
Difficulty, Relative Difficulty Reductions of Problems Completeness

Reductions

Peter Hajnal

Bolyai Institute, SZTE, Szeged

2023 fall

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The Goal

In the previous sections, we introduced several complexity classes
(L, P, D, EXP). We saw examples of central mathematical
problems: HAMILTON,

−→
st -REACHABILITY, WORD PROBLEM,

FACTORIZATION, etc.

A central question is to place individual problems in the introduced
hierarchy.

The goal is to determine the location/complexity of an important
problem as accurately as possible.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The Goal

In the previous sections, we introduced several complexity classes
(L, P, D, EXP).

We saw examples of central mathematical
problems: HAMILTON,

−→
st -REACHABILITY, WORD PROBLEM,

FACTORIZATION, etc.

A central question is to place individual problems in the introduced
hierarchy.

The goal is to determine the location/complexity of an important
problem as accurately as possible.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The Goal

In the previous sections, we introduced several complexity classes
(L, P, D, EXP). We saw examples of central mathematical
problems: HAMILTON,

−→
st -REACHABILITY, WORD PROBLEM,

FACTORIZATION, etc.

A central question is to place individual problems in the introduced
hierarchy.

The goal is to determine the location/complexity of an important
problem as accurately as possible.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The Goal

In the previous sections, we introduced several complexity classes
(L, P, D, EXP). We saw examples of central mathematical
problems: HAMILTON,

−→
st -REACHABILITY, WORD PROBLEM,

FACTORIZATION, etc.

A central question is to place individual problems in the introduced
hierarchy.

The goal is to determine the location/complexity of an important
problem as accurately as possible.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The Goal

In the previous sections, we introduced several complexity classes
(L, P, D, EXP). We saw examples of central mathematical
problems: HAMILTON,

−→
st -REACHABILITY, WORD PROBLEM,

FACTORIZATION, etc.

A central question is to place individual problems in the introduced
hierarchy.

The goal is to determine the location/complexity of an important
problem as accurately as possible.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Breaking Down the Goal

Determining the location has two tasks.

(1) Providing an upper estimate of the complexity of a
language/problem L (i.e., proving that L ∈ C1) requires giving
an algorithm and analyzing it to show membership in class C1.
Such results, predating the advent of computers, constitute
the starting point of algorithm theory.

(2) Determining a lower estimate of the complexity of L (i.e.,
proving that L 6∈ C2) is more complex. It demands identifying
a theoretical difficulty that prevents solving a problem
efficiently, no matter how clever we are or how brilliant our
ideas.

(1) is easy: Designing efficient algorithms.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Breaking Down the Goal

Determining the location has two tasks.

(1) Providing an upper estimate of the complexity of a
language/problem L (i.e., proving that L ∈ C1) requires giving
an algorithm and analyzing it to show membership in class C1.
Such results, predating the advent of computers, constitute
the starting point of algorithm theory.

(2) Determining a lower estimate of the complexity of L (i.e.,
proving that L 6∈ C2) is more complex. It demands identifying
a theoretical difficulty that prevents solving a problem
efficiently, no matter how clever we are or how brilliant our
ideas.

(1) is easy: Designing efficient algorithms.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Breaking Down the Goal

Determining the location has two tasks.

(1) Providing an upper estimate of the complexity of a
language/problem L (i.e., proving that L ∈ C1) requires giving
an algorithm and analyzing it to show membership in class C1.
Such results, predating the advent of computers, constitute
the starting point of algorithm theory.

(2) Determining a lower estimate of the complexity of L (i.e.,
proving that L 6∈ C2) is more complex. It demands identifying
a theoretical difficulty that prevents solving a problem
efficiently, no matter how clever we are or how brilliant our
ideas.

(1) is easy: Designing efficient algorithms.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Breaking Down the Goal

Determining the location has two tasks.

(1) Providing an upper estimate of the complexity of a
language/problem L (i.e., proving that L ∈ C1) requires giving
an algorithm and analyzing it to show membership in class C1.
Such results, predating the advent of computers, constitute
the starting point of algorithm theory.

(2) Determining a lower estimate of the complexity of L (i.e.,
proving that L 6∈ C2) is more complex. It demands identifying
a theoretical difficulty that prevents solving a problem
efficiently, no matter how clever we are or how brilliant our
ideas.

