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Maximum Matching and a Polyhedron With O,1-Vertices'

Jack Edmonds

(December 1, 1964)

A matching in a graph G is a subset of edges in G such that no two meet the same node in G.
T'he convex polyhedron Cis characterized, where the extreme points of C correspond to the matchings

in G.

Where each edge of G carries a real numerical weight, an efficient algorithm is described for

finding a matching in G with maximum weight-sum.

Section 1

An algorithm is described for optimally pairing a
finite set of objects. That is, given a real numerical
weight for each unordered pair of objects in a set
Y, to select a family of mutually disjoint pairs the sum
of whose weights is maximum. The well-known
optimum assignment problem [5]? is the special case
where Y partitions into two sets 4 and B such that
pairs contained in 4 and pairs contained in B are
not positively weighted and therefore are superfluous
to the problem. For this “bipartite” case the algo-
rithm becomes a variant of the Hungarian method [3].

The problem is treated in terms of a graph G whose
nodes (vertices) are the objects Y and whose edges
are pairs of objects, including at least all of the posi-
tively weighted pairs. A matching in G is a subset
of its edges such that no two meet the same node in
in G. The problem is to find a maximum-weight-sum
matching in G. The special case where all the posi-
tive weights are one is treated in detail in [2] and
[6]. The description here of the more general algo-
rithm uses the terminology set up in [2]. Paper [2]
(especially sec. 5) helps also to motivate this paper,
though it is not really a prerequisate till section 7
here.

The increase in difficulty of the maximum weight-
sum matching algorithm relative to the size of the graph
is not exponential, and only moderately algebraic.
The algorithm does not involve any ‘blind-alley
programming’” —which, essentially, amounts to testing
a great many combinations.

The emphasis in this paper is on relating the
matching problem to the theory of continuous linear
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inequalities. In particular, we prove a theorem
analogous to one of G. Birkhoff [1] and J. von Neuman
[5] which says that the extreme points of the convex
set of doubly stochastic matrices (order n by n) are
the permutation matrices (order n by n). That
theorem and the Hungarian method are based on
Konig’s theorem about matchings in bipartite graphs.
Our work is related to results on graphs due to Tutte
[4].

There is an extensive related literature besides these
references. One may refer to surveys on graphs,
linear programming, network flow, and combinatorial
analysis (other than enumeration). However, paper
[2] and this one are together self-contained. For
the algorithm without the polyhedral geometry, sec-
tions 4 and 7, here and in [2], suffice.

The technique, described in sections 2 and 3, of
using linear programming duality to derive a descrip-
tion of the convex polyhedra associated with a class of
combinatorial structures appears applicable, where-
ever the combinatorics is adequately understood,
independently of the particular nature of the associated
algorithm. The results of this paper suggest that,
in applying linear programming to a combinatorial
problem, the number of relevant inequalities is not
important but their combinatorial structure is.

In another paper, I will extend the present work
to “Optimum degree-constrained subgraphs™. See
the end of this paper for two main results of that
extension.

Section 2

Let the real variables xeE correspond to the edges
e of a finite graph G. Let C be the convex polyhedron
of vectors < x> formed by the intersection of all the
half-spaces given by the following inequalities (1),
(2), and (3).
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(1) x=0, for all xeE.

(2) for every node v of G, 2x <1 (summed over
xeV), where V is the set of variables corresponding
to the edges of G which meet node v.

(3) for every subset S of 2r+1 nodes in G where r
is a strictly positive integer, 2x <r (summed over
x€R), where R is the set of variables corresponding
to the edges of G with both ends in S.

Condition (I) is that the variables x take on only
values zero and one. Assuming condition (I), each
vector < x > represents and may be regarded as equiv-
alent to the subset of edges in G which correspond
to the one-valued components of <x >.

Assuming (I), condition (2) is the definition of a
matching in G. Assuming (I), condition (3) says that
for any set S of 2r+1 nodes (r, a positive integer) the
set < x > of edges contains no more than r edges with
both endpoints in S; clearly this is implied by the set
of edges being a matching in G. Therefore, assuming
(I), condition (2) implies condition (3) for vectors
< x>. However, replacing (I) by the weaker condi-
tion (1), it is easy to show that, where G contains a
circuit with an odd number of edges, condition (2)
does not imply condition (3) for vectors <x >.

