Gomory-Hu Trees : Theory and Applications

Koutris Paraschos and Vasileios Syrgkanis

OUTLINE

- Basic definitions
- Why needed?
- Gomory-Hu Construction Algorithm
- A Complete GH Tree Construction Example
- Proof Of Correctness
- Minimum K-Cut Problem
- Implementation

BASIC DEFINITIONS

Cut Definition

- Let $G=(V, E)$ denote a graph and $c(e)$ a weight function on its edges.
- A cut is a partition of the vertices V into two sets S and T .
- Any edge $(u, v) \in E$ with $u \in S$ and $v \in T$ is said to be crossing the cut and is a cut edge.
- The capacity of a cut is the sum of weights of the edges crossing the cut.

u-v CuT

- A $u-v$ cut is a split of the nodes into two disjoint sets U and V, such that $u \in U, v \in V$.
- MINIMUM WEIGHT U-V CUT

Given a graph $G=(V, E)$ and two terminals $u, v \in V$, find the minimum $u-v$ cut.

Flow Definition

- Given a directed graph $G(V, E)$ in which every edge (u,v) $\in \mathrm{E}$ has a non-negative, real-valued capacity $\mathrm{c}(\mathrm{u}, \mathrm{v})$.
- We distinguish two vertices: a source \mathbf{s} and a sink t .
- A flow network is a real function $\mathrm{f}: \mathrm{V} \times \mathrm{V} \rightarrow \mathbf{R}$ with the following properties for all nodes u and v :

1. Capacity constraints: $f(u, v) \leq c(u, v)$
2. Skew symmetry: $f(u, v)=-f(v, u)$
3. Flow conservation: ,unless $u=s$ or $u=t$

Max-Flow

- The maximum flow problem is to find a feasible flow through a single-source, single-sink flow network that is maximum.
- Max-Flow can be computed in polynomial time (e.g. Edmonds-Karp algorithm).

- MAX-FLOW MIN-CUT THEOREM

- The maximum amount of flow is equal to the capacity of the minimal cut.
- Thus, the min s-t cut is also computed in polynomial time.

Important Publications On Max-Flow Min-Cut Problems

- Ford and Fulkerson, Maximal Flow through a network (1956).

Introduction of basic concepts of flow and cut. Max flow min-cut theorem.

- Mayeda, Terminal and Branch Capacity Matrices of a Communication Net (1960). Multiterminal problem.
- Chien, Synthesis of a Communication Net (1960). Synthesis of multiterminal flow network.

Why Needed?

Basic Properties Of Cuts

- We are interested in finding maximal flow/minimal cut values between all pairs of nodes in a graph G = (V, E), where $\mathrm{n}=|\mathrm{V}|$. Any pair of nodes can serve as the source and the sink.
- How many min-cut computations are needed?
- You would think
- But in fact, $\mathrm{n}-1$ computations are enough!! why? (PROOF \#1)

Flow Equivalent Graphs

- Two graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ are said to be flow equivalent iff for each pair of vertices u, v $\in \mathrm{V}$, the minimum $u-v$ cut (maximal $u-v$ flow) in G is the same as in G^{\prime}.
- It turns out that there always exist a G' which is a tree (Gomory Hu Tree)!!
- Notice that the $\mathrm{n}-1$ edges of the tree correspond to the $\mathrm{n}-1$ distinct min-cuts in G .

Gomory-Hu (GH) Tree

R.E. Gomory and T.C. Hu, Multi-terminal network flows (1961).

- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with a capacity function c, a cut-tree $T=(V, F)$ obtained from G is a tree having the same set of vertices V and an edge set F with a capacity function c ' verifying the following properties:

1. Equivalent flow tree: for any pair of vertices s and $t, f_{s, t}$ in G is equal to $f_{s, t}$ in T, i.e., the smallest capacity of the edges on the path between s and t in T.
2. Cut property: a minimum cut $\mathrm{C}_{\mathrm{s}, \mathrm{t}}$ in T is also a minimum cut in G.

