOREM OF FRITZ JOHN: A CONTRIBUTION TO THE THEORY
OF CONVEXITY

Fritz John’s version of the Kuhn—Tucker theorem appeared in his essay “Extrem
Problems with Inequalities as Subsidiary Conditions,” which was published in 1948 in
Courant anniversary volume [John, 1948].

Johnwas a student of Richard Courant mttBigen, where he received aPh.D. in 1933. He
had Jewish ancestors, and Courant worked hard to find him a position outside of Germ
In 1934 he succeeded in getting John a research scholarship at Cambridge, England.
moved to the United States a year later, where he received an offer from the Univer
of Kentucky. He worked there until 1943, and after some years of war-related work at
Ballistic Research Laboratory at Aberdeen Proving Ground, he returned “home” to Cou
at his institute at New York University [Reid, 1976, pp. 131-132, 154-155].

Fritz John was aworld-class mathematician. His list of publications counts 101 mathen
ical texts, papers as well as monographs, and he has received many prizes and fellow:
Today he is probably most recognized for his work on partial differential equations, |
he has also made important contributions in the fields of geometry, analysis, and nor
ear elasticity. At the time when the Courant anniversary volume was published John
mostly been working within the theory of convexity—more than half of his mathematic
publications until this one of 1948 were in that field, and quite a few are now conside!
“classics” in the theory of convexity [@ding, 1985; Moser, 1985].
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3.1. John’s Paper
What was John'’s intention in this paper? In the Introduction he wrote:

This paper deals with an extension of Lagrange’s multiplier rule to the case, where the subsidiary
conditions are inequalites instead of equations. Only extrema of differentiable functions of a finite
number of variables will be considered. [John, 1948, p. 187]

Like Karush, John only looked at the finite-dimensional case; so, judging from the ti
and the Introduction, it sounds very much as if John was interested in the same kinc
questions as Karush. This impression is reinforced later in the introduction where Jc
pointed to further directions of research on the problem:

from the point of view of applications it would seem desirable to extend the method used here to cases,
where the functions involved . do not depend on a finite number of independent variables. [John, 1948,
p. 187]

This extension of the problem clearly belonged to the calculus of variations; but if Jo
considered his work as a contribution to this field, it would seem unlikely that he did n
know the work of the Chicago School in the calculus of variations—well known at th
time—who had already carried out this work for the general case.

However, apparently John did not know the Chicago work; there is no reference to
calculus of variations in his paper. What was his real interest, then? In the following | w
scrutinize his paper to se¢hathe actually did anthowhe did it.

The paper is divided into two parts; the first is concerned with the question of necess
and sufficient conditions for the existence of a minimum and the second is devoted to 1
geometrical applications of the theoretical result in part one.

John formulated the result that later was acknowledged as a version of the Kuhn—Tu
theorem in the following way:

Let R be a set of points in R",% and F(x) a real-valued function defined iR. We consider a subset
R’ of R, which is described by a system of inequalities with paramgter

G(x,y) >0,

whereG is a function defined for akk in R and all “values” of the parametegr . . .we assume that the
“values” of the parametey vary over a set of pointSin a spaceH. .. .We are interested in conditions
a pointx® of R’ has to satisfy in order that

M = F(x%) = min F(x).
XeR
[John, 1948, p. 187-188]

Under some further continuity and differentiability conditions John was able to prove t
following theorem:

Theorem|.  Let X0 be an interior point of Rand belong to the set’Rf all points x of R which
satisfy the contraints (X, y) > Oforally € S. Let

0y _ .
F(x°) = )r(T;lg F(x).

8 Instead oR" John wrote . . in a space Ebut in the following he restricted himself to the case where the spac
E containing the seR is then-dimensional Euclidean space, which | have caf®dJohn, 1948, p. 188].
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Then there exists a finite set of points y.., y5, in S and numbersog, A1, ..., As, Which do not all
vanish such that

0<s<n,
the function
S
B(X) = 2oF(X) = DM G(x, y")
r=1

has a critical point at R i.e., the partial derivatives are zero aPx
¢ (x%=0 fori=1...n
(See [John1948 pp. 188-189])

John’s way of attacking the problem was the same one Karush used, but where Ka
invoked Farkas’s lemma as his main tool John used other similar results from the theor
convexity, with which he was familiar through various recent works (for example [Dine
1936; Stokes, 1931]).

John’s formulation of the theorem looks a little different from Karush'’s, but the stat
conditions are the Kuhn-Tucker conditions. The differences are the appearance of
parametel in the parameter s&, and that the multiplieko associated with the objective
function F can become zero as in Karush’s first theorem. The latter difference is causec
the fact that John did not have the constraint qualification, as Kuhn and Tucker called it
the normality condition, as Karush would have said.

3.2. The Two Geometrical Applications

From reading the second part of the paper, which is concerned with the two geomett
applications, it becomes clear why John chose this construction with the pargraetta
parameter se$. It also explains why John did not touch upon the problem of abnormali
and thereby did not consider the problem of constraint qualification.

More than half of the paper is devoted to these geometrical applications. The firs
“Application to Minimum Sphere Containing a Set” and the second concerns the ellips
of least volume containing a s6tn R™ [John, 1948, p. 193]. In the first one John considere
the following problem:

Let S be a bounded set iR™. Find the sphere of least positive radius enclostidJohn, 1948,
p. 193-194]

John was not interested in thgistencef such a sphere. If the assumption is made that th
bounded se§ contains at least two distinct points, it is quite clear that such a sphere exi
[John, 1948, p. 194].

To be able to use his theorem derived in the first part of the paper John character
spheres irR™ as points irR™+1,

X = (X1, ..., Xms1)s
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where &, ..., Xm) are the coordinates of its center axgl. ; the square of its radius. He
could then rewrite the problem as an optimization problem subject to inequality constrair

Minimize the functionF (x) = Xm,1 subject to the constraints

m
G(X.y) =Xm1— Y (6 —¥)*=0 forall yes.
i=1

The constraints ensure that the minimum is only sought among spheres confining

John used a similar procedure in the second application about the ellipsoid. In both c:
he knew that a minimumx®, existed, so the necessary conditions of the theorem we
fulfilled. He then used these conditions to derive significant properties of the minimt
sphere and the minimum ellipsoid. From this he also derived several general propertie
closed convex sets [John, 1948, pp. 201-202].