The essence of our following theorem (P) is that for
purposes of linear-extremizing over the family of
matchings in G, discreteness condition (I) and con-
dition (2) can be replaced by the inequalities (1), (2),
and (3).

Let P be the set of vectors < x> such that each
component is a zero or one and such that the one-
components correspond to the edges of a matching in
G. That is let P be the vectors <x > which satisfy
(I) and (2). We call < x> eP a matching vector of G.

THEOREM (P): P is the set of vertices (extreme points)
of polyhedron C.

Unless the graph G has an edge joining each pair
of nodes, inequalities (1), (2), and (3) generally include
more than the minimal set of bounding planes for C,
but that is not so important. What is important in
order to provide a good characterization for maximum
weight-sum matchings in a graph G is a good charac-
terization of some family of inequalities which to-
gether bound precisely the convex hull of P.

It is obvious that the points P are vertices of C —that
is they belong to C and none lie half way between two
other points of C. In fact, they are vertices of the
larger polyhedron, C’, given by inequalities (1) and
(2), and they are not sliced away by (3). However,
in C' there are other vertices. What remains to be
proved is that vertices P are the only vertices in C.

Every linear form in the variables of the space of a
convex polyhedron is maximized over points in the
polyhedron, if a maximum exists, by a vertex (and
perhaps other points as well). Conversely, every
vertex is the unique maximum over the polyhedron of
some linear form.

In particular, where each edge e of G carries a real
weight ¢, theorem (P) implies that the maximum weight-
sum for matching in G equals the maximum of

(4) W =2cx (summed over xeE),

where real vector <x> satisfies (1), (2), and (3).
And conversely, theorem (P) follows by proving that
for all real <c¢>, W is maximized by a vector < x>
whose components are zeroes and ones.

Section 3

Where [a;j] is any real matrix and < §; > and < ¢; >
are real vectors, let < x; > represent the vectors sat-
isfying the inequalities x; = 0 and X a;x; < b; (summed
over i) and let < y; > represent the vectors satisfying
the inequalities y; = 0 and 2Zaijyj = ci (summed over j).
The duality theorem of linear programming says that
max 3cix;=min 2b;y; when these extrema exist for
vectors <x;> and <y;>.

To get the linear program which is dual to max-
imizing W of (4) in the polyhedron C, we introduce a
new variable corresponding to each inequality of (2)
and (3). That is for each node v in G we introduce a
variable, call it y, and for each set S of 2r+1 nodes
in G (r, a positive integer) we introduce a variable, call
it z.

Let <y, z> denote the vector of all variables y and z.
The duality theorem says that the maximum of W is
equal to the minimum of

(5) U=2Xy++ Xrz (first sum taken over all nodes v and
second sum taken over all sets S), where vector
<y, z> satisfies the following nonnegativity inequal-
ities (6), and the following inequalities (7), obtained
from the transpose of the matrix of coefficients of
inequalities (2) and (3).

(6) For every node v, y= 0; for every set S, z=0.

(7) For every edge e of G and the nodes v; and v,
which it meets, y;+y.+2z=c (where y; and . are
the variables corresponding to v; and v» and where
the sum is taken over all z for which the corresponding
set S contains v; and v2). The c is the coefficient in
linear form W of the x which corresponds to edge e.
In other words, c is the weight on edge e.

For a fair sized graph G, vector <y, z > has a huge
number of components. However, in general any
vector which is a vertex of a dual polyhedron has no
more nonzero components than the total number of
variables in the primal linear program. In particular,
any vector <y, z> with which we deal will have no
more nonzero components than the number of edges
in G.

As easily shown in general for dual linear programs,
W < U for all admissible vectors < x> and <y, z>.
Therefore to prove that any linear form W is maxi-
mized in C by some matching vector, that is to prove
theorem (P), it is sufficient to display a vector < x >eP
and some vector <y, z> satisfying (6) and (7) such
that W=U. Notice that we are using here only the
easy part of the duality theorem. In fact, by display-
ing the vectors as described we will be proving, for the
class of programs given by C and W, the harder part
of the duality theorem, though that is incidental.

Conversely, theorem (P) and the duality theorem
(including the harder part) imply that a matching M
in G has maximum weight-sum if and only if that
weight-sum equals U for some <y, z> (with a mod-
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erate number of nonzero components) which satisfies
(6) and (7).

