LECTURE 3:
GEOMETRY OF LP

Terminologies

Background knowledge
Graphic method
Fundamental theorem of LP
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Terminologies

- Baseline model: Min cf'x

(LP) s.t.Ax=b

. . =)
- Feasible domain r =

P={xeR"|Ax =b,x > 0}
- Feasible solution

X is a feasible solution if x € P.

- Consistency

When P # ¢, LP 1s consistent.




Terminologies

- Bounded feasible domain:
P is bounded if

3 M > 0 such that ||x|| < M, ¥V x € P.
In this case, we say “LP has bounded feasible domain.”

- Bounded LP:
LP i1s bounded if

3 M € R such that ¢'x > M Vx e P.

- Question: LP has a bounded feasible domain.

J 77
LP is bounded.



Terminologies

- Optimal solution:
X* Is an optimal solution if

Min CT

% . T % __
x*e€e Pand ¢t x = ep

X

- Optimal solution set

P* ={x* | x" is optimal}

- We say
x* solves LP. if x* € P~.




Background knowledge

- Observation 1: each equality constraint in the standard
form LP is a “hyperplane” in the solution space.

- What does the equation  x; - 2x, = 30 represent
In the 2-d Euclidean space?

Definition:

For a vector a € R™,a # 0, and a scalar € R.
define

H = {x € R"a’x = 8} hyperplane




-
Hyperplane

- Geometric representation

HU={xin R" Iarxzﬂ}
HL=HU-H={xinR" IaTx>ﬂ}

H, = {x inkR 1 &x% ﬁ} o //
closed half space -
H,=H,-H={xinR" | d'x<p} H is the bounding hyperplane of H; and H}L .

open half space a is the normal of H.



Properties of hyperplanes

Property 1. The normal vector a is orthogonal to all
vectors in the hyperplane H.

- Proof:
Vy,ze H,
al(y—2z) = aly—alz
= fH— =1

H,? H,?



Properties of hyperplane

- Property 2: The normal vector is directed toward the
upper half space.

- Proof:

Foranyz € Hwe H!,

=90

w-z) = alw-a'z z

< [-p=0. =

aT(

H ?



Properties of feasible solution set

- Definition:
A polyhedral set or polyhedron is a set formed by the
Intersection of a finite number of a closed half spaces.
If it Is nonempty and bounded, it is a polytope.

- Property 3:
The feasible domain of a standard form LP

P={xcR"Ax=bx >0}

IS a polyhedral set.



Properties of optimal solutions

- Property 4. -c
[f P#( and 34 € R such that

PCH,={xeR"-c'x<f),

Min T~ /
then _p¢'X 2 =

Moreover, if x* € P H then x* € P*.



Example
- Give the following LP
Minimize —Tr] — 21?2
g 1 Ty + =z <40
2x Tro < 60
r1 -+ r2 = ( 4 \
ks - 5 1110 40
- Covertto standard form — <=| ;| 27|, , o 1] " | &
o \ 0
Minimize -z - 219
s. 1. I -I- I9 -|- €3 240
2:171 + @9 + & =60

I, 9, 3, gy 20



I
Graphic Solution

(0, 60)
g 1
fe=(3)
A {xinK'|x,+2x, =80
(0, 40) NN ‘
o020 .
Since . pcTx > —80
also —xy — 2o = —80 at (4%)
. . s H 1 =0 . : .
(0, 0) (30, 0) (40,0) ence e is an optimal solution.
H ;2 prmm—

L



I
Graphic Method

Step 1: Draw the feasible domain P.
(If P =0, STOP! No solution.)

Step 2: Use —c as normal vector at each vertex to see
if P € Hy, := {x € R"| — ¢’x < 3} for some
7 < R.
1. If the answer is “YES”, we find an optimal

solution.

2. If all answers are “NO”, the problem is

unbounded below.



Pros and Cons

- Advantages:

- Geometrically simple.
- Disadvantages

- Algebraically difficult

How many vertices are there?
How to identify each vertex?



I
Any better way?

- Simplex method

A way to generate and manage the vertices of the
feasible solution set, which is a polyhedral set.



Background knowledge

- Definition: Let x!.x2,....x» €R", A\.)\.....\, <R, and

x =30 Axt = x4+ dox? 4+ ApxP



Sets generated by different combinations
of two points

~

Affine combination Convex combination

Conical combination



Affine set, convex set, and cone

- Definition: Let S be a subset of R™.

