GOMORY-HU TREES : THEORY AND APPLICATIONS

Koutris Paraschos and Vasileios Syrgkanis

OUTLINE

- Basic definitions
- Why needed?
- Gomory-Hu Construction Algorithm
- A Complete GH Tree Construction Example
- Proof Of Correctness
- Minimum K-Cut Problem
- Implementation

BASIC DEFINITIONS

CUT DEFINITION

- Let G = (V, E) denote a graph and c(e) a weight function on its edges.
- A **cut** is a partition of the vertices V into two sets S and T.
- Any edge (u,v) ∈ E with u ∈ S and v ∈ T is said to be crossing the cut and is a cut edge.
- The capacity of a cut is the sum of weights of the edges crossing the cut.

U-V CUT

• A *u*-*v cut* is a split of the nodes into two disjoint sets U and V, such that u ∈ U, v ∈ V.

• MINIMUM WEIGHT U-V CUT

Given a graph G = (V, E) and two terminals $u, v \in V$, find the minimum u-v cut.

FLOW DEFINITION

- Given a directed graph G(V,E) in which every edge $(u,v) \in E$ has a **non-negative**, **real-valued** capacity c(u,v).
- We distinguish two vertices: a **source s** and a **sink t**.
- A flow network is a real function f: $V \times V \rightarrow \mathbf{R}$ with the following properties for all nodes u and v:
- 1. **Capacity constraints**: $f(u,v) \le c(u,v)$
- 2. Skew symmetry: f(u,v) = -f(v,u)
- 3. Flow conservation: ,unless u=s or u=t

MAX-FLOW

- The maximum flow problem is to find a feasible flow through a single-source, single-sink flow network that is maximum.
- Max-Flow can be computed in polynomial time (e.g. Edmonds-Karp algorithm).

• MAX-FLOW MIN-CUT THEOREM

- The maximum amount of flow is equal to the capacity of the minimal cut.
- Thus, the min s-t cut is also computed in polynomial time.

IMPORTANT PUBLICATIONS ON MAX-FLOW MIN-CUT PROBLEMS

- Ford and Fulkerson, *Maximal Flow through a network* (1956).
 - Introduction of basic concepts of flow and cut. Max flow min-cut theorem.
- Mayeda, Terminal and Branch Capacity Matrices of a Communication Net (1960).

Multiterminal problem.

• Chien, Synthesis of a Communication Net (1960).

Synthesis of multiterminal flow network.

WHY NEEDED ?

BASIC PROPERTIES OF CUTS

- We are interested in finding maximal flow/minimal cut values between all pairs of nodes in a graph G = (V,E), where n = |V|. Any pair of nodes can serve as the source and the sink.
- How many min-cut computations are needed?
- You would think
- But in fact, n-1 computations are enough!! why? (PROOF #1)

FLOW EQUIVALENT GRAPHS

- Two graphs G = (V, E) and G' = (V, E') are said to be flow equivalent iff for each pair of vertices u,v ∈ V, the minimum u-v cut (maximal u-v flow) in G is the same as in G'.
- It turns out that there always exist a G' which is a tree (Gomory Hu Tree)!!
- Notice that the n-1 edges of the tree correspond to the n-1 distinct min-cuts in G.

Gomory-Hu (GH) Tree

R.E. GOMORY AND T.C. HU, MULTI-TERMINAL NETWORK FLOWS (1961).

- Given a graph G = (V,E) with a capacity function
 c, a cut-tree T = (V,F) obtained from G is a tree
 having the same set of vertices V and an edge set
 F with a capacity function c' verifying the
 following properties:
 - 1. Equivalent flow tree: for any pair of vertices s and t, $f_{s,t}$ in G is equal to $f_{s,t}$ in T, i.e., the smallest capacity of the edges on the path between s and t in T.
 - 2. Cut property: a minimum cut $C_{s,t}$ in T is also a minimum cut in G.

GOMORY-HU CONSTRUCTION ALGORITHM

OUTLINE

- The algorithm maintains a partition of V, $(S_1, S_2, ..., S_t)$ and a spanning tree T on the vertex set { $S_1, S_2, ..., S_t$ }.
- Let w' be the function assigning weights to the edges of T.
- On each iteration, T satisfies the following invariant :

For any edge (S_i, S_j) in T, there are vertices a and b in S_i and S_j respectively such that w' $(S_i, S_j) = f(a,b)$ and the cut defined by edge (S_i, S_j) is a minimum a-b cut in G.

INITIAL STEP

- The algorithm starts with a trivial partition V.
- Proceeds in n-1 iterations.

ITERATION (1)

- Select a set S_i in the partition such that $|S_i| \ge 2$.
- Let u and v be two distinct vertices of S_i .

ITERATION (2)

- Root the current tree at S_i and consider the subtrees rooted at the children of S_i .
- Collapse each of the subtrees into a single vertex to obtain graph G' (G' also contains all vertices of S_i).