(1) is easy: Designing efficient algorithms.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Breaking Down the Goal

Determining the location has two tasks.

(1) Providing an upper estimate of the complexity of a
language/problem L (i.e., proving that L ∈ C1) requires giving
an algorithm and analyzing it to show membership in class C1.
Such results, predating the advent of computers, constitute
the starting point of algorithm theory.

(2) Determining a lower estimate of the complexity of L (i.e.,
proving that L 6∈ C2) is more complex. It demands identifying
a theoretical difficulty that prevents solving a problem
efficiently, no matter how clever we are or how brilliant our
ideas.

(1) is easy: Designing efficient algorithms.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proving Difficulty

Task (2) is much more challenging; we can say that almost no
results have been obtained in this direction. Two important attack
directions are mentioned:

(a) Replace the general model of Turing machines with a simpler
computational model (which is not a universal computational
concept), and try to prove lower estimates there. For example,
for the SORTING problem (sorting n numbers in ascending
order), we might work with just two comparisons of input
numbers and branch based on the result. It is natural since
most algorithms work this way. It can be demonstrated that at
least n log n comparisons are needed to compute the output.

(b) Do not investigate (absolute) difficulty; instead, focus on
relative difficulty. The goal is to prove only that a problem is
at least as difficult as another.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proving Difficulty

Task (2) is much more challenging; we can say that almost no
results have been obtained in this direction. Two important attack
directions are mentioned:

(a) Replace the general model of Turing machines with a simpler
computational model (which is not a universal computational
concept), and try to prove lower estimates there. For example,
for the SORTING problem (sorting n numbers in ascending
order), we might work with just two comparisons of input
numbers and branch based on the result. It is natural since
most algorithms work this way. It can be demonstrated that at
least n log n comparisons are needed to compute the output.

(b) Do not investigate (absolute) difficulty; instead, focus on
relative difficulty. The goal is to prove only that a problem is
at least as difficult as another.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proving Difficulty

Task (2) is much more challenging; we can say that almost no
results have been obtained in this direction. Two important attack
directions are mentioned:

(a) Replace the general model of Turing machines with a simpler
computational model (which is not a universal computational
concept), and try to prove lower estimates there. For example,
for the SORTING problem (sorting n numbers in ascending
order), we might work with just two comparisons of input
numbers and branch based on the result. It is natural since
most algorithms work this way. It can be demonstrated that at
least n log n comparisons are needed to compute the output.

(b) Do not investigate (absolute) difficulty; instead, focus on
relative difficulty. The goal is to prove only that a problem is
at least as difficult as another.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proving Difficulty

Task (2) is much more challenging; we can say that almost no
results have been obtained in this direction. Two important attack
directions are mentioned:

(a) Replace the general model of Turing machines with a simpler
computational model (which is not a universal computational
concept), and try to prove lower estimates there. For example,
for the SORTING problem (sorting n numbers in ascending
order), we might work with just two comparisons of input
numbers and branch based on the result. It is natural since
most algorithms work this way. It can be demonstrated that at
least n log n comparisons are needed to compute the output.

(b) Do not investigate (absolute) difficulty; instead, focus on
relative difficulty. The goal is to prove only that a problem is
at least as difficult as another.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proving Difficulty

Task (2) is much more challenging; we can say that almost no
results have been obtained in this direction. Two important attack
directions are mentioned:

(a) Replace the general model of Turing machines with a simpler
computational model (which is not a universal computational
concept), and try to prove lower estimates there. For example,
for the SORTING problem (sorting n numbers in ascending
order), we might work with just two comparisons of input
numbers and branch based on the result. It is natural since
most algorithms work this way. It can be demonstrated that at
least n log n comparisons are needed to compute the output.

(b) Do not investigate (absolute) difficulty; instead, focus on
relative difficulty. The goal is to prove only that a problem is
at least as difficult as another.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Illustrated

For a language/problem L, an input ω essentially poses a question:
Does ω belong to L?

A reduction is an assignment/calculation that, instead of
answering this question, computes a new question: ”I will describe
a new input ω̃, and I will ask if it belongs to a new language L̃.”

”If someone can answer this question, then I can answer the
original question.” Moreover, the answer to the new question will
be the same as the answer to my question.