Gomory-Hu Construction Algorithm

OUTLINE

- The algorithm maintains a partition of $\mathrm{V},\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right.$, \ldots, S_{t}) and a spanning tree T on the vertex set $\{$ $\left.\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{t}}\right\}$.
- Let w' be the function assigning weights to the edges of T .
- On each iteration, T satisfies the following invariant:

For any edge ($\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}$) in T, there are vertices a and b in S_{i} and S_{j} respectively such that $\mathrm{w}^{\prime}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right)=\mathrm{f}(\mathrm{a}, \mathrm{b})$ and the cut defined by edge $\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right)$ is a minimum $\mathrm{a}-\mathrm{b}$ cut in G.

INITIAL STEP

- The algorithm starts with a trivial partition V.
- Proceeds in n-1 iterations.

Initial Partition $=$ (V=\{a,b,c,d,e,f\})

ITERATION (1)

- Select a set S_{i} in the partition such that $\left|\mathrm{S}_{\mathrm{i}}\right| \geq 2$.
- Let u and v be two distinct vertices of S_{i}.

Select d and e

ITERATION (2)

- Root the current tree at S_{i} and consider the subtrees rooted at the children of S_{i}.
- Collapse each of the subtrees into a single vertex to obtain graph G' (G' also contains all vertices of S_{i}).

Collapse all other subtrees to supernodes

ITERATION (3)

- Find a minimum u-v cut in G'.
- Let (A, B) the partition of the vertices of G' defining the cut, with $u \in A, v \in B$.

Compute min d-e cut

ITERATION (4)

- Compute $\mathrm{S}_{\mathrm{i}}{ }^{\mathrm{u}}=\mathrm{S}_{\mathrm{i}} \cap \mathrm{A}$ and $\mathrm{S}_{\mathrm{i}}^{\mathrm{v}}=\mathrm{S}_{\mathrm{i}} \cap \mathrm{B}$.
- Refine the current partition by replacing S_{i} with the two sets $\mathrm{S}_{\mathrm{i}}{ }^{\mathrm{u}}$ and $\mathrm{S}_{\mathrm{i}}{ }^{\mathrm{V}}$.
- The new tree has an edge ($\mathrm{S}_{\mathrm{i}}{ }^{u}, \mathrm{~S}_{\mathrm{i}}{ }^{v}$) with weight equal to the weight of the cut.

ITERATION (5)

- How are the other nodes aranged at the tree after the splitting?
- Consider a subtree T' incident at S_{i} in T. Assume that the collapsed node corresponding to T lies in A.
- We connect T' by an edge with $\mathrm{S}_{\mathrm{i}}{ }^{\mathrm{u}}$.
- The weight of the edge is the same as the weight of the edge connecting T to S_{i}.
- All the other edges retain their weights.

ITERATION (6)

Attach the previous subtree to the cut that it belongs

Termination

- The algorithm terminates when the partition consists of singleton vertices.
- Thus, after exactly n-1 iterations!

A Complete GH Tree Construction Example

InITIALIZATION

ITERATION 1

ITERATION 1

ITERATION 2

Select a,b

Partition $_{1}=(\{a, b\},\{c, d, e, f\})$

ITERATION 2

ITERATION 3

Select c and f

Iteration 3

ITERATION 4

Select d and e

Partition $_{3}=(\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}, \mathrm{d}, \mathrm{e}\},\{\mathrm{f}\})$

ITERATION 4

ITERATION 5

ITERATION 5

Final GH Tree

Final Gomory-Hu Tree

Proof Of Correctiness

BASIC LEMMAS (1)

- Let $f(u, v)$ denote the weight of a minimum u-v cut in G.
- For $u, v, w \in V$, the following inequality holds:

$$
f(u, v) \geq \min \{f(u, w), f(w, v)\}
$$

- Generalization:

For $u, v, w_{1}, w_{2}, . ., w_{r} \in V$:

$$
\begin{gathered}
f(u, v) \geq \min \left\{f\left(u, w_{1}\right), f\left(w_{1}, w_{2}\right), \ldots, f\left(w_{r}, v\right)\right\} \\
\text { PROOF \#2 }
\end{gathered}
$$

BASIC LEMMAS (2)

- Let (A, A') be a minimum s-t cut, $\mathrm{s} \in \mathrm{A}$.
- Choose any two vertices $x, y \in A$.
- Obtain graph G' by collapsing all vertices of A' to a single vertex v_{A}.
- The weight of an edge ($\mathrm{a}, \mathrm{v}_{\mathrm{A}^{\prime}}$) is defined to be the sum of the weights of (a, b), where $b \in A$ '.
- A minimum x-y cut in G' defines a minimum x-y cut in G !!
- Thus, condensing A' to a single node does not affect the value of a minimum cut from x to y.

PROOF \#3

Proof

- INVARIANT (PROOF \#4):
- For any edge ($\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}$) in T , there are vertices a and b in S_{i} and S_{j} respectively such that

1. $\mathrm{w}^{\prime}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right)=\mathrm{f}(\mathrm{a}, \mathrm{b})$
2. The cut defined by edge $\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right)$ is a minimum a-b cut in G.

- The first property satisfies the first GH condition (equivalent flow tree).
- The second property satisfies the second GH condition (cut property).

Minimum K-Cut Problem

Definition

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ an undirected weighted graph.
- A set of edges of E whose removal leaves k connected components is called a k-cut.
- The MINIMUM k-CUT problem asks for a minimum weight k-cut.

ALGORITHM

- Step 1

Compute a GH tree for graph G.

- Step 2

Output the union of the lightest k-1 cuts of the n1 cuts associated with edges of T in G . Let C be this union.

ANALYSIS

- Lemma :

Let S be the union of cuts in G associated with l edges of T. Then, the removal of S from G leaves a graph with at least $l+1$ components.

- Hence, the union of $\mathrm{k}-1$ cuts picked from T will form a k-cut in G.
- We will prove that the previous algorithm obtains an approximation ratio of $2-2 / \mathrm{k}$.

PROOF \#5

Other Interesting Properties of GH Trees (1)

- If the GH tree for a graph G contains all $\mathrm{n}-1$ distinct weights, then G can have only one minimum weight cut!
- We can improve the performance of the GH algorithm by picking vertices for each set which after the min-cut computation will partition the set in equally sized subsets.

Other Interesting Properties of GH Trees (2)

- Let G be a network having an edge $\mathrm{e}=[\mathrm{i}, \mathrm{j}]$ with parametric capacity $c(e)=\lambda$.
- Let GH^{a} be a cut-tree obtained when $\mathrm{c}(\mathrm{e})=\alpha$.
- Let $\mathrm{P}_{\mathrm{i}, \mathrm{j}}{ }^{a}$ be the path in GH^{a} between i and j .
- For $\lambda>\alpha$ it is sufficient to compute $\left|P_{i, j}{ }^{a}\right|-1$ minimum cuts in G^{λ} in order to obtain a cut-tree $\mathrm{GH}^{\mathrm{\lambda}}$ 。

IMPLEMENTATION

IMPLEMENTATION IN C++ (1)

- To solve the undirected max-flow problem, we used linear programming (GNU LP API).
- Faster algorithms could be used!
- Based on the above max-flow algorithm, we implemented an algorithm for the min s-t cut problem (max-flow and reachability in residue graph).

IMPLEMENTATION IN C++ (2)

- We implemented the GH algorithm using the above functions, as well as some basic STL classes (e.g. set and map).
- A quite fast method for computing the collapsed graph was used.
- The final GH tree is represented as a collection of weighted edges

Implementation in C++ (3)

- The current implementation is only consolebased.
- A graphical version is on the road. Damn it, you linux library dependencies!!