3.3. The Link to the Theory of Convexity

In the application part of John’s paper and especially in the last one it becomes cl
that his main interest was in the results about closed convex sets that he developed thr
the applications of his theoretical result: the extension of Lagrange’s multiplier meth
to problems with inequality constraints. In connection with Kuhn’s talk on the history
nonlinear programming Kuhn also had a brief correspondence with®JAbnording to
Kuhn, John should have revealed that he was led to the theorem when he was

trying to prove the theorem.. that asserts that the boundary of a compact convexssetR" lies
between two homothetic ellipsoids of ratim, and that the outer ellipsoid can be the ellipsoid of least
volume containings. [Kuhn, 1976, p. 15]

Even though in his title and introduction John gives the impression that he is concert
with problems in the calculus of variations, it is my opinion that his paper rather should
viewed as a contribution to the theory of convexity, to which he had made fine contributio
Allthe references in the paper are either to the theory of convexity or to less general work
by John and others—on the two applicatidh#n considering the applications it becomes
quite clear that they have a justification in themselves, for they serve a deeper purf
than just as illustrations of the theoretical result. The conclusion must be that the guid
gquestions—the important issues for John—were the applications and the results he ¢
derive from these.

3.4. The Status of the Theorem

In Karush’s work the theorem was important in itself. The whole purpose of his wo
was to derive these necessary conditions for the existence of a minimum or maximum
John’s work, on the other hand, the theorem was only derived as a tool for deriving gen
results about convex sets. The applications guided the formulation of the theorem, wt
explains John’s contruction of the “parameter set” which clearly is dictated by the applic
tions.

9 This correspondence is apparently lost.
107John, 1936, 1942; Behrend, 1937, 1938; Ader, 1938].
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Another difference between Karush’s and John's work is the “normality” condition, :
Karush called it, or the “constraint qualification,” as Kuhn and Tucker will call it; John doe
not touch upon that feature. This can also be explained from the fact that both applicat
are actually examples of the normal case.

In his paper on the history of nonlinear programming Kuhn wrote about John’s work tl
it “very nearly joined the ranks of unpublished classics in our subject” [Kuhn, 1976, p. 1
But John himself apparently did not view this work in this way, and he never came forwe
with priority claims.

4. THE THEOREM OF KUHN AND TUCKER: AN EXTENSION
OF LINEAR PROGRAMMING

Albert W. Tucker was born in Canada in 1905 and died in Princeton, New Jersey,
1995. He received a bachelor’s degree in mathematics from the University of Torontc
1928, and a year later began Ph.D. study at Princeton University. This turned out to be
beginning of a lifelong connection to the Mathematics Department at Princeton. In 1932
received the Ph.D. on a thesis in the field of topology, and two years later he was appoi
assistant professor. In 1938 he became associate professor, and then full professor in
An important figure in the maintenance of Princeton in the 1930s and 1940s as a prestig
place for mathematical research, he served as head of the department from 1953 to :
He had a tremendous influence on the students who came in contact with him, and |
often characterized as a very good teacher and leader [Tucker, 1980; Kuhn, 1995].

Harold W. Kuhn—20 years younger than Tucker—was born in California. He receive
bachelor’s degree in science from the California Institute of Technology in 1947, and tt
moved on to Princeton where he wrote a Ph.D. thesis on “Subgroup Theorems for Grc
Presented by Generators and Relations” in 1950 [Kuhn, 1952]. After some travelling
a seven-year appointment at Bryn Mawr College, Kuhn returned to Princeton as a
ciate professor. He was connected to both the mathematics and the economics depart
[Kuhn, 1986].

4.1. The Nonlinear Programming Paper

The main pointin Kuhn and Tucker’s paper was to find necessary and sufficient conditi
for the existence of a solution to the following “maximum problem,” as they called it:

To find anx? that maximizegy(x) constrained byF x > 0, x > 0 [Kuhn and Tucker, 1950, p. 483].

Herex? e R" andx — u = Fx is a differentiable mapping of nonnegativevectors
X into m-vectorsu. That is, Fx is anm-vector whose component§(x), ..., fn(X) are
differentiable functions ok defined forx > 0, andg(x) is a differentiable real function of
x € R" defined forx > 0 [Kuhn and Tucker, 1950, p. 483].

Kuhn and Tucker handled this problem by taking the so-called “saddle value proble
as their point of departure. They defined it as the problem of finding nonnegative vect
x% € R" andu® € R™, such that

p(x, u9) <p(x°, u9) <(x% u) forallx=0, ux=0,

whereg(Xx, u) is a differentiable function of an-vectorx with components; >0 and an
m-vectoru with componentsl,, > 0.
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They letp?, ¢0 denote the partial derivatives, evaluated at a particular p8int°. That
is, ¢0 is ann-vector,

o_ (99 o 99 o
0= (5200, 520

andg? is anm-vector,
3¢ )
o_ (99 .0 99 0
¢U_<aul(u )7'-~9aum(u ))'

They used thénotation to denote the transposed vector.

The first theorem Kuhn and Tucker proved in the paper concerned the question of r
essary and sufficient conditions for the existence of a solution to the saddle value probl
They proved that the conditions

$e<0, ¢2x°=0, x°20 (1)
920, ¢qu’=0, u’=0 )

are necessary fo®, u° to provide a solution [Kuhn and Tucker, 1950, pp. 482—483]. Fo
the second part of the question they proved that the conditions (1), (2) together with the
conditions

o(x, u°) < p(x% %) + ¢2 (x — x°) ©)
p(x%, u) 2 p(x°, u%) + ¢ (u — u°) (4)

for all x>0, u > 0, aresufficienfKuhn and Tucker, 1950, p. 483].
Equipped with these conditions, Kuhn and Tucker phrased their theorem in the followi
way:

THeorem 1. In order that 5@ be a solution of the maximum probleihis necessary that%and
some @ satisfy conditiong1) and (2) for ¢(x, u) = g(x) + u’'Fx. [Kuhn and Tucker195Q p. 484]

If the conditionx®>0 is incorporated into the constraint functioR, the first and last
conditions in (1) together mean that the Lagrangian functipq u) has a critical point at
x%, u. The second condition in (1) ensures that the multipliers associated with the nonbind
components ok® are equal to zero. The first condition in (2) ensures #ias feasible,
the second ensures that the multipliers associated with nonbinding constraints are equ
zero, and the last is the sign-restriction on the multipliers. These conditions later bece
known as “the Kuhn—Tucker conditions,” and they constitute one of the main results in 1
mathematical theory of nonlinear programming.

Actually the first time Kuhn and Tucker announced this theorem was not at the Berke
Symposium but a few months earlier at a seminar held at the RAND Corporation in M
1950. Among the audience was C. B. Tompkins, who came up with something as unplea
as a counterexample [Kuhn, 1976, p. 14]. The result—as it stood—could not rule out
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“abnormal” case, as Karush would have called it. Kuhn and Tucker got back to work ¢
realized the need for some regularity conditions on the constraint functions. This led thel
introduce the term “constraint qualification.” The constraint qualification they used in th
paper was the same as Karush’s: that for edobf the boundary of the set determined by
the constraints and for any vector differentiad for which the directional derivatives of the
binding constraints in the direction dk are nonnegative, there corresponds a differentiabl
arcx = a(6), 0 < 6 < 1, contained in the constrained set, with= a(0), and some positive
scalarx such tha#'(x%) = A dx [Kuhn and Tucker, 1950, p. 483].