Standing on the shoulders of L̃, L is not hard. Of course, the
calculation of the new question must be negligible.

L̃ must be complex enough to allow us to formulate any problem
described by L as a problem of L̃.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Illustrated

For a language/problem L, an input ω essentially poses a question:
Does ω belong to L?

A reduction is an assignment/calculation that, instead of
answering this question, computes a new question: ”I will describe
a new input ω̃, and I will ask if it belongs to a new language L̃.”

”If someone can answer this question, then I can answer the
original question.” Moreover, the answer to the new question will
be the same as the answer to my question.

Standing on the shoulders of L̃, L is not hard. Of course, the
calculation of the new question must be negligible.

L̃ must be complex enough to allow us to formulate any problem
described by L as a problem of L̃.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Illustrated

For a language/problem L, an input ω essentially poses a question:
Does ω belong to L?

A reduction is an assignment/calculation that, instead of
answering this question, computes a new question: ”I will describe
a new input ω̃, and I will ask if it belongs to a new language L̃.”

”If someone can answer this question, then I can answer the
original question.” Moreover, the answer to the new question will
be the same as the answer to my question.

Standing on the shoulders of L̃, L is not hard. Of course, the
calculation of the new question must be negligible.

L̃ must be complex enough to allow us to formulate any problem
described by L as a problem of L̃.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Illustrated

For a language/problem L, an input ω essentially poses a question:
Does ω belong to L?

A reduction is an assignment/calculation that, instead of
answering this question, computes a new question: ”I will describe
a new input ω̃, and I will ask if it belongs to a new language L̃.”

”If someone can answer this question, then I can answer the
original question.” Moreover, the answer to the new question will
be the same as the answer to my question.

Standing on the shoulders of L̃, L is not hard. Of course, the
calculation of the new question must be negligible.

L̃ must be complex enough to allow us to formulate any problem
described by L as a problem of L̃.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Illustrated

For a language/problem L, an input ω essentially poses a question:
Does ω belong to L?

A reduction is an assignment/calculation that, instead of
answering this question, computes a new question: ”I will describe
a new input ω̃, and I will ask if it belongs to a new language L̃.”

”If someone can answer this question, then I can answer the
original question.” Moreover, the answer to the new question will
be the same as the answer to my question.

Standing on the shoulders of L̃, L is not hard.

Of course, the
calculation of the new question must be negligible.

L̃ must be complex enough to allow us to formulate any problem
described by L as a problem of L̃.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Illustrated

For a language/problem L, an input ω essentially poses a question:
Does ω belong to L?

A reduction is an assignment/calculation that, instead of
answering this question, computes a new question: ”I will describe
a new input ω̃, and I will ask if it belongs to a new language L̃.”

”If someone can answer this question, then I can answer the
original question.” Moreover, the answer to the new question will
be the same as the answer to my question.

Standing on the shoulders of L̃, L is not hard. Of course, the
calculation of the new question must be negligible.

L̃ must be complex enough to allow us to formulate any problem
described by L as a problem of L̃.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Illustrated

For a language/problem L, an input ω essentially poses a question:
Does ω belong to L?

A reduction is an assignment/calculation that, instead of
answering this question, computes a new question: ”I will describe
a new input ω̃, and I will ask if it belongs to a new language L̃.”

”If someone can answer this question, then I can answer the
original question.” Moreover, the answer to the new question will
be the same as the answer to my question.

Standing on the shoulders of L̃, L is not hard. Of course, the
calculation of the new question must be negligible.

L̃ must be complex enough to allow us to formulate any problem
described by L as a problem of L̃.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Formally: Reductions

Karp Reductions of Languages

Let L, L̂ ⊂ Σ∗ be two languages and C a complexity class. L is
reducible to L̂ in C, denoted: L 4C L̂, if there exists a computable
Turing machine R such that

(i) R is a C-complexity machine/procedure,

(ii) ω ∈ L if and only if ω̃ ∈ L̂, where ω̃ is the sequence calculated
by R from ω.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Formally: Reductions

Karp Reductions of Languages

Let L, L̂ ⊂ Σ∗ be two languages and C a complexity class. L is
reducible to L̂ in C, denoted: L 4C L̂, if there exists a computable
Turing machine R such that

