
Coding in general Fixed length LZW Increasing length LZW

Lempel-Ziv-Welch algorithm

Peter Hajnal

Bolyai Institute, University of Szeged, Hungary

2023 fall

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Coding: Reminder notes

We have a non-empty, finite Σ alphabet. The elements of Σ are
called characters. Σ∗ is the set of finite character sequences. A
finite character sequence is called text/file/sentence/word. (ε ∈ Σ∗

is a special text, the empty text.)

Enoding texts

e : Σ∗ → {0, 1}∗,

where e is an encoding function.

Coding scheme

e ” + ” d : {0, 1}∗ → Σ∗,

where d is a dencoding function.

Two parties/sides are involved in coding: Sender/Receiver, A/B,
Alice/Bob.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Character based coding with fixed length

Character based encoding with fixed length

There is a constant ` and a 1-1 map

k : Σ→ {0, 1}`,

(we assume that |Σ| ≤ 2`, i.e. ` ≥ dlog2 |Σ|e).
Encoding based on k is

k̂ : Σ∗ → {0, 1}∗,

where for a text τ ∈ Σ∗, we obtain k̂(τ) by slicing τ into
characters (if τ is not empty, then we take the first character, and
we process the leftover text recursively) we encode the characters
using k (compute k at the character, the code of the actual
character), and concatenate the codes of the characters.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Character based coding with variable length

H-tree and prefix-free encoding of characters

There is T rooted, binary, plane (0/1 labels at the two edges going
to the two children) tree, and a bijective map between Σ and the
leaves of T . The root-`(b) path defines the code of the character
”b” (`(b) is the leaf matched to the character b):

k : Σ→ L ⊂ {0, 1}∗.

Character based coding with variable length

Encoding based on k is

k̂ : Σ∗ → {0, 1}∗,

where for a text τ ∈ Σ∗, we obtain k̂(τ) by slicing τ into
characters (if τ is not empty, then we take the first character, and
we process the leftover text recursively) we encode the characters
using k (compute k at the character, the code of the actual
character), and concatenate the codes of the characters.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Dictionary based encoding with fixed length

Let D be a finite set of keywords: D ⊂ Σ∗. We always assume that
Σ ≡ Σ1 ⊂ D.

Character based coding with fixed length

There is a constant ` and a 1-1 ”dictionary” map

d : Σ→ {0, 1}`.

Encoding based on d is

d̂ : Σ∗ → {0, 1}∗,

where for a text τ ∈ Σ∗, we obtain d̂(τ) by slicing τ into
words(∈ D) (if τ is not empty, then we take the LONGEST prefix
of it, that is in the dictionary, and we process the leftover text
recursively) we encode the word, actually cut off, using k (compute
k at the word, the code of the actual word), and concatenate the
codes of the words.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Dictionary based decoding with fixed length

If the dictionary, (D, d) is know for both parties, then the decoding
is very easy.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Break

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Fixed length LZW: The initial dictionary

We assume that Σ = ΣASCII , the character set of the ASCII code.

We choose a suitable length ` > 7 = log2 |ΣASCII |. Our dictionary
is capable to store 2` words.

The initial dictionary contains Σ and two special ”messages” (not
words): START, STOP.

The code of ASCII characters are the ASCII code padded by 0`−7

at the beginning. The code of ”START” is 128, the code of
”STOP” is 129.

Example

We assume ` = 12. The ASCII code of the letter ’a’ is
97 ≡ 110 0001. In the dictionary its code is 97 ≡ 0000 0110 0001.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Fixed length LZW: Encoding with extending the dictionary

Finding the new chunk of the text to be rocessed:

Assume that the sender found the word w as a prefix of the
unprocessed/leftover text, but w+ = w”c” was not prefix.

Encoding the actual chunk: From the dictionary we get the
code for w . We send it over.

Update: Update the processed and leftover arts of the text.

Extending the dictionary: We add the word w+ with the
first available bit sequence in the dictionary. We skip the extension
step if the dictionary is full.

Stop: If we processed the whole set we send ”129”.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Fixed length LZW: Sender vs receiver, example 1

The text: ”mama ma mamaligát főz” (the ASCII codes are m:109;
a:97; SPACE:32)

Example

sender
128 109 97−−−−−−−−−−−−−−−−−−−−−−−−−−−→ receiver

m|a|ma ma mamaligát főz −−−−−−−−−−−−−−→ m|a|??. . .

START 128 START 128
STOP 129 STOP 129
ma 130 ma 130
am 131 a? 131

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Fixed length LZW: Sender vs receiver, example 2

The text: ”mama ma mamaligát főz” (the ASCII codes are m:109;
a:97; SPACE:32)

Example

sender
128 109 97 130−−−−−−−−−−−−−−−−−−−−−→ receiver

m|a|ma| ma mamaligát főz −−−−−−−−−→ m|a|ma|??. . .

START 128 START 128
STOP 129 STOP 129
ma 130 ma 130
am 131 am 131
ma 132 ma? 132

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Fixed length LZW: Sender vs receiver, example 3

The text: ”mama ma mamaligát főz” (the ASCII codes are m:109;
a:97; SPACE:32)

Example

sender
128 109 97 130 32−−−−−−−−−−−−−−−−−−−→ receiver

m|a|ma| |ma mamaligát főz −−−−−−−−→ m|a|ma| |??. . .

START 128 START 128
STOP 129 STOP 129
ma 130 ma 130
am 131 am 131
ma 132 ma 132
m 133 ? 133

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Fixed length LZW: Sender vs receiver, example 4

The text: ”mama ma mamaligát főz” (the ASCII codes are m:109;
a:97; SPACE:32)

Example

sender
128 109 97 130 32 132−−−−−−−−−−−−−−−−−−−−→ receiver

m|a|ma| |ma |mamaligát főz −−−−−−−→ m|a|ma| |ma |??. . .

START 128 START 128
STOP 129 STOP 129
ma 130 ma 130
am 131 am 131
ma 132 ma 132
m 133 m 133

ma m 134 ma ? 134

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Fixed length LZW: Sender vs receiver

Theorem

Before the whole text is encoded the receiver dictionary is the
same as the sender dictionary except the last line, where the
word”s last character is unknown.

Corollary

After obtaining a new part of the code the receiver side can make
up for the disadvantage in the previous dictionary.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Break

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Dictionaries with increasing length

In our first version of LZW the length ` of code bit sequences is
fixed.

This is a problem. If we set ` too large, then the final dictionary
will be short compared to the possibility. If we set ` too small,
then the dictionary might be full very soon.

The solution is a simple modification:

Initialization: Set ` = 8.

The NEW extending the dictionary: We add the word w+

with the first available bit sequence in the dictionary. If the
dictionary is full, then `← `+ 1. Available bit sequences will
appear, the dictionary extension is possible.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

Dictionaries with increasing length: Receiver side

Theorem

The receiver side can decode the actual length, set by the sender
side.

Proof: Easy. The dictionary on the receiver side has the same
number of lines. The timing of the incrementation of the length
depends on the number of lines.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Coding in general Fixed length LZW Increasing length LZW

This is the end!

Thank you for your attention!

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

	Coding in general
	Fixed length LZW
	Increasing length LZW