As Kuhn and Tucker pointed out in their paper, it can seem artificial to introduce t
conditions (3) and (4) that occurred in the sufficiency part of the saddle value problem;
these conditions are satisfiedifx, u®) is a concave function of and¢(x°, u) is a convex
function ofu [Kuhn and Tucker, 1950, p. 483]. In order to gain full equivalence betwee
solutions of the maximum problem and the saddle value problem Kuhn and Tucker t
required that the functions involved, fi, ..., fy, be concave as well as differentiable for
x > 0. With these extra requirements they showed that

x is a solution of the maximum problem if, and only ¢ and somai® give a solution of the saddle
value problem foip(x, u) = g(x) + u’F(x). [Kuhn and Tucker, 1950, p. 486]

4.2. The Saddle Value Problem: A Detour?

Kuhn and Tucker’s formulation of the theorem is different from that of Karush ar
John, neither of whom considered the concept of saddle points. Why did Kuhn and Tuc
choose the saddle point formulation, and why were they looking for equivalence betw
the maximum problem and the saddle value problem? The mathematical context of t
work can provide an answer to these questions.

Their cooperation had begun two years earlier, in 1948, where they had examined
relation between game theory and the linear programming model that had just been d
oped by George B. Dantzig for the U.S. Air Force. Kuhn was still a student at the time ¢
together with another student, David Gale, they worked out the mathematical foundati
for linear programming [Galet al., 1951]. They formulated the corresponding dual prob
lem, proved the duality theorem, and showed the relation between linear programming
game theory?!

When he was introduced to the linear programming problem, Tucker was at first remin
of Kirchoff’s laws for electrical networks [Albers and Alexanderson, 1985, pp. 342—34:
In the autumn of 1949 just after Kuhn, Gale, and Tucker had presented their work on
ear programming and game theory at the first conference on linear programming, hel
Chicago in June 1949, Tucker went on leave to Stanford. Here he dug deeper into his
association, and discovered the underlying optimization problem of minimizing heat Ic
According to Kuhn, this knowledge led Tucker to the recognition that the Lagrangian m
tiplier method which is normally used to solequality-constrained optimization problems

11 A linear programming problem is a nonlinear programming problem where all the involved functions
linear functions. For a linear programming problem one can formulate another linear programming problen
the same data called tliial program. The duality theorem says that the origipainal, problem has a finite
optimal solution if and only if the dual problem has a finite optimal solution, and the optimum values will be t
same.
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could be adapted to optimization problems subjeéhé&muality constraints [Kuhn, 1976,
pp. 12—-13]. Tucker then wrote to Kuhn and Gale and invited them to continue the wc
and extend their duality result for linear programming to quadratic programming, i.e.,
problems where the involved functions would be quadratic in form [Kuhn, 1976, pp. 12-1
David Gale declined the offer but Kuhn accepted, and he and Tucker developed the the
in correspondence between Stanford and Princkton.

Thus, the original purpose of Kuhn and Tucker’'s work was to extend the duality res
from linear programming to quadratic programming, and the idea was to adapt the class
Lagrangian multiplier method. In the introduction to their paper Kuhn and Tucker explain
how this would work for linear programming. From a linear programming problem

maximizeg(x) = Zci Xi, G €R,
wherexy, ..., X, aren real variables constrained lny + n linear inequalities,
fa(X) =bn — > anx 20, x =0,

withh=1...,m,i=1,...,n, a,, by € R, they formed the corresponding Lagrangian
function,

¢(X? U) = g(X) + Z Un fh(x)’ up € R.

They realized thak® = (x, ..., x%) will maximize g(x) subject to the given constraints
if and only if there exists a vectar® = (u?, ..., u%) € R™ with componentsi® > 0 for

all i, such that X%, u) is a saddle point for the Lagrangian functigfx, u) [Kuhn and
Tucker, 1950, p. 481]. The really interesting feature of this saddle point result for line
programming was, as Kuhn and Tucker phrased it,

The bilinear symmetry op(x, u) in x andu yields the characteristic duality of linear programming.
[Kuhn and Tucker, 1950, p. 481]

Thus a linear programming problem has a solution if and only if the correspondil
Lagrangian function has a saddle point; this saddle point then constitutes a solution
only to the linear programming problem but also to the dual program. Considering now t
Kuhn and Tucker actually were searching for a way to extend the duality theorem for lin
programming to more general casést seems perfectly natural to take the saddle poin
for the Lagrangian function as the starting pdiht.

Until now | have only explained and interpreted the content, the structure, and the unc
lying mathematical ideas of the results in Kuhn and Tucker’s paper. The important quest
raised in the Introduction concerning why their work had such an enormous impact t
it could launch a new research field in applied mathematics can only be understood

12 This correspondence is lost; | know about it from an interview with Kuhn, who also mentioned it in [Kuhi
1976, p. 13].

13 somewhere during the process they shifted the focus from the quadratic case to the general nonlinear

141t is striking then that Kuhn and Tucker did not mention duality for nonlinear programming in the paper. T
first duality result for nonlinear programming was derived by Werner Fenchelin 1951, published in 1953 [Fenc
1953].
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broader perspective that takes into account the relation between the military and sci
during World War Il as well as the postwar organization of science support in the Unit
States. These questions will be dealt with in Section 6.

5. THE ASPECT OF MULTIPLE DISCOVERY

The reason a question of multiple discovery arises in connection with a historical stud)
the Kuhn—Tucker theorem is that the result today in textbooks and in papers on the his
of mathematics is ascribed to all of them—Karush, John, and Kuhn and Tiicker.

One can also see the result ascribed to the Russian mathematician Mikhail Ostrogra
(1801-1862) and the Hungarian mathematician Julius Farkas (1847—-1930). In three pe
Franksen discusses Fourier's extension of the principle of virtual work in mechanics
how it sheds new light on the development of the second law of thermodynamics
mathematical programming [Franksen, 1985a, 1985b, 1985c]. He concludes that the K
Tucker theorem is an independent rediscovery, by Kuhn and Tucker, of a theorem derive
Ostrogradsky in a paper which was read for the French Academy in 1834 and published
years later, in 1838 [Franksen, 1985c, pp. 337—338, 353, 35&8fopa gives an account
of the development of optimization theory in a paper of 1980. He had searched for the
appearence of the Kuhn—Tucker conditions in the literature and he found it in Ostrograd
and Farkas [Frkopa, 1980, p. 528].

Before | return to the question whether Karush'’s, John’s, and Kuhn and Tucker’s w
can be said to count as a multiple discovery | will briefly deal with these older sources wh
discuss questions belonging to the field of analytical mechanics—questions that came
of Fourier’s extension of the principle of virtual work.