(i) R is a C-complexity machine/procedure,

(ii) ω ∈ L if and only if ω̃ ∈ L̂, where ω̃ is the sequence calculated
by R from ω.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Formally: Reductions

Karp Reductions of Languages

Let L, L̂ ⊂ Σ∗ be two languages and C a complexity class. L is
reducible to L̂ in C, denoted: L 4C L̂, if there exists a computable
Turing machine R such that

(i) R is a C-complexity machine/procedure,

(ii) ω ∈ L if and only if ω̃ ∈ L̂, where ω̃ is the sequence calculated
by R from ω.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

2(b) Formally: Reductions

Karp Reductions of Languages

Let L, L̂ ⊂ Σ∗ be two languages and C a complexity class. L is
reducible to L̂ in C, denoted: L 4C L̂, if there exists a computable
Turing machine R such that

(i) R is a C-complexity machine/procedure,

(ii) ω ∈ L if and only if ω̃ ∈ L̂, where ω̃ is the sequence calculated
by R from ω.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Remarks

The introduced relation is read as follows: L is reducible to L̂ in C.
This means: The decision task of language L̂ is at least as hard as
that of L modulo C.

Other reduction concepts exist. The above definition lies in the
work of Karp and is generally referred to as Karp reductions. If
emphasis is needed, we use the notation 4Karp

C . In this course, we
mostly encounter such reductions, and most of the time, we omit
the upper index.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Remarks

The introduced relation is read as follows: L is reducible to L̂ in C.

This means: The decision task of language L̂ is at least as hard as
that of L modulo C.

Other reduction concepts exist. The above definition lies in the
work of Karp and is generally referred to as Karp reductions. If
emphasis is needed, we use the notation 4Karp

C . In this course, we
mostly encounter such reductions, and most of the time, we omit
the upper index.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Remarks

The introduced relation is read as follows: L is reducible to L̂ in C.
This means: The decision task of language L̂ is at least as hard as
that of L modulo C.

Other reduction concepts exist. The above definition lies in the
work of Karp and is generally referred to as Karp reductions. If
emphasis is needed, we use the notation 4Karp

C . In this course, we
mostly encounter such reductions, and most of the time, we omit
the upper index.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Remarks

The introduced relation is read as follows: L is reducible to L̂ in C.
This means: The decision task of language L̂ is at least as hard as
that of L modulo C.

Other reduction concepts exist. The above definition lies in the
work of Karp and is generally referred to as Karp reductions.

If
emphasis is needed, we use the notation 4Karp

C . In this course, we
mostly encounter such reductions, and most of the time, we omit
the upper index.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Remarks

The introduced relation is read as follows: L is reducible to L̂ in C.
This means: The decision task of language L̂ is at least as hard as
that of L modulo C.

Other reduction concepts exist. The above definition lies in the
work of Karp and is generally referred to as Karp reductions. If
emphasis is needed, we use the notation 4Karp

C .

In this course, we
mostly encounter such reductions, and most of the time, we omit
the upper index.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Remarks

The introduced relation is read as follows: L is reducible to L̂ in C.
This means: The decision task of language L̂ is at least as hard as
that of L modulo C.

Other reduction concepts exist. The above definition lies in the
work of Karp and is generally referred to as Karp reductions. If
emphasis is needed, we use the notation 4Karp

C . In this course, we
mostly encounter such reductions, and most of the time, we omit
the upper index.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The first examples

CLIQUE = {dG , ke : G contains a clique of size k}

INDEPENDENT-VERTEX-SET = {dG , ke : G contains

an independent vertex set

of size k}

VERTEX-COVER = {dG , ke : G has a vertex cover of size k}

Note

The tasks above are reducible to each other in both directions.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The first examples

CLIQUE = {dG , ke : G contains a clique of size k}

INDEPENDENT-VERTEX-SET = {dG , ke : G contains

an independent vertex set

of size k}

VERTEX-COVER = {dG , ke : G has a vertex cover of size k}

Note

The tasks above are reducible to each other in both directions.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The first examples

CLIQUE = {dG , ke : G contains a clique of size k}

INDEPENDENT-VERTEX-SET = {dG , ke : G contains

an independent vertex set

of size k}

VERTEX-COVER = {dG , ke : G has a vertex cover of size k}

Note

The tasks above are reducible to each other in both directions.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The first examples