For any coefficients <c¢ > for W, that is for any
weights < ¢ > on the edges of G, we shall describe a
matching vector < x>, €P, corresponding to a match-
ing M in G, and a vector <y, z>=<y, z>, such
that (6) and (7) hold and furthermore such that the
following (8), (9), and (10) hold.

(8) ¥y=0 for each node v which is not an endpoint
of an edge in M.

(9) equality holds for each instance of (7) where
eeM.

(10) for each z > 0, the set S contains both endpoints
of r edges in M.

Therefore, summing together on each side the equa-
tions of (8) and (9), we will get an instance of U=W,
where <y, z>=<y, z>pand <x>=<x>,,

Section 4

We turn now to theorem (M) which, for any match-
ing M corresponding to a matching vector <x >,
which maximizes W= cx, will yield a vector < y, z >,
satisfying (6), (7), (8), (9), and (10). From this and
from the discussion in section 3, it follows that the
existence of a vector <y, z >, is a necessary and sufhi-
cient condition for a matching M to have maximum
weight-sum. Theorem (M) itself is also such a
condition in a different form. Theorem (M) displays
the existence of much tighter and more complex struc-
ture than simply the vector < y, z >, tighter and more
complex than really necessary for characterizing
maximum matchings.

Ellis Johnson and Charles Zahn in studying this
theory found that theorem (M) can be bypassed in
obtaining the vector <y, z> and that the maximum
matching algorithm can be executed in terms of
parameters of type y and z rather than the numerical
parameters of theorem (M). One type of parameter
may be arithmetically more convenient than the other,
though the same combinatorial manipulations seem
essential in either case. Theorem (M) seems justified
by the insight it provides and by its natural relation-
ship to the combinatorial manipulations of the algo-
rithm, so it might as well be proved on the way to
proving theorem (P). It is a direct consequence of
the algorithm as described in section 7. More im-
portant, it is part of the description.

THEOREM (M): For gmph G with edge-weights
< c¢>, a matching M is maximum if and only if there
exists a sequence {G;}i=0,. . ., n.

Each G; is a graph together with a matching M;, a
numerical weight w(e’) im each edge e'eG;, and a nu-
merical weight w(v’) for each node v'eG;. Sequence
{G;} has the following properties.

(a) Gy is graph G with edge-weights w(e)=c, with
matching My= M, and with any vertex-weights satis-
fying the general conditions below.

(b) w(v’) =0 for all v'eG; and w(vi) +w(vi) = w(e’) for
all eeG; where v} and v} are the endpoints of e'.

(¢) Fori=0,. . .,n—1, there is in G; a circuit (simple

closed path) B; containing 2a;+ 1 edges, a; of them in
V;.  Circuit B; is called a blossom in (G, M,;).

(d) w(v}) + wwl) =wle) for e'eB;.

(e) If a vertex of B; meets no edge of M;, it will be
one of the vertices, say ¢', with smallest weight, w(qg’),
in B;.

(f) To obtain graph Gi.; from graph G; shrink B;
and all edges with both end-points in B; to a single
node ui*! in Giyy which, in place of the vertices of B;,
is the new endpoint of those edges having with respe e
to G; one endpoint in B;. The matc hing in Gisy is
Miy=M;NGiy.

(g) Weights in Gi.y are the same as corresponding
weights in G; except at u'*' and edges meeting u/*!.

(h) For minimum w(q’) in B;, wiu'*") < w(q).

(i) For each edge e*' meeting u*', let e be the
corresponding edge in G;, meeting v/ of B;. Then

we™ ) =wle’) — w') + wiq').

(j) For G,. ww!)+ wwh)=we") for all e"eM,.
(k) For a vertex v"€G, not meeting an edge in M,,
w(v")=0.

Section 5

Vector <y, z>, is as follows. The node-sets S
for which the corresponding z in <y, z > is positive
are among those, say S;, corresponding to the B; of
theorem (M). The nodes in each S; are the nodes of
G which have been absorbed into the nodes of B; (i.e.,
into ') in the process of going from graph G =G,
to grdph C. Deﬁne

(11) di=w(qg")—w(u'*') for each S;, and d=0 for
every other set b.

(12) z=2d, for all S.