5.1. The Kuhn-Tucker Theorem in Analytical Mechanics

John as well as Kuhn and Tucker mentioned explicitly that their work in one way
another was connected with the Lagrangian multiplier method. John wrote directly in
introduction that the purpose of his work was to extend this method to problems w
inequality constraints. Tucker associated the network nature of linear programming v
Kirchoff's laws for electrical networks and got the idea that maybe the Lagrangian multipl
method could be adapted to inequality constraint cases.

Lagrange developed his multiplier method inégHanique analitique” (1788) as a method
for finding an equilibrium for a mechanical system [Lagrange, 1788]. He founded his the
of equilibrium on what is now called the principle of virtual work, which he took as an axion
In modern terms the principle states that in order for an equilibrium to take place the virt
work of the applied forces acting on the system must be equal to zero. This principle \
stated in terms of reversible displacements which means that if a virtual displacknient
allowed then the opposite displacemeidt is also possible without breaking the constraints
on the system. This means that the mechanical system is subject only to constraints the
be formulated as equations [Franksen, 1985a, p. 137].

Inequalities entered the picture in 1798 where Fourier extended the principle of virt
work to irreversible displacements, that is, to mechanical systems subject to inequ:

15 [Bazaraaet al, 1993, p. 149; Peressiwit al, 1988, p. 169]. For an account of the prehistory of linear
and nonlinear programming see [Grattan-Guinness, 1970, 1994]. For an account on the history of nonli
programming see [Kuhn, 1976; Kjeldsen, 1999].
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constraints [Fourier, 1798]. Based on arguments concerning “le moment de la for
[Fourier, 1798, p. 479], he formulated the conditions for equilibrium for such systen
as inequality conditions, as he realized that such systems are in equilibrium if, and only
the virtual work of the applied forces is nonpositive [Fourier, 1798, p. 494]. This inequali
is often called “the Fourier inequality.”

Ostrogradsky derived the conditions for equilibrium for such a system in [Ostrograds
1838]. He denoted the applied forces acting on a system, Iy, R, . . .. He then wrote the
equilibrium condition, that is, the Fourier inequality, in the following way: the total work

Pdp+ Qdgq+ Rdr+---

has to be nonpositive for every feasible displacement. The constraints were thamec
M, ... and because these constraints were given by inequalities Ostrogradsky argued
dL, dM, “... can only change sign in cases where one moves from feasible to infeasi
displacements” [Ostrogradsky, 1838, p. 131].

Ostrogradsky’s maneuver was to change the coordinates by introducing so-called “c
eralized” coordinates; instead of consideridig, dg, dr ... he introduced some other
variationsd¢, dn, dyr, ... which are functions ofip, dqg, dr, ... and in number equal the
number of the original variables. Sind&, d M, . . . are also functions afp, dq, dr, ..., he
took these to be the first of the new generalized coordinates (this means that Ostrograd:
method can be used only when the number of constraints does not exceed the numb
variables). He then reformulated the whole thing with these new coordinates and obtai
the equilibrium condition

AdL + udM +--- + Adé + Bdy+Cd¢ +--- <0

for every feasible displacement [Ostrogradsky, 1838, p. 131]. Using arguments about
impossibility of changing signs faiL, dM, ... and the possibility of sign changing for
dg, dn, dy, .. .. Ostrogradsky concluded that= B = C = - .- = 0. This meant that the
total work, Pdp+ Qdg+ Rdr+ - - -, equalshdL + udM + - - -; i.e.

Pdp+ Qdg+ Rdr+--- = AdL+ udM +---

for all feasible displacements. Sincd, dM, ... cannot change sign, the equilibrium

condition can only take place, he concluded, if the multipliers, . . . have signs opposite

to those of the corresponding constraimts, d M, ... [Ostrogradsky, 1838, p. 132].
Ostrogradsky then ended up by concluding that:

[...] les conditions de Bquilibre d’'un systime quelconcque seront expees

1MO par I'équation
0= Pdp+ Qdg+ Rdr+---+adL+udM+---
qui doit avoir lieu pour tous lesaplacemens imaginables,

2% parlacondition que les quarei, ., . . . aientrespectivement lesamies signes que les diféntielles
dL,dM, ... pour les &placemens possibles. [Ostrogradsky, 1838, p. 132-133]
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Today, in terms of potential theory, B = —%, Q=-% R=-% .. onecan
“translate” the question of finding an equilibrium into a pro?)lem about minimizing the p
tential energy. So the conclusion of Franksen ard®&pa that Ostrogradsky here formulated
as well as argued for what we call the Kuhn—Tucker theorem in nonlinear programming
only be understood with this interpretation and “translation” of Ostrogradsky’s work. M
opinion is that in ascribing the Kuhn—Tucker theorem to Ostrogradsky too much has b
read into the sources. In the next section | will provide further reasons for this conclusi

The mathematical foundations for the extension of Lagrange’s multiplier method
equilibrium for mechanical systems subject to irreversible displacements was treatec
Farkas. The main mathematical result that came out of this is Farkas’s lemma about li
inequality systems [Farkas, 1901]. Farkas developed it in some earlier papers [Farkas, ]
1897, 1899] whose main focus was

[...]zu erweisen, dass mit einer passenden Modifikation die Methode der Multiplikatoren von Lagrange
auch auf das Fourier'sche Princip bertragen werden kann. [Farkas, 1895, p. 266]

There is a remarkable resemblance to the goal stated in John’s introduction, but here
context of analytical mechanics.

Farkas knew the work of Ostrogradsky, and he made a remark about the limitatior
the method used by Ostrogradsky to situations were the number of constraints does
exeed the number of variables [Farkas, 1895]. Farkas wanted to find a method that cou
used in any problem no matter what relationship between the numbers of constraints
of variables [Farkas, 1895, p. 266]. He was very much concerned with the mathemat
foundations of the method and had a clear insight that homogeneous linear inequal
could provide a satisfactory form; so he began his 1895 paper with such a theory:

I. enttelt eine algebraische Einleitundpér die homogenen linearen Ungleichheiten als mathematische
Grundlage der weiteren Betrachtungen. [Farkas, 1895, p. 266]

This “algebraische Einleitung” consists of a proof of what we now call “Farkas’s lemme
With the help of it Farkas was able to reach the same conclusion as Ostrogradsky but this
for the general problem where there was no restriction on the relation between the num
of variables and of constraints on the system. Again, if a potevitetists, Farkas’s results
can be translated and interpreted as the Kuhn—Tucker conditions, but the conclusion d
for Ostrogradsky also holds here.