CLIQUE = {dG , ke : G contains a clique of size k}

INDEPENDENT-VERTEX-SET = {dG , ke : G contains

an independent vertex set

of size k}

VERTEX-COVER = {dG , ke : G has a vertex cover of size k}

Note

The tasks above are reducible to each other in both directions.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The first examples

CLIQUE = {dG , ke : G contains a clique of size k}

INDEPENDENT-VERTEX-SET = {dG , ke : G contains

an independent vertex set

of size k}

VERTEX-COVER = {dG , ke : G has a vertex cover of size k}

Note

The tasks above are reducible to each other in both directions.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example CLIQUE 4P INDEPENDENT-VERTEX-SET.

The reduction is extremely simple: Given an input ω = dG , ke for
the CLIQUE problem. We compute the complement of G from its
code. The new sequence ω̃ is dG , ke. From our earlier graph
theory studies, the new question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example CLIQUE 4P INDEPENDENT-VERTEX-SET.

The reduction is extremely simple: Given an input ω = dG , ke for
the CLIQUE problem. We compute the complement of G from its
code. The new sequence ω̃ is dG , ke. From our earlier graph
theory studies, the new question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example CLIQUE 4P INDEPENDENT-VERTEX-SET.

The reduction is extremely simple: Given an input ω = dG , ke for
the CLIQUE problem.

We compute the complement of G from its
code. The new sequence ω̃ is dG , ke. From our earlier graph
theory studies, the new question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example CLIQUE 4P INDEPENDENT-VERTEX-SET.

The reduction is extremely simple: Given an input ω = dG , ke for
the CLIQUE problem. We compute the complement of G from its
code. The new sequence ω̃ is dG , ke.

From our earlier graph
theory studies, the new question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example CLIQUE 4P INDEPENDENT-VERTEX-SET.

The reduction is extremely simple: Given an input ω = dG , ke for
the CLIQUE problem. We compute the complement of G from its
code. The new sequence ω̃ is dG , ke. From our earlier graph
theory studies, the new question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example CLIQUE 4P INDEPENDENT-VERTEX-SET.

The reduction is extremely simple: Given an input ω = dG , ke for
the CLIQUE problem. We compute the complement of G from its
code. The new sequence ω̃ is dG , ke. From our earlier graph
theory studies, the new question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example INDEPENDENT-VERTEX-SET 4P VERTEX-COVER.

The reduction is extremely simple: Given an input ω = dG , ke for
the INDEPENDENT-VERTEX-SET problem. We compute
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example INDEPENDENT-VERTEX-SET 4P VERTEX-COVER.

The reduction is extremely simple: Given an input ω = dG , ke for
the INDEPENDENT-VERTEX-SET problem. We compute
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example INDEPENDENT-VERTEX-SET 4P VERTEX-COVER.

The reduction is extremely simple: Given an input ω = dG , ke for
the INDEPENDENT-VERTEX-SET problem.

We compute
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example INDEPENDENT-VERTEX-SET 4P VERTEX-COVER.

The reduction is extremely simple: Given an input ω = dG , ke for
the INDEPENDENT-VERTEX-SET problem. We compute
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke.

From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example INDEPENDENT-VERTEX-SET 4P VERTEX-COVER.

The reduction is extremely simple: Given an input ω = dG , ke for
the INDEPENDENT-VERTEX-SET problem. We compute
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example INDEPENDENT-VERTEX-SET 4P VERTEX-COVER.

The reduction is extremely simple: Given an input ω = dG , ke for
the INDEPENDENT-VERTEX-SET problem. We compute
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example VERTEX-COVER 4P CLIQUE.

The reduction is extremely simple: Given an input ω = dG , ke for
the VERTEX-COVER problem. We compute the complement and
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Note that for CLIQUE, VERTEX-COVER, and
INDEPENDENT-VERTEX-SET, no efficient algorithm is known. If
there were one for any of them, it would have significant
implications for the others.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example VERTEX-COVER 4P CLIQUE.

The reduction is extremely simple: Given an input ω = dG , ke for
the VERTEX-COVER problem. We compute the complement and
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Note that for CLIQUE, VERTEX-COVER, and
INDEPENDENT-VERTEX-SET, no efficient algorithm is known. If
there were one for any of them, it would have significant
implications for the others.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example VERTEX-COVER 4P CLIQUE.