If the affine combination of any two points of S falls in S,
then S Is an affine set.

If the convex combination of any two points of S falls in S,
then S Is a convex set.

If x5 forallxeS and ) >o0,then Sis a cone.



Example

- Which one I1s convex? Which one iIs affine?

\\ H= {xe¢ R"IaTx = (3}

) H, = {xeR"a’x <3}

{x e R"|Ax = b}
P= {xeR"Ax=Db,x >0}

0 & &
e
Q Q a
-



Example

- What'’s the geometric meaning of the feasible domain ?
P={xeR"Ax=Db,x > 0}
1. P is a polyhedral set.

2. P is a convex set.
3. P is the intersection of m hyperplanes and the cone of

the first orthant.
4. “Ax = b and x = 0" means that the rhs vector b falls in the
cone generated by the columns of constraint matrix A.

A= (A|As]---|AL) [z )

(l]_j 1,2

(l:.zj AX:(A1|A2"AR) | :Z;_lzl IjAj c R™

Ay

a mj
ey



Example - continue

5. Actually, the set
Ctually, the S€ Ac:{yeRm‘y:AX,XERnaxzo}

IS a convex cone generated by the columns of matrix A.



Interior and boundary points

- Glven a set, what's the difference betweel
an interior point and a boundary point?

- Definition: Given a set s - R , a point
x € § IS an interior point of S, If ,
3¢ > 0such that the ball B={y e R"| |x—y|| < e} Cc 5.

Otherwise, x is a boundary point of S.
- We denote that
int(S) = { x is an interior point of S }

bdry(S) = { x is an boundary point of S }



Boundary points of convex sets

- What’s special about boundary points of a convex set?
- Separation Theorem:

S C R"™ is convex, then Vx € bdry(S),3 a

hyperplane H such that x € H and either
SCH;orSC Hy.




Question

- Can you now see that if an LP (in two or three
dimensions) has a finite optimal solution, then one vertex
of P is optimal ?

- Hint: Consider the supporting hyperplane

H={xecR" -cl'x=p)}

- How about higher dimensional case?
- This leads to the Fundamental Theorem of LP.



Are all boundary points the same?

- Some sits on the shoulders of others, and some don't.

- Definition: x Is an extreme point of a convex set S |if
X cannot be expressed as a convex combination of
other points in S.



Geometrical meaning of extreme points

- Definition:
Let P be a convex polyhedron and H be a

supporting hyperplane of P, then ' = P H
defines a face of P.

When dim(F) =0, it is a vertex
dim(F') =1, it is an edge
dim(F') = dim(P) — 1, a facet

- Theorem:

Let P be a convex polyhedron, x € P is a vertex

if and only if x is an extreme point of P.




Representation of extreme points

- For the feasible domain P of an LP, its vertices are the
extreme points. How can we take this advantage to
generate and manage all vertices?

X is an extreme point of P, then X is of course a

feasible solution of

Ax=Db
x>0

But what’s special of being an extreme point?

(in terms of feasible solution).



-
Learning from example

Minimize Iy — 2172
subject to 11 4 19 + 13 =40 o)
201 4 19 +zy =60 Y

21,29,23,T4 2 0.

v (5



What's special?

- Vertices [0 (30 ) (20 [0

v = , U7 = L, U7 = JU™ =

\ 60/ \ 0 \ 0 \ 20

- Edge Interior
[ 20 ) (15 )
0
i ” «—— one zero I; ol 12 — no zero ;
\ 20 \ 15

n=4, m=2, n—m=2



Observations

- AX = b has n variables in m linear equations.

- When n > m, we only need to consider m variables in m
equations for solving a system of linear equations.

- An extreme point of P is obtained by setting n - m
variables to be zero and solving the remaining m
variables in m equations.

- the columns of A corresponding to the non-zero (positive)
variables better be linear independent!



Example

- System of equations
( T1+ T2 + x3 = 40
{ 21 4+ 29 +xz4 =060
. T1,TL2,I3,T4 > 0.

- Linear independence of the columns



Finding extreme points

- Theorem:
Apoint x € P ={x<R"|Ax=bx > 0}is an extreme point
of P if and only if the columns of A corresponding to the
positive components of x are linearly independent.
- Proof:
Without loss of generality, we may assume that the first p
components of x are positive and rest are zero, i.e.,

_ )
X
o= ( ) where X = >0
0
"

also denote the first p columns of A by A, then
Ax = Ax =b.




