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Worst case analysis vs amortized analysis

Analysis of the algorithms studied so far were based on a worst
case analysis: We ran the algorithm on an input and the runtime
was bounded by a function of the length/size of the input.

Many times our algorithm is a repetition of complex procedures
several times. We can bound the complexity of the algorithm with
the product of the number of repetitions, and the worst case
analysis of the procedure.

The above bound is often very loose. If the algorithm executes
many times an operation, it is possible that once to perform tha
operation takes many steps, while at another time the cost is
significantly less.

If our analysis of the repeated operations takes these final remarks
into the account we say that we did an amortized analysis. Again
the most important thing is to see and understand specific
examples.
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An introductory example: Binary counter

The input

Given 0n = (0, 0, . . . , 0), a string of n 0’s.

It can also be considered as the number 0 in binary notation using
n digits.

The task

Increase the actual number by 1 and ’print’ the corresponding n
digits to the top of the actual string. After 2n − 1 updates we stop
with 1n.

The cost

The cost of an update will be the number of bits that are changed.

What is the total cost of the entire algorithm? The task as a
computational problem is not very interesting, however the analysis
will be instructive.
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The logic of worst case analysis

If the actual string is 01n−1 = 011 . . . 11, then after the update we
will see 10n−1 = 100 . . . 00.

This special update costs n, that is the highest cost during the
algorithm.

Thus, the cost of the 2n−1 updates can be estimated by (2n−1)n.
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Some important remarks

Notice that during each update the final 1-block of our bit string is
converted to a block of 0’s and the previous single 0 bit is
rewritten to 1.

If the bit sequence ends with 0, then final 1-block is empty. If the
closing 1 block is the entire string, then there is no update, we
stop.

If the cost is c , then there is a single 0← 1 rewrite and c − 1
1← 0 rewrite’s.
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The idea of amortized analysis (binary counter problem)

Suppose if we change a bit we have to pay $1.

If we were to prepare for the worst case scenario, then we have to
take $n with us to perform an update.

However, if we have a good economic sense, then we’ll make it
with $2!

The idea

If we rewrite a 0 to 1 (0← 1), then we have $1 to pay for it. We
have one leftover $1. We can deposit it at the rewritten 1.

Observation

It will be true that our current bit sequence contains $1 deposit on
every 1 bit (the future cost of the 1← 0 rewrites).
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The theorem

The theorem

The cost of the binary counter is exactly

(2n − 1)2− n.
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The language of amortization: Economics

When we perform the procedure once we charge for that step a
’cost’ component plus a ’deposit’ component.

The actual cost and some of the previous deposits must cover the
computation performed.

In our case (binary counter problem), the amortized cost of each
update is $2.

The above interpretation is a called banker’s interpretation.
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Another language of amortization: Physics

We define a potential for the current string: The potential is just
the number of 1’s. Hence the initial potential is 0, the final one is
1.

In each step we can increase the potential, and that has a
cost/price.

But we can use the potential to ’gain energy’/do computation.

Formally the potential function is P : K → R, where K is the set
of configurations (strings in our example).

Definition: Amortized cost

The i-th update κi ← κi−1,

camort(ei ) = c(ei ) + P(κi )− P(κi−1).
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Break
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The fundamental problem

Definition: The convex hull problem

Given n points in the coordinate plane: (x1, y1), (x2, y2), (x3, y3),
. . ., (xn, yn) so that their x coordinates are strictly monotonically
increasing.

Determine the convex hull of the input set (which points are the
vertices of the convex hull, and how they are circularly arranged on
it).

Peter Hajnal Amortized analysis, University of Szeged, 2023



Simplification: Determining the upper hull

Definition: Upper hull

Take the point with minimal x-coordinate and the point with
maximal x-coordinate.
These two points divide the convex hull into two segments.
The two segments are called upper hull and lower hull.

The upper and lower hulls play symmetrical role, and together they
form the convex hull of our point set.

It is enough to compute the upper hull.
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Dynamic programming approach

The set of problems

Let Pi be the set of the first i points. Determine their upper hull:

Ui : E = P1,Pi2 ,Pi3 , . . . ,Pi`−1
,Pi .

The order of our problems

U1 → U2 → U3 → . . .→ Un−1 → Un.

Dynamic programming requires to solve the following problem:
Insert the point Pi+1 into the Ui (the upper hall of the ith
problem).
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The insertion with binary search

The new upper hull is the starting segment of the previous one
extended by Pi+1:

Fi : E = P1,Pi2 ,Pi3 , . . . ,Pik−1
,U = Pik ,Pi+1.

Insertion is determining the vertex U.

The condition that defines U is:

m(Pik−1
Pi+1) > m(UPi+1) ≤ m(Pik+1

Pi+1),

where m(AB) is the slope of the line AB.
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Search for U : I. binary search

Claim

O(log `) = O(log i) you can find the Pj you are looking for.

The total cost is

O(log 1 + log 2 + . . .+ log(n − 1)) = O(n log n).
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Search for U : I. naiv search

Let’s test the point Pi` . If it’s not good for the role of U, let’s test
the point Pi`−1

. If it’s not good for the role of U, let’s test it the
Pi`−2

vertex. And so on.

Maybe surprising, but this algorithm is better than the one based
on binary search.
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Amortized analysis

A test costs O(1) = c .

The amortized cost of inserting P is 2c = c + c .

The first term is the cost of the succesful test. The second term is
a deposit, an ”exit costs” for a future ’failed test’.

Observation

If a Pj is tested for U during the insertion of Pi+1 and it is failed,
then Pj is discarded from the algorithm.

Theorem

The total cost of determining the upper hall based on the naive
searxh is

O(n).
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This is the end!

Thank you for your attention!
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