The reduction is extremely simple: Given an input ω = dG , ke for
the VERTEX-COVER problem.

We compute the complement and
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Note that for CLIQUE, VERTEX-COVER, and
INDEPENDENT-VERTEX-SET, no efficient algorithm is known. If
there were one for any of them, it would have significant
implications for the others.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example VERTEX-COVER 4P CLIQUE.

The reduction is extremely simple: Given an input ω = dG , ke for
the VERTEX-COVER problem. We compute the complement and
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke.

From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Note that for CLIQUE, VERTEX-COVER, and
INDEPENDENT-VERTEX-SET, no efficient algorithm is known. If
there were one for any of them, it would have significant
implications for the others.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example VERTEX-COVER 4P CLIQUE.

The reduction is extremely simple: Given an input ω = dG , ke for
the VERTEX-COVER problem. We compute the complement and
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Note that for CLIQUE, VERTEX-COVER, and
INDEPENDENT-VERTEX-SET, no efficient algorithm is known. If
there were one for any of them, it would have significant
implications for the others.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example VERTEX-COVER 4P CLIQUE.

The reduction is extremely simple: Given an input ω = dG , ke for
the VERTEX-COVER problem. We compute the complement and
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Note that for CLIQUE, VERTEX-COVER, and
INDEPENDENT-VERTEX-SET, no efficient algorithm is known. If
there were one for any of them, it would have significant
implications for the others.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example VERTEX-COVER 4P CLIQUE.

The reduction is extremely simple: Given an input ω = dG , ke for
the VERTEX-COVER problem. We compute the complement and
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Note that for CLIQUE, VERTEX-COVER, and
INDEPENDENT-VERTEX-SET, no efficient algorithm is known.

If
there were one for any of them, it would have significant
implications for the others.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Example VERTEX-COVER 4P CLIQUE.

The reduction is extremely simple: Given an input ω = dG , ke for
the VERTEX-COVER problem. We compute the complement and
|V (G)| − k from the codes of G and k. The new sequence ω̃ is
dG , |V (G)| − ke. From our earlier graph theory studies, the new
question is equivalent to the original one.

The complexity of computing ω̃ is polynomial (actually solvable in
logarithmic space).

Note that for CLIQUE, VERTEX-COVER, and
INDEPENDENT-VERTEX-SET, no efficient algorithm is known. If
there were one for any of them, it would have significant
implications for the others.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Break

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Turing Reductions

Definition

Turing Reductions of Languages Let L, L̂ ⊂ Σ∗ be two languages
and C a complexity class. L is Turing reducible to L̂ in C, denoted:
L ≤C L̂, if there exists a C-complexity oracle Turing machine O
that decides L using L̂ as an oracle, i.e., for any input ω ∈ Σ∗:

(i) If ω ∈ L, then O L̂(ω) = 1.

(ii) If ω 6∈ L, then O L̂(ω) = 0.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Turing Reductions

Definition

Turing Reductions of Languages Let L, L̂ ⊂ Σ∗ be two languages
and C a complexity class. L is Turing reducible to L̂ in C, denoted:
L ≤C L̂, if there exists a C-complexity oracle Turing machine O
that decides L using L̂ as an oracle, i.e., for any input ω ∈ Σ∗:

(i) If ω ∈ L, then O L̂(ω) = 1.

(ii) If ω 6∈ L, then O L̂(ω) = 0.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Turing Reductions

Definition

Turing Reductions of Languages Let L, L̂ ⊂ Σ∗ be two languages
and C a complexity class. L is Turing reducible to L̂ in C, denoted:
L ≤C L̂, if there exists a C-complexity oracle Turing machine O
that decides L using L̂ as an oracle, i.e., for any input ω ∈ Σ∗:

(i) If ω ∈ L, then O L̂(ω) = 1.

(ii) If ω 6∈ L, then O L̂(ω) = 0.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Turing Reductions

Definition

Turing Reductions of Languages Let L, L̂ ⊂ Σ∗ be two languages
and C a complexity class. L is Turing reducible to L̂ in C, denoted:
L ≤C L̂, if there exists a C-complexity oracle Turing machine O
that decides L using L̂ as an oracle, i.e., for any input ω ∈ Σ∗:

(i) If ω ∈ L, then O L̂(ω) = 1.