The work of Ostrogradsky and Farkas had no direct influence on the developmen
nonlinear programming. It is true that Farkas’s lemma functions was an important too
both the work of Karush and that of Kuhn and Tucker, but they used a version of Fark:
lemma that was completely removed from analytical mechanics and equilibrium conditic
Indeed the title of Farkas’s 1901 paper, “Theorie der einfachen Ungleichungen,” shows
here he was concerned solely with the pure theory of inequalities [Farkas, 1901].

5.2. Theories of Multiple Discoveries

The mathematical community does not ascribe the Kuhn—Tucker theorem to Ostrogra
and Farkas, butit does consider the work of Karush and John as papers belonging to nonl
programming, and both names now appear in textbooks. The Kuhn—Tucker theorem is
often renamed the Karush—Kuhn-Tucker theorem and there is also a Fritz John thec
[Bazaraeet al.,, 1993]. Also, my analysis of Karush'’s, John’s, and Kuhn and Tucker’s wol
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seems to indicate that we may actually have a multiple discovery. What | find particula
interesting is the fact that three occurrences of a result which the scientific commur
later viewed as the same, developed within a time span of only 11 years, were rece
so differently. In order to examine and understand this phenomenon | turned to theorie
multiple discoveries.

A central figure in the literature on multiple discoveries in science is Robert K. Merto
His main criterion for talking about a multiple discovery is independent discovery of tf
same scientific result, and his theory is that they are not something special in sciel
on the contrary, it is the discoveries that on the surface appear to be single that des
special attention. Merton’s hypothesis states that a thorough investigation will show t
these singletons will turn out to be if not multiple then at least potentially so. According
him, “all scientific discoveries are in principle multiples” [Merton, 1973, p. 356]. He ha
10 differentarguments for this hypothesis. First of all he points to the huge class of singlet
which later turn out to be rediscoveries of results found in earlier work—unpublished
published in “obscure” places. Then he has six arguments that all are concerned with
problem of “being anticipated.” He describes situations where the scientist for some rea
suddenly realizes that someone else already has developed the result he or she is wo
on. If the scientist then lets go of the result, the discovery is an example of a single:
which in reality was a potential multiple discovery. If the scientist goes ahead and publis|
anyway there will typically be a footnote saying that this or that person arrived at tf
conclusion in this or that source. The last three of Merton’s arguments deal with the w
scientists behave. In Merton’s view the behavior reveals that they themselves believe
all scientific discoveries are potentially multiple. Here he refers to all the different thing
that scientists do in order to secure that they will not be anticipated by another scient
they carefully date their notes, they “leak” information about their ideas and circulg
incomplete versions of their work [Merton, 1973, p. 358-361]. This behavior, Mertc
points out, is based on a wish to ensure priority, which is very important in the scienti
world:

the culture of science puts a premium not only on originality but on chronological firsts in discovery,
this awareness of multiples understandably activates a rush to ensure priority. [Merton, 1973, p. 361]

Evaluated according to Merton’s theory, the Kuhn—Tucker theorem is a triple discove
Some of the circumstances Merton points out can be found in the work of Kuhn and Tucl
Tucker presented their work at a meeting before they had the theory thoroughly worl
out; Kuhn told me that he felt that the Berkeley Symposium on Mathematical Statisti
and Probability was an odd place to present their work but explained it by arguing tha
provided an opportunity to get the result published fast [Kuhn, 1998]. Another of Mertor
points also holds for Kuhn and Tucker. They do not say that Fritz John had worked on
same problem, but they give a reference to his paper; in an interview Kuhn told me that
reference to John was made in the proofreading stage when someone told them abot
work [Kuhn, 1998].

Merton’s hypothesis has not survived undisputed. It has been criticized by Don Patinl
who points out especially two issues which he finds have not received proper attention: f
what is it actually that has been discovered; second, to what degree does the discovery
part of the central message of the scientist? [Patinkin, 1983, p. 306]. Patinkin claims t
a lot of so-called multiple discoveries will turn out to be singletons if they are subject
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an analysis that takes these two issues seriously. Patinkin’s own “central message” is t
scientist cannot be considered as having made a discovery unless this discovery form:
of the central message of the scientist. The question now is of course how to identify |
message. Patinkin sets up the following criteria:

[...] the central message of a scientific work is announced by its presentation early in the work (and
frequently inits title) and by repetition, either verbatim or modified in accordance with the circumstances.
[Patinkin, 1983, p. 314]

Patinkin’s reason for the importance of the central message is first the scientific rew
system. In order for this system to be “fair” Patinkin finds that it is important that

[...]Jitsrewards must go to the true discoverers: to those who brought about a cognitive change. [Patinkin,
1983, p. 316]

Second, in Patinkin’s view the function of a scientific discoverer is to

stimulate a new research program on the part of colleagues in his field of inquiry, for only in that way
can the full scientific potential of the discovery be efficiently exploited. [Patinkin, 1983, p. 316]

Using Patinkin’s criteria for multiplicity the picture becomes a little more subtle. Usin
his method for uncovering the central message of the scientist and taking John’s introduc
at face value, it must be said that the Kuhn—Tucker theorem is indeed part of the cer
message in all three papers. The titles of both Karush's and John’s paper indicate tha
subject is optimization constrained by inequality conditions. The title of Kuhn and Tucke
paper is simply “Nonlinear Programming”; but at that time linear programming was wi
known in the circles to which Kuhn and Tucker belonged, so in 1950 this word could r
refer to anything but finite-dimensional optimization subject to inequality constraints.
using only this criterion we must once again conclude that the Kuhn—Tucker theorem
triple discovery.

This, however, is not very satisfactory, and if one is also considering Patinkin’s reas
for putting such a high empasis on the central message, namely that the purpose of scie
discoveries is to stimulate further research in the field, it becomes clear that only Kuhn
Tucker can be said to be the true discoverer of the Kuhn—Tucker theorem in nonlin
programming. Neither Karush’s nor John’s work stimulated any further research. T
work had no influence on the development of any discipline.

This however does not shed light on why the three different versions of the result w
so differently received in the scientific community. | think that Patinkin’s second essen
point—what is it exactly that has been discovered—analyzed with respect to the diffel
contexts the three papers originated in is a more fruitful approach to understanding
phenomenon.

6. THE SIGNIFICANCE OF THE CONTEXT

In the following | shall distinguish between a mathematical and a sociological conte
| shall make a further division of the mathematical context into what | call the conte
of “pure mathematical content,” which refers to analysis of mathematical results with
taking into account the context of discovery or the mathematical environment in whi
they are presented, and the context of mathematical subdisciplines such as the thec
convexity or the calculus of variations.
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Today mathematicians conceive of Karush’s and Kuhn and Tucker’s result as the sz
one—as the Kuhn—Tucker theorem—and of John’s result as the Kuhn—Tucker theol
without the constraint qualification. The reason for this is an analysis of the results
relation to “pure mathematical content” based on the theoretical knowledge of today. In s|
an analysis mathematicians disregard the differences and focus solely on the similar
between the three results. They look at the theorems independent of the context wi
which they were developed.