For each y component of <y, z>, corresponding
to node v of G, we set

(13) y=w(v)—2d (summed over d corresponding to
sets S for which veS), where w(v) is the weight as-
signed by theorem (M) to node v in Gy=G.

ProoF: For each edge e=e° with endpoints v, and
vz in G =Gy, let e with endpoints v/ and v] be the cor-
responding edge in G/, where j is such that either j=n
or else e/ has both ends in B;j and thus is absorbed
into w1,

By virtue of (g), in the applications of formula (i)
to e/ and its pre-images, each w(v') term is either w(v,)
or w(ve) or else a certain w(u**') where u**!, the con-
traction of a By, absorbs one but not both of v; and v»
in going from G, to G,. Conversely, each such w(u**!)
is either w(v{) or w(vj) or else a certain w(v) term in one
of the applications of (i) to e/ and its pre-images. Fur-
thermore, w(v,) is a certain w(v') term if and only if
w(v) is a certain w(uk*'). Otherwise, w(vi)=w(v)).
Similarly for w(v:). Thus by virtue of (g), repeated
application of (i) and then repeated substitution of
(11), yields:

(14) w(e’) = wle) + w(v)) + wvh) — w(vi) — w(vs) )+ Sdy,
where k is summed over all the By (or u"“) into which
either v; or ve, but not both, are absorbed in going

from G, to G,,.

127

757-615 O-65-9



By (b) and (14),

(15) w(vy) + w(ve)—2dr=wle)=c, where k is summed
as in (14). Substituting (13) twice and (12) several
times we get (7).

By (d), (j), and (14), equality holds for (15) and thus
for (7) when eeM. Hence (9) is verified.

Substituting (11) for nonzero d in (13), recollecting
terms, and using (g), we have

(16) y=w(v")+ 2[w(®w*) —w(q*)], where k is summed
over all the By into which v is absorbed and where
v* and v" are the images of v in By and G,. Hence,
by (b) and (e), we have y=0. By (h) and (11), z=0.
Thus, (6) is verified.

When a node v meets no edge of M, by (c) and (f)
neither does any image v' meet an edge of M;. There-
fore by (e) and (k) and (16), y =0 in this case. Thus,
(8) is verified.

Condition (10) follows from (c) and (f). Thus, modulo
the “only if” part of theorem (M), conditions (6)
through (10) are verified for some <y, z >, and theo-
rem (P) is proved.

Section 6

Since U= W in general, the “if” part of theorem
(M) is proved by the above translation from {G;} to a
<1y, z>¢for which U=W.

It is much simpler for the matching algorithm, given
< ¢>, to construct some maximum matching with a
{G;} than to construct a {G;} for a particular maximum
matching. Indeed, the simpler construction is all
that is needed to get theorem (P). However, by a
continuity argument we can show the existence of a
{G;} for any maximum matching M and thereby com-
plete the proof of theorem (M).

Add a positive € to the weight ¢ of each edge e in
M; leave all other edge weights the same. With this
new <c >, M is the unique maximum matching and
therefore, by the simpler construction, the algorithm
in section 7, there exists a {G;} for it.

An infinite sequence of sequences {G;}, correspond-
ing to an infinite sequence of €'s which approach zero,
contains only a finite number of different combina-
torial configurations aside from the values of the
weights. The space of all possible weights is bounded
and finite-dimensional. Hence there is a subsequence
of {Gi}’s, combinatorially the same, with a limit which
is a {G;} like we want.

Section 7

The maximum-weight-sum matching algorithm con-
sists of the maximum cardinality algorithm in [2]
(secs. 4 and 7) together with small modifications sug-
gested by theorem (M).

Suppose we have a sequence {G;} (i=0, . . ., m),
with not-necessarily-maximum matchings {M;}, sat-
isfying all the conditions (a) through (j), omitting only
(k). To get a weak sequence of this kind to start with—
take m=0, take the matching to be empty, and take
sufficiently large vertex weights.

We apply the algorithm in [2] to matching M,, in
the subgraph, G,,, of G, which consists of all nodes of

Gn plus all edges e™ for which w(v?) + w(wy) =w(e™).
If G does not satisfy (k) then there is an exposed node
rin G,,, for which w(r) > 0. (Exposed means it meets
no matching edge.) Start growing in G, a planted
tree rooted at r.