(ii) If ω 6∈ L, then O L̂(ω) = 0.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Turing Reduction

Turing Reduction

Let L, L̂ ⊆ Σ∗ be two languages and C be a complexity class.

L 4Turing
C L̂ if and only if there exists a Turing machine R such that

(i) R decides L and R is an L2-oracle machine.

(ii) The complexity of R belongs to C.

The term in (i) involves an unknown concept that needs
clarification.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Turing Reduction

Turing Reduction

Let L, L̂ ⊆ Σ∗ be two languages and C be a complexity class.

L 4Turing
C L̂ if and only if there exists a Turing machine R such that

(i) R decides L and R is an L2-oracle machine.

(ii) The complexity of R belongs to C.

The term in (i) involves an unknown concept that needs
clarification.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Turing Reduction

Turing Reduction

Let L, L̂ ⊆ Σ∗ be two languages and C be a complexity class.

L 4Turing
C L̂ if and only if there exists a Turing machine R such that

(i) R decides L and R is an L2-oracle machine.

(ii) The complexity of R belongs to C.

The term in (i) involves an unknown concept that needs
clarification.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Turing Reduction

Turing Reduction

Let L, L̂ ⊆ Σ∗ be two languages and C be a complexity class.

L 4Turing
C L̂ if and only if there exists a Turing machine R such that

(i) R decides L and R is an L2-oracle machine.

(ii) The complexity of R belongs to C.

The term in (i) involves an unknown concept that needs
clarification.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Turing Reduction

Turing Reduction

Let L, L̂ ⊆ Σ∗ be two languages and C be a complexity class.

L 4Turing
C L̂ if and only if there exists a Turing machine R such that

(i) R decides L and R is an L2-oracle machine.

(ii) The complexity of R belongs to C.

The term in (i) involves an unknown concept that needs
clarification.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Turing Reduction

Turing Reduction

Let L, L̂ ⊆ Σ∗ be two languages and C be a complexity class.

L 4Turing
C L̂ if and only if there exists a Turing machine R such that

(i) R decides L and R is an L2-oracle machine.

(ii) The complexity of R belongs to C.

The term in (i) involves an unknown concept that needs
clarification.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine

Definition: Oracle Turing Machine

Let O ⊂ Σ∗ be a language.

R is an O-oracle Turing machine if

• it has an extra question/oracle tape.

Only writing is allowed on this tape (there is no head over the
tape; the hand can only write moving to the right). The
written characters are elements of Σ ∪ {?}, i.e., elements of
the alphabet of language O and a special ’?’ symbol. Writing
’?’ on the question tape indicates the condition of a question.
It queries about the character sequence in Σ∗ between the
previous ’?’ (or the tape-start symbol) and it with respect to
the oracle O.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine

Definition: Oracle Turing Machine

Let O ⊂ Σ∗ be a language.

R is an O-oracle Turing machine if

• it has an extra question/oracle tape.

Only writing is allowed on this tape (there is no head over the
tape; the hand can only write moving to the right). The
written characters are elements of Σ ∪ {?}, i.e., elements of
the alphabet of language O and a special ’?’ symbol. Writing
’?’ on the question tape indicates the condition of a question.
It queries about the character sequence in Σ∗ between the
previous ’?’ (or the tape-start symbol) and it with respect to
the oracle O.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine

Definition: Oracle Turing Machine

Let O ⊂ Σ∗ be a language.

R is an O-oracle Turing machine if

• it has an extra question/oracle tape.

Only writing is allowed on this tape (there is no head over the
tape; the hand can only write moving to the right). The
written characters are elements of Σ ∪ {?}, i.e., elements of
the alphabet of language O and a special ’?’ symbol. Writing
’?’ on the question tape indicates the condition of a question.
It queries about the character sequence in Σ∗ between the
previous ’?’ (or the tape-start symbol) and it with respect to
the oracle O.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine

Definition: Oracle Turing Machine

Let O ⊂ Σ∗ be a language.

R is an O-oracle Turing machine if

• it has an extra question/oracle tape.

Only writing is allowed on this tape (there is no