An analysis which instead focuses on tiferencesn the three formulations of the
theorem and takes the context of the subdisciplines into account can provide an explan:
for the different influences on the mathematical development and the different recept
in the mathematical community at the time of the three occurences of the result. As \
argued in Section 2 and 3, the reason the works of Karush and John were “overlook
was not that their result did not form part of the central message of their work but ratt
because they were not central in relation to the internal mathematical—and maybe
sociological—context in which they appeared.

In order to understand the fame and recognition that almost immediately followed f
work of Kuhn and Tucker one must also understand its origin in applied mathematics ¢
the importance of the postwar organization of science support in the United States, bot
which were consequences of World War 1.

6.1. The Social Context of Kuhn and Tucker’'s Work

Introduction. Before World War 1l applied mathematics had a very bad reputatio
among professional mathematicians in the United States. From the beginning of the Z
century this country had withessed a growing community of professional mathematicia
The kind of research that was pursued and the mathematical interests were mainly in v
traditionally is called pure mathematics. Only a very few of the mathematicians workil
in academia were interested in applied mathematics. In the academic environment t|
was a hierarchy among mathematicians and generally, mathematicians working in apy
areas were not ranked very high on the scale. The state of affair before World War 1l car
sumarized by the words of Professor Prager, who gave the following describtion in 197

[...] their number [professional mathematicians interested in the applications] was extremely small.
Moreover, with a few notable exceptions, they were not held in high esteem by their colleagues in pure
mathematics, because of a widespread belief that you turned to applied mathematics if you found the
going too hard in pure mathematics. [Prager, 1972, p. 1]

Some of this changed as a consequence of the Second Worftf Daring this period

a huge number of American scientists took part in the war effort. Some of them we
hired directly by the armed forces, but most of them were organized through Office
Scientific Research and Development (OSRD) which was established in May 1941 ur
the leadership of Vannevar Bush and financed by Congdfést is was not until 1943 when

the Applied Mathematics Panel (AMP) was founded as a subsection under OSRD that
mathematicians gotinvolved in great numbers. The mathematicians organized through A
worked on war related issues bounded by contracts. Thus, the AMP provided the media

16 See, e.g., [Dalmedico, 1996].
17 see, e.g., [Zachary, 1997].
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link between the military and the mathematicians, who stayed in the universities and
industries. This activity during the war served to stimulate the involvement of professio
mathematicians in solving applied problems, some of which were subsequently made
subject of theoretical matematical research and development, and in some cases—as
nonlinear programming—became a new discipline in mathematics.

The Air Force programming problem.The work on what became linear programming
began during the war. The main person was the mathematician George B. Dantzig who
hiredin 1941 by the Air Force to work on the so-called “programming planning methods”-
tool in the Air Force for handling huge logistic planning. In a paper presented in Decem
1948 and published in 1951, Dantzig and Marshall K. Wood, who also worked for t
Planning Research Division at the Air Force, gave the following definition:

Programming, or program planning, may be defined as the construction of a schedule of actions by
means of which an economy, organization, or other complex of activities may move from one defined
state to another, or from a defined state toward some specifically defined objective. [Dantzig and Wood,
1951, p. 15]

In this definition there is a possibility of moving towards a defined objective. This was r
the case during the war. Here the focus was to make sure that the plan for activities
consistent:

The levels of various activities such as training, maintenance, supply, and combat had to be adjusted in
such a manner as not to exceed the availability of various equipment items. Indeed, activities should be
so carefully phased that the necessary amounts of these various equipment items were available whe
they were supposed to be available, so that the activity could take place. [Dantzig, 1951, p. 18]

Wood and Murray A. Geisler described the procedure behind the Air Force wartir
program scheduling in [Geisler and Wood, 1951, p. 189]. They emphasized that “the m
difficulty with this procedure was thatittook too long. Even with the most careful schedulir
it took about seven months to complete the process.” [Geisler and Wood, 1951, p8 191

Postwar organization of science supporfThe end of the war also meant the end of
OSRD. Bush’s organization was an emergency organization and it had been clear right f
the beginning that OSRD would disappear with the war. There was a common concern
the scientists would just go back to their university duties after the war. There also we
strong belief that America had to be strong scientifically in order to be strong militarily.
lot of people were concerned about the further financing of science after the war, milit
related science as well as basic scietfce.

In his annual report to the President in 1945 the Secretary of the Navy, James V. Forre
expressed the concern of the Navy on the further relationship between science and the
itary in peacetime. He stressed the need for an independent agency established by la
devoted to long-term, basic military research, securing its own funds from the Congress
responsive to, but not dominated by, the Army and the Navy. On the request of Presi
Roosevelt, Vannevar Bush prepared a plan for the organization of postwar research

18 For further readings on the origin of linear programming see the memoirs by Dantzig [Dantzig, 1963, 1¢
1982, 1988, 1991] and [Dorfman, 1984]. For historical accounts on the development of linear programmin
the USSR see, e.g., [Brentjes; Brentjes, 1976b; Charnes and Cooper, 1961; Koopmans, 1961; Isbell and M:
1961; Leifman; 1990; Kantorovich, 1939].

19 see [Rees, 1977a; Schweber, 1988; Dupree, 1986].



HMAT 27 THE KUHN-TUCKER THEOREM 353

education. In his report “The Endless Frontier” Bush—Ilike Forrestal—called for a go
ernmental supply of money for independent research in the universities and industries
contrast to Forrestal, who lobbied for basiditary research, Bush wanted the government
to supply basic research without necessary regards to the military. Bush’s main point
that

basic research leads to new knowledge. It provides scientific capital. It creates the fund from which
the practical applications of knowledge must be drawrtoday it is truer than ever that basic research

is the pacemaker of technological progressA nation which depends upon others for its new basic
scientific knowledge will be slow in its industrial progress and weak in its competition in world trade,
regardless of its mechanical skill. (Citation from [Schweber, 1988, p. 14])

This gives an impression of the spirit just after the war. There was a willingness
offer money on basic science and a philosophy that basic science was a necessity
automatically would lead to something that eventually could be applied for practical a
therefore military purposes.

Bush wanted a National Science Foundation to support research in the universities
the industries but it took some time to establish such a foundation. In the mean time
Navy established the Office of Naval Research (ONR) the purpose of which was to conti
the research practice established by the OSRD.

