Lempel-Ziv-Welch algorithm

Peter Hajnal

Bolyai Institute, University of Szeged, Hungary

2023 fall

Coding: Reminder notes

We have a non-empty, finite Σ alphabet. The elements of Σ are called characters. Σ^* is the set of finite character sequences. A finite character sequence is called *text/file/sentence/word*. ($\varepsilon \in \Sigma^*$ is a special text, the empty text.)

Enoding texts

$$e:\Sigma^*\to\{0,1\}^*,$$

where e is an encoding function.

Coding scheme

$$e \qquad "+" \qquad d: \{0,1\}^* \rightarrow \Sigma^*,$$

where d is a dencoding function.

Two parties/sides are involved in coding: Sender/Receiver, A/B, Alice/Bob.

Character based coding with fixed length

Character based encoding with fixed length

There is a constant ℓ and a 1-1 map

 $k: \Sigma \to \{0,1\}^{\ell},$

(we assume that $|\Sigma| \le 2^{\ell}$, i.e. $\ell \ge \lceil \log_2 |\Sigma| \rceil$). Encoding based on k is

$$\widehat{k}:\Sigma^* o \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\hat{k}(\tau)$ by slicing τ into characters (if τ is not empty, then we take the first character, and we process the leftover text recursively) we encode the characters using k (compute k at the character, the code of the actual character), and concatenate the codes of the characters.

Character based coding with variable length

H-tree and prefix-free encoding of characters

There is T rooted, binary, plane (0/1 labels at the two edges going to the two children) tree, and a bijective map between Σ and the leaves of T. The root- $\ell(b)$ path defines the code of the character "b" ($\ell(b)$ is the leaf matched to the character b):

 $k: \Sigma \to \mathcal{L} \subset \{0,1\}^*.$

Character based coding with variable length

Encoding based on k is

 $\widehat{k}: \Sigma^* \to \{0,1\}^*,$

where for a text $\tau \in \Sigma^*$, we obtain $\hat{k}(\tau)$ by slicing τ into characters (if τ is not empty, then we take the first character, and we process the leftover text recursively) we encode the characters using k (compute k at the character, the code of the actual character), and concatenate the codes of the characters. Coding in general

Dictionary based encoding with fixed length

Let D be a finite set of keywords: $D \subset \Sigma^*$. We always assume that $\Sigma \equiv \Sigma^1 \subset D$.

Character based coding with fixed length

There is a constant ℓ and a 1-1 "dictionary" map

 $d:\Sigma\to\{0,1\}^\ell.$

Encoding based on d is

 $\widehat{d}: \Sigma^* \to \{0,1\}^*,$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{d}(\tau)$ by slicing τ into words($\in D$) (if τ is not empty, then we take the LONGEST prefix of it, that is in the dictionary, and we process the leftover text recursively) we encode the word, actually cut off, using k (compute k at the word, the code of the actual word), and concatenate the codes of the words.

Peter Hajnal

Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Dictionary based decoding with fixed length

If the dictionary, (D, d) is know for both parties, then the decoding is very easy.

Break

Fixed length LZW: The initial dictionary

We assume that $\Sigma = \Sigma_{ASCII}$, the character set of the ASCII code.

We choose a suitable length $\ell>7=\log_2|\Sigma_{ASCII}|.$ Our dictionary is capable to store 2^ℓ words.

The initial dictionary contains Σ and two special "messages" (not words): START, STOP.

The code of ASCII characters are the ASCII code padded by $0^{\ell-7}$ at the beginning. The code of "START" is 128, the code of "STOP" is 129.

Example

We assume $\ell = 12$. The ASCII code of the letter 'a' is $97 \equiv 110\ 0001$. In the dictionary its code is $97 \equiv 0000\ 0110\ 0001$.

Peter Hajnal Lempel-Ziv-Welch algorithm, University of Szeged, 2023

Fixed length LZW: Encoding with extending the dictionary

Finding the new chunk of the text to be rocessed: Assume that the sender found the word w as a prefix of the unprocessed/leftover text, but $w^+ = w''c''$ was not prefix.

Encoding the actual chunk: From the dictionary we get the code for w. We send it over.

Update: Update the processed and leftover arts of the text.

Extending the dictionary: We add the word w^+ with the first available bit sequence in the dictionary. We skip the extension step if the dictionary is full.

Stop: If we processed the whole set we send "129".

Example					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	START STOP ma am	128 129 130 131	START STOP ma a?	128 129 130 131	

Example					
sender	128	109	97 130	\longrightarrow	receiver
m a ma ma mamaligát főz \longrightarrow m a ma ??					
	START	128	START	128	
	STOP	120	STOP	120	
	ma	130	ma	130	
	am	131	am	131	
	ma_	132	ma?	132	J

Example				
sender <u>128</u>	109 9	7 130 32	\rightarrow	receiver
m a ma ma mamaligát	főz		\rightarrow	m a ma _ ??
START	128	START	128	
STOP	129	STOP	129	
ma	130	ma	130	
am	131	am	131	
ma_	132	ma_	132	
∟m	133	_?	133	

Example				
sender	128 109 9	7 130	$\xrightarrow{32 132}$	receiver
m a ma ma	mamaligát fó	óz –		m a ma _ ma_ ??
	START	128	START	128
	STOP	129	STOP	129
	ma	130	ma	130
	am	131	am	131
	ma_	132	ma_	132
	٦m	133	_m	133
	ma_m	134	ma_?	134

Fixed length LZW: Sender vs receiver

Theorem

Before the whole text is encoded the receiver dictionary is the same as the sender dictionary except the last line, where the word"s last character is unknown.

Corollary

After obtaining a new part of the code the receiver side can make up for the disadvantage in the previous dictionary.

Break

Dictionaries with increasing length

In our first version of LZW the length ℓ of code bit sequences is fixed.

This is a problem. If we set ℓ too large, then the final dictionary will be short compared to the possibility. If we set ℓ too small, then the dictionary might be full very soon.

The solution is a simple modification:

```
Initialization: Set \ell = 8.
```

The NEW extending the dictionary: We add the word w^+ with the first available bit sequence in the dictionary. If the dictionary is full, then $\ell \leftarrow \ell + 1$. Available bit sequences will appear, the dictionary extension is possible.

Dictionaries with increasing length: Receiver side

Theorem

The receiver side can decode the actual length, set by the sender side.

Proof: Easy. The dictionary on the receiver side has the same number of lines. The timing of the incrementation of the length depends on the number of lines. Coding in general

This is the end!

Thank you for your attention!