Proof - continue

Suppose that the columns of A are not linearly
independent, then 3 W # 0 such htat Aw = 0.
Notice that for € is small enough

X+ew >0and A(X+eWw)=AX=Db

Hence

and x = %yl - %yz, 7.e. X can not be a vertex
(extreme point) of P.
Thus, X is an exterme point = columns of A are

linearly independent.



Proof - continue

Suppose that X is not an extreme point, then

Now
X= Ay 4 (1= \)y* for some { g
VL el v 4yand0< A<, X-y = 0 70
Since y' > 0,y* > 0and 0 < A< 1 \

the lat 11 - p components of y' must be zero, ie. ~ and A(x-y') = Ax- Ay' =b-b=0
= columns of A are mearly dependent,

LY

= Ths , cohuruns of A ave lnearly independent

0 = XI5 an extreme point,



Managing extreme points algebraically

- Let A be an m by n matrix withm <n , we say A has full
rank (full row rank) if A has m linearly independent
columns.

- In this, we can rearrange

N = B N
Xg | < basic variables ( | )
X= S T 1
Xy | < non-basic variables basis N

- Definition: (basic solution and basic feasible solution)

If we set Xy =0 and solve xg for Ax=Bxgp=b  Furthermore, if xp > 0, then X is a

then X is a basic solution (bs). basic feasible solution (bfs).




00000
Example of basic and basic feasible

solutions
Minimize 1 - 2

subject to 7 + 19+ 13
21y + 19

T1,29,3, 24 2 0.

=40
i = 60

vi= (4?) ) 4




Further results

- Observation: When A does not have full rank, then either
(1) Ax = b has no solution and hence p _ ¢, or
(2) some constraints are redundant.

For the second case, after removing the redundant constraints, new A has full rank.

- Corollary: A point x in P is an extreme point of P if and
only if x Is a bfs corresponding to some basis B.

- Corollary: The polyhedron P has only a finite number of
extreme pOintS- Proof: # of ways to choose m linearly

independent columns from n columns

m!(n—m)!”’




Are there many vertices for LP?

- Yes!

C(n,m) = =2

m!(n—m)!

- This is not a small number, when n and m become
large. Please try it out by taking n = 100 and m = 50.



What do extreme points bring us?

- Observation:
When P ={xe R"|/Ax=b,x > 0}
IS a nonempty polytope, then :
any point in P can be represented '
as a convex combination of the ps
extreme points of P.

Question: Can it be more general?



Extremal direction for unboundedness

- When P is unbounded, we need a direction leading to
Infinity.

- Definition:

- Avector d (#0)<R"Is an
extremal direction of P, if
{xeR"x=x"4+Xd, A>0}CP
for all x° € P..

- Observations: (1) P is unbounded = P has an extremal

direction.

(2) d (# 0) is an extremal direction of P <
Ad=0andd >0



Resolution theorem

- Theorem:  Let V = {v' € R"|i € I} be a set of all exterme
points of P, I is a finite index set, then ¥ x € P,
we have

X = Z vt +d
el
where
Y =1, ,20Viel
el
and either d = 0 or
d is an extermal direction of P.

- We can also write

x=z/\z~vi+s d, forsomes >0o0.
el



Implications of resolution theorem

- Corollary:
If P is bounded (a polytope) , then any x in P can be
expressed as a convex combination of its extreme points.

- Corollary:
If P Is nonempty, then it has at leas one extreme point.

Note that x=)_ X'+ sd implies that the objective value

: el : : .
of X Is determined by tne objective values of extreme points
and extremal direction.



Fundamental theorem of LP

- Theorem: For a standard form LP, If its feasible domain P
IS nonempty, then the optimal objective value of

z =cTx over P IS elther unbounded below, or it Is attained
at (at least) an extreme point of P.

- Proof:
By the resolution theorem, there are two cases:
Case 1.

P has an extremal direction d such that
c¢’'d < 0. Hence P is unbounded and

z — —o< along d.



Proof - continue

- Case 2. P does not have any extremal direction d
such that ¢Td < 0, then ¥V x € P, either
= ¥ qei \;v* with dierdi=1, Ai >0, 0r
X =Y,y Aiv* +d with cfd > 0.

- In both cases, .7

[ ier Aiv'](+cTd)

D el Ai(cTv?)

min;er {c '} (3, M)
min;c7{cT v}

A

A%

CT pmin.

Hence the minimum of z is attained at one extreme point!