Towards linear programming. The different military sections also hired scientists on
their own. George B. Dantzig was hired—again—by the Air Force where he—from 19.
until 1952—functioned as mathematical advisor for the U.S.A.F. headquarters. The ass
ment he was hired to work on was to

[...] develop some kind of analog devise which would accept, as input, equations of all types, basic
data, and ground rules, and use these to generate as output a consistent Air Force plan. [Dantzig, 1988
p.12]

Still, no objective was formulated: the programs were built on personal experience ¢
a lot of ad hoc ground rules were issued by those in authority [Dantzig, 1968, p. 4]. Tl
changed with the emergence of the computer, which had a profound influence on the w
of Dantzig and his group. The idea of an “analog device” was rejected. Instead the work t
a turn towards the development of what is now called linear programming. In the spri
of 1947 the Air Force established project SCOOP (Scientific Computation of Optimu
Programs) where Dantzig, Wood, and Geisler were the main figures. The purpose of
project was twofold: to build a mathematical model for the programming problem and t
development and construction of computérs.

Wood and Geisler described the problems and the prospects in [1951, p. 194]:

These complexities [of the Air Force programming problem] have been spelled out to indicate a whole
range of planning problems which, because of the present difficulties of computing alternative programs,
receive little or no consideratio®0o much time and effort is now devoted to working out the operational
program that no attention can be given to the question whether there may not be some better program
thatis equally compatible with the given conditiohi$s perhaps too much to suppose that this difference
between programs is as much as the difference between victory and defeat, but it is certainly a signifcant
difference with respect to the tax dollar and the division of the total national product between military
and civilian uses.

20 For historical accounts on ONR see, e.g., [Old, 1961; Sapolsky, 1979; Schweber, 1988].
21 see [Brentjes, p. 177].
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Consideration of the practical advantages to be gained by comparative programming, and particularly
by the selection of “best” programs, leads to a requirement for a technique for handling all program
elements simultaneously and for introducing the maximization process directly into the computation of
programs. Such a technique is now in prospect. [Geisler and Wood, 1951, p. 194]

The possibilities of high-speed computers made it realistic to implement the notion
an objective in the programming problem, because there now seemed to be a possibili
computing alternative programs in order to choose the “best” one. Thus, there was a pros
of an effective decision tool useable not only for war-time activities but also “in plannir
for organizations or economic systems, where relationships are largely technologial
decision making is centralized.” [Geisler and Wood, 1951, p. 189].

The model for the programming planning problem that the group ended up with w
reflected in the following mathematical problem:

[...] the minimization of a linear form subject to linear equations and inequalities. [Dantzig, 1982,
p. 44]

This is now known as a linear programming problem. Originally Dantzig called it “Prc
gramming in a Linear Structure.”

The involvement of John von Neumanimantzig was advised to make contact with the
economist T. C. Koopmans, who had been working with a transportation model during
war, and with John von Neumann. Koopmans did a lot to introduce linear programmil
especially to economists but it was the involvement of John von Neumann that was cru
for the further development.

John von Neumann was involved with almost everything related to mathematics that w
on during the war. He was a member of many military scientific advisory boards and
also held a lot of military consulting jol¥4.In October 1947 Dantzig and von Neumann
met in Princeton. This was the first time von Neumann heard about linear programn
and—not surprisingly—he recognized the relationship to two-persons zero-sum gar
In 1944 he had published the famous book “Theory of Games and Economic Behav
together with the Austrian-American economist Oskar Morgenstern [von Neumann ¢
Morgenstern, 1944]. Both models—the linear programming model and the game modk
can be formulated as questions about linear inequalities. According to Dantzig, at
meeting von Neumann showed that a zero-sum two-person game can be reduced to a
programming problem and conjectured the reverse relationship [Dantzig, 1982, 1988].
the interest of von Neumann was caught can be seen from a note “Discussion of a maxir
problem” that he wrote in November 1947 [von Neumann, 1947]. In this note he work
on a linear maximum problem subject to linear inequality constraints:

max a-x

X

s.t x>0
XA<a

wherea, x aren-dimensional vectorsA is ann by m matrix, ande is anm-dimensional
vector. He almost—almost because he used an incorrect version of Farkas’s lemma—pr

22 3ee [Ulam, 1958, p. 42].
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that if there exists a finite maximum with a maximum paxgt satisfying the constraints
Xo > 0,%A < «,thenthere exists an-dimensional vectof with Af > aanda-x > & -«
[von Neumann, 1947, p. 91]. Thiswill actually minimize the linear forng - « and then
von Neumann’s result in this note can be—and has been—interpreted as the duality thec
for linear programming. But von Neumann did not state that conclusion, and he did 1
formulate the dual linear programming problem or the duality theorem in this note. He
introduce what are now known as dual variables even though he did not call them tl
Whether von Neumann was fully aware of the relationship between the priraaland
the dual<—uvariables cannot be decided from the note.

Anyway, this note is the first sign of developing linear programming into a theory. \c
Neumann had an enormous influence in speeding up this process. First, he was a me
of the committe&® set up by the National Academy of Sciences to act as advisers to t
Mathematics Branch of ONR on questions connected with projects in pure mathemat
second, he had considerable influence in promoting game theory as a major research
at the RAND in the immediate postwar peri¢fd.

The mathematics division of ONRKuhn and Tucker’s work, which was a direct con-
sequence of these circumstances, took place under contract with the mathematics div
of ONR. Mina Rees who had served as technical assistant to Warren Weaver—the le
of AMP—during the war, was asked by ONR just after the war to set up a mathemat
program. Even though from the outset she had expressed her doubt about the succe
such a program (she did not think that mathematicians would let the military finance th
peacetime research), she took the position as head of the mathematics branch becau:
found it extremely important for the further development of mathematics in the Unite
States to be actively involved in the ONR program [Rees, 1977b; Albers and Alexanders
1985]. As such she was a very influential person in the mathematics community in the pi
war period. The program she prepared for the ONR was one she had discussed with |
of the leading mathematicians and mathematics departments in the country. She was
much concerned that the ONR mathematics program should reflect what mathematic
thought would help mathematics. The question was of course whether the Navy wo
support basic research and especially research in pure mathematics without any relev
for the Navy. Rees was very concerned with this, for she wanted the program to streng
the mathematical research in the USA and not to fragment the field [Rees, 1977a].

In 1948 the mathematics department of the ONR had been functioning for a little o
a year and Rees had a note in the Bulletin of the American Mathematical Society wh
she announced “the philosophy which has determined the mathematical research pro
which ONR is sponsoring.” She stated that:

The Office of Naval Research is committed primarily to the support of fundamental research in the
sciences, as contrasted with development, or with applications of known scientific resultsis

natural, however, that the most obvious types of mathematical research which would seem to warrant
Navy support would be research in applied directions. [Rees, 1948, p. 1]

The state of affairs when it came to money was th&t df the annual expenditure went to
research in applied mathematics, mathematical statistics, numerical analysis, and comp

23 Consisting of John von Neumann, G. C. Evans, H. M. Morse, H. M. Stone, H. Whiney, and O. Zariski.
24 See [Mirowski, 1991; Leonard, 1992, 1995].
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devices. But the number of contracts with theoretical objectives stood for more tBarfi 1
the entire group [Rees, 1948]. She emphasized that basic research in mathematics p
was deemed important and was receiving funding from ONR.