If it grows into a flowered tree with blossom B,
then in G, shrink B, to a u”*! to obtain a Gy+1. Where
gm 1s the node in B,, with smallest weight, set w(u™+?)
equal to w(¢™) and adjust the weights of the edges
which meet u”*! according to the formulain (i). Leave
other weights in Gp4; the same as in G,. Thus,
weights in G,,41 will satisfy conditions (b), (g), (h), (i),
and (). Furthermore, G, , is the image in Gu+1 of
G,,, and so we continue in G, , with the tree image.

Eventually, possibly after a number of shrinkings,
we obtain either: (1) an augumenting tree or, (2) a
tree which has an outer vertex v with w(v)=0 or, (3) a
Hungarian tree which has outer vertices all with
positive w.

In case 1, augment. That is, interchange matching
roles of edges in the augmenting path. This yields a
matching with larger weight-sum in the graph, still
call it G, and disposes of one or two vertices violating
(k). In case 2, the path in the tree joining v to r is
really “augmenting’ also, though such paths are not
encountered in [2]. Treat it like the path in case 1
and it serves the same purpose.

The fact that a matching is obtained which has
larger weight-sum is not needed for the validation of
the algorithm. The important fact is the decrease in
the number of nodes r in the final term G, of {G;},
such that ris exposed and w(r) > 0. After an augmen-
tation in case 1 or 2, abandon the tree and start a new
tree at another node r if there is one.

When we get, in case 1 and 2, a matching with larger
weight-sum in Gy, it yields a matching with larger
weight-sum in each graph G; back through G, It
does this by the process of successively selecting a
new matching within each blossom B; which is com-
patible in G; with the matching already chosen with
respect to Gi+i. If ui*!, the blossom B; before “ex-
pansion”, is an exposed node in G;4; then the selection
of matching edges in B; is determined by condition
(e). Sequence {G;} with these new matchings M;
satisfies (a) through (j) and comes closer by at least
one to satisfying (k). There is no advantage in select-
ing the matching in graphs G; other than G, until the
algorithm is otherwise finished or until it is neces-
sitated by condition (h) in case (3).

It is important for the type of step of the algorithm
necessitated by (h) in case 3, described below, that we
be able to “expand” the shrunken blossoms B; in an
order different from the order in which they were
shrunk —thereby obtaining a sequence {G¢} of type
{Gi} (possibly not satisfying (k)) such that the terms
G¢ and G% together with their weights and matchings
are, respectively, identical to the terms Gy and G
of {G;} and such that the blossoms B¢ of {G¢} corre-
spond in a different order to the blossoms B; of {Gi}.
The order of the blossoms B; is not arbitrary but it is
limited only by the relation of one u'*! having been
absorbed into another.
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In particular, for any node v" of G, which is
the image of some B;, let B; be the blossom of {G;}
whose image in G, is v and such that & is maximum.
Node v" can be “expanded” to obtain from G,, with
its weights and matching a certain graph, G, with
weights and a matching and a blossom, B, corre-
sponding to Bji. The graph structure, the weights,
and the matching of G, in the neighborhood of B
are determined by G,, in the neighborhood of v™ and
by G in the neighborhood of By, subject to the con-
ditions (other than (k)) of theorem (M). Elsewhere
G is like Gm. There exists a sequence {G¢} as de-
scribed above such that the next to the last term is
Gui. Without describing it and justifying it here in
any greater detail, the derivation of {G¢} should be
fairly evident from the local nature of the changes in
successive terms of any sequence {G;}.

In implementing the algorithm it may be better to
represent the partial order structure of inclusion for the
blossoms B; of a {Gi} so that no special preference is
given to {G;} or any of the other sequences {G¢}. Here
we describe the algorithm with respect to a particular
{Gi} merely for convenience of exposition.

In case 3, the weights of the vertices in the Hungar-
ian tree are adjusted. Weights of outer vertices are
lowered and weights of inner vertices are raised by a
uniform amount, which is as large as possible without
violating for the sequence {G;} either (b) by making
an outer vertex too small or (h) by making an inner
vertex which is the image of a shrunken blossom too
large. In the adjustment, property w(?)+ w(vl)=
w(e™) is preserved for edges of the tree. Edges of G,
meeting an inner vertex and not an outer vertex will
drop out of G,,.