ITERATION (3)

- Find a minimum u-v cut in G'.
- Let (A, B) the partition of the vertices of G' defining the cut, with $u \in A, v \in B$.

ITERATION (4)

- Compute $S_i^u = S_i \cap A$ and $S_i^v = S_i \cap B$.
- Refine the current partition by replacing S_i with the two sets $S_i{}^u$ and $S_i{}^v.$
- The new tree has an edge $(S_i{}^{\rm u},\,S_i{}^{\rm v})$ with weight equal to the weight of the cut.

ITERATION (5)

- How are the other nodes aranged at the tree after the splitting?
- Consider a subtree T' incident at S_i in T. Assume that the collapsed node corresponding to T' lies in A.
- We connect T' by an edge with S_i^{u} .
- The weight of the edge is the same as the weight of the edge connecting T' to $S_{\rm i}.$
- All the other edges retain their weights.

TERMINATION

- The algorithm terminates when the partition consists of singleton vertices.
- Thus, after exactly n-1 iterations!

A COMPLETE GH TREE CONSTRUCTION EXAMPLE

INITIALIZATION

ITERATION 1

FINAL GH TREE

PROOF OF CORRECTNESS

BASIC LEMMAS (1)

- Let f(u,v) denote the weight of a minimum u-v
 cut in G.
- For $u, v, w \in V$, the following inequality holds:

$$f(u,v) \ge min \{ f(u,w), f(w,v) \}$$

- Generalization:
 - For u, v, $w_1, w_2, ..., w_r \in V$:

$$f(u,v) \ge min \{ f(u, w_1), f(w_1, w_2), ..., f(w_r, v) \}$$
PROOF #2

BASIC LEMMAS (2)

- Let (A, A') be a minimum s-t cut, $s \in A$.
- Choose any two vertices $x, y \in A$.
- Obtain graph G' by **collapsing** all vertices of A' to a single vertex $v_{A'}$.
- The weight of an edge (a, $v_{A'}$) is defined to be the sum of the weights of (a,b), where $b \in A'$.
- A minimum x-y cut in G' defines a minimum x-y cut in G !!
- Thus, condensing A' to a single node does not affect the value of a minimum cut from x to y.

PROOF #3

Proof

• INVARIANT (PROOF #4):

- For any edge $(S_i,\,S_j$) in T, there are vertices a and b in S_i and S_j respectively such that
- 1. w' $(S_i, S_j) = f(a,b)$
- 2. The cut defined by edge (S_i, S_j) is a minimum a-b cut in G.
- The first property satisfies the first GH condition (equivalent flow tree).
- The second property satisfies the second GH condition (cut property).

MINIMUM K-CUT PROBLEM

DEFINITION

- Let G = (V, E) an undirected weighted graph.
- A set of edges of E whose removal leaves k connected components is called a k-cut.
- The **MINIMUM k-CUT** problem asks for a minimum weight k-cut.

Algorithm

• Step 1

Compute a GH tree for graph G.

• Step 2

Output the union of the lightest k-1 cuts of the n-1 cuts associated with edges of T in G. Let C be this union.

ANALYSIS

• Lemma :

Let S be the union of cuts in G associated with l edges of T. Then, the removal of S from G leaves a graph with at least l+1 components.

- Hence, the union of k-1 cuts picked from T will form a k-cut in G.
- We will prove that the previous algorithm obtains an approximation ratio of 2 2/k.
 PROOF #5

OTHER INTERESTING PROPERTIES OF GH TREES (1)

- If the GH tree for a graph G contains all n-1 distinct weights, then G can have only one minimum weight cut!
- We can improve the performance of the GH algorithm by picking vertices for each set which after the min-cut computation will partition the set in equally sized subsets.

OTHER INTERESTING PROPERTIES OF GH TREES (2)

- Let G be a network having an edge e = [i, j] with parametric capacity $c(e) = \lambda$.
- Let GH^{α} be a cut-tree obtained when $c(e) = \alpha$.
- Let $P_{i,j}^{\alpha}$ be the path in GH^{α} between i and j.
- For $\lambda > \alpha$ it is sufficient to compute $|P_{i,j} \alpha| 1$ minimum cuts in G^{λ} in order to obtain a cut-tree GH^{λ} .

IMPLEMENTATION IN C++(1)

- To solve the undirected max-flow problem, we used linear programming (GNU LP API).
- Faster algorithms could be used!
- Based on the above max-flow algorithm, we implemented an algorithm for the min s-t cut problem (max-flow and reachability in residue graph).

IMPLEMENTATION IN C++ (2)

- We implemented the GH algorithm using the above functions, as well as some basic STL classes (e.g. set and map).
- A quite fast method for computing the collapsed graph was used.
- The final GH tree is represented as a collection of weighted edges

IMPLEMENTATION IN C++ (3)

- The current implementation is only consolebased.
- A graphical version is on the road. Damn it, you linux library dependencies!!

THANK YOU FOR YOUR ATTENTION !