The support of ONR. The prospects of the programming planning methods that the A
Force group was developing were—as explained above—considerable. Rees remem
it like this in 1977:

when, in the late 1940's the staff of our office became aware that some mathematical results obtained
by George Dantzig,..could be used by the Navy to reduce the burdensome costs of their logistics
operations, the possibilities were pointed out to the Deputy Chief of Naval Operations for Logistics.
His enthusiasm for the possibilities presented by these results was so great that he called together al
those senior officers who had anything to do with logistics, as well as their civilian counterparts, to hear
what we always referred to as a “presentation.” The outcome of this meeting was the establishment in
the Office of Naval Research of a separate Logistics Branch with a separate research program. This ha:
proved to be a most successful activity of the Mathematics Division of ONR, both in its usefulness to
the Navy, and in its impact on industry and the universities. [Rees, 1977a, p. 111]

In the spring of 1948 Dantzig went to Princeton on behalf of ONR to meet with John v
Neumann in order to discuss the possibilities for a university-based project on linear |
gramming and its relationship to game theory financed by ONR [Albers and Alexanders
1985, pp. 342-343]. During this visit Dantzig was introduced to Tucker, who gave hin
ride to the train station. During this short car trip Dantzig gave Tucker a brief introducti
to the linear programming problem. Tucker made a remark about a possible connectic
Kirchoff-Maxwell's law of electric networks; because of it Tucker was contacted by tt
ONR a few days later and asked if he would set up such a mathematics project [Albers
Alexanderson, 1985, pp. 342—-343].

Until this moment Tucker had been absorbed in research in topology. He agreet
become principal investigator, and this completely changed his research direction.
same happened for Kuhn, who at the time was finishing a Ph.D. project on group theon
the summer of 1948 Kuhn wentto Tucker to ask for summer employment because he ne
the additional income. Tucker hired him, together with David Gale, who was also a gradt
student, to work with him on the ONR project [Kuhn, 1998]. The three of them present
the results of their work on the project at the first conference on linear programming, wh
took place in Chicago in June 1949 [Galkal., 1951]. The most prominent among their
results was the duality theorem for linear programming. After that Kuhn and Tucker bece
commited to the project; the duality theorem caught their attention as interesting fror
mathematical point of view. From then on, proceeding according to the “inner” rules
research in pure mathematics, they tried to extend this result to more general cases, v
resulted in the “nonlinear programming” paper and the Kuhn—Tucker theorem. This wi
was also sponsored by the ONR, which continued to support Tucker’s project until 19
when the National Science Foundation took over.

Another social factor also related to the military was the development of operatic
reserach (OR) during the war and the establishment of OR as a scientific discipline a
universities after the waP. ONR also played a major role in this process. Fred Rigby, th
head of the logistics program of ONR, later described its significance:

25 For historical accounts on OR in the United States see, e.g., [Rau; Fortun and Schweber, 1993].
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We did indeed influence the introduction of operations research into business schools. The subdiscipline
called management science is our invention, in quite a real sense. That s, we and our contract researcher
recognized its potentials, planned its early growth, and, as it turned out, set the dominant pattern in which

it has developed. (Quoted in [Rees, 1977a, p. 111]).

After the war several people—especially Philip Morse from M.I.T.—who had been i
volved in the operations research groups during the war, with the help of ONR and
National Research Council, introduced operations research into the universities. Alre
from 1948 Morse had two courses running at M.L.T. [Morse, 1956]. From 1952 on Jot
Hopkins had a program in operations research and from 1954 on it was possible to ta
Ph.D. in the field [Roy, 1956].

Morse was a key figure in the shaping of operations research as an academic disciplir
the United States. From the beginning he emphazised the importance of the newly devels
linear programming for operations research. His main point was that basic researcl
mathematical programming was vital for operations research [Morse, 1955, p. 383].

From the journals and from the proceedings of the international conferences in operat
research which began in 1957 it can be seen that mathematical programming was quite
represented. Butall the time there was a continuously running debate about what OR actt
was and not everybody held the opinions of Morse. In 1956 W. N. Jessop warned age
“the placing of emphasis on mathematical methods and on highly abstract treatment
general situations” in the journal of the American Operations Research Society [Jes:s
1956]. When it came to linear programming Jessop also held the opinion that there 1
too much focus on developing “a subject so delightful to the pure mathematician that m:
papers appear to have had their origin in sheer exuberance unsullied by any thought
factual situation” [Jessop, 1956, p. 51].

Linear programming was immediately incorporated into the toolbox of OR, which mee
that OR also stood ready to provide a “home” for nonlinear programming as soon as it \
developed. In this way it can be seen that the Office of Naval Research had an enorn
influence in creating a scientific community of people doing linear programming, and
this community it was almost inevitable that the nonlinear programming paper of Kuhn a
Tucker would give rise to the new research field of nonlinear programming.

During the first two decades of its existence mathematical programming established it
as a discipline with conferences, monographs, and textbooks. The question of ajournal
society for mathematical programming was discussed on and off and in 1971 the first jour
“Mathematical Programming,” was founded, and two years later came the “Mathemati
Programming Society.”

7. CLOSING REMARKS

The Kuhn—Tucker theorem shows that a mathematical theorem in itself, its “pure ma
ematical content,” does not always decide whether it will stimulate further research
not. Social contexts can also play an essential role. Even though the three results tc
are viewed as the same theorem, they were in practice very different. The significa
of a result and its potential for stimulating further research in its area are determined
the mathematical—and sometimes also the social—context within which it was dev
oped. The Kuhn—Tucker theorem was an important result in the mathematical discipl
in which Kuhn and Tucker were working, a discipline which also received huge financ
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support. This was not the case in the subdiscplines where the papers of Karush and
appeared.

The fact that Karush, John and Kuhn and Tucker all receive credit for the theor
in the scientific community of nonlinear programming is due to the influence of “thi
parties”—a notion introduced by Susan Cozzens. In her book “Social Control and Multi
Discoveries in Science: The Opiate Receptor Case,” she focuses on how discoveries
become established as multiples [Cozzens, 1989]. She points out that it is often du
an “after-the-fact process” where the case is settled by influence from third parties, t
is members of the scientific community who are not directly involved in the discove
Through later references and acknowledgement the third parties establish the discov
as multiple. The quotations | showed in the section on Karush show that this also \
the case for the establishment of the Kuhn—Tucker theorem as a multiple discovery,
though Kuhn himself, that is, one of the involved scientists, here played a major role in
recognition of predecessors.
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