If (b) limits the adjustment, it may be because some
outer vertex weight becomes zero. Then, possibly
after the operation performed in case 2, we again have
one less node violate (k). Otherwise if (b) limits the
adjustment, it is because for one or more edges e™ in
Gn and not in G, which meet outer vertices, we get
w(?) +wd)=(e™). These edges enter G,,, so the tree
is no longer Hungarian and can be grown some more.

If, in case 3, condition (h) limits the adjustment at
an inner vertex, say v”, of the tree, it is because, where
{G?} is the modification of {G;} cited above, w(v™)
becomes as large as the smallest node-weight in B
of Guir. By substituting {G¢} for {Gi}, and calling it
{Gi}, we may regard v as u™, the image of B, in Gy,
of {Gi}.

Node-weight w(u™) was first set equal to the smallest
node weight w(g™') in B, of Gn_i. However, by
some weight adjustment where u™ was an outer vertex
of a Hungarian tree, w(u™) may have gotten smaller for
a while —before the current adjustment gave w(u™)=
w(g™ ') again.

We now describe what to do when u, the image of
B,._1, is an inner vertex of the current tree and w(u™)=
w(qg”"). The pre-image in G-, of the tree-edges is
not generally one tree in G,-; but two. However, as
described in section 7 of [2], using only edges from
Bu-1, this pre-image can always be completed to a
planted tree, say 7, in G/ where G/ . is the sub-

m=1y m—1

graph of G,_; consisting of edges e” ! for which
wP ) +wwl ) =w(em ). Thus, we abandon G,
replace {G;} (i=0, ..., m) by {G} (=0, .. .,
m—1), and continue the algorithm with respect to T
in G,, ;.

This completes the description of the situations and
operations in the algorithm. After handling a number
of impediments like described in case 3 and like blos-
soms to be shrunk, the tree will grow into one which
allows a decrease in the number of nodes violating
(k). Finally when (k) is no longer violated in the final
term of {G;}, we have a {G;} satisfying all the condi-
tions of theorem (M). It is easy to verify that all the
conditions (a) through (j) are preserved by the steps
of the algorithm.

The progress of the algorithm is measured first
according to the decrease in the number of node
weights which violate condition (k). The algorithm
consists, in the large, of “growing” trees, one after
the other. Each tree is abandoned when and only
when it yields a decrease of one or two in that number.
Thus, at most N trees are grown where N is the number
of nodes in G.

The progress in the growth of an individual tree can
be measured according to the number of distinct edges
which have entered the tree, including those which
have disappeared into blossoms shrunken while grow-
ing the tree. The latter never reappear in the same
tree because they are absorbed into outer vertices of
the tree, whereas only inner vertices of the tree are
expanded in the course of its growth. The total num-
ber edges which ever enter a tree is less than N, and
each edge enters at most once. It can be shown by a
survey of the arithmetic involved and the combinatorics
involved as described in [2] that an ample upper bound
on the order of work between additions of edges to a
tree and in the transition from each tree is N*. This
is assuming that the work involved in the individual
arithmetic additions and subtractions is fixed. The
amount of work in the algorithm also increases some
according to the number of significant decimal places
in the edge-weights.

Section 8

THEOREM (P) generalizes to the following: All the
extreme points of polyhedra 1 and 11 consist of integer
components. As before the variables xeFE correspond
to the edges of a graph G. Now there is an integer
“capacity”’, d, associated with each node veG. Where
all d=1, both I and II are polyhedron C of theorem (P).
I. (1) x=0, for all xeE.

(2) 2x < d (x€b), for all V, where ¥ corresponds to
the edges which meet a node v of G and where d is the
integer capacity assigned to v.

(3) 2x < r(xeR), for all R and r, where r is a posi-
tive integer, and where R corresponds to the edges
of G with both ends in a set S of nodes such that
2d=2r+1 (d summed over capacities of nodes veS).
I[I. (1) 0=x =<1, for all xeFE.

(2) 2x < d (x€V), for all V, same as in 1.
(3) 2x < r (xeR), for all R and r, where r is a posi-
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tive integer, and where R corresponds to all edges
with both ends in a set S plus a number ¢ of edges
with one end in S, where less than d of the ¢ edges
meet node v in S, and where 2r+1=¢+3d (d summed
over capacities of nodes veS).

Correspondingly, there is an efficient algorithm for
finding maximum-weight-sum, degree-constrained
subgraphs.

(Paper 69B1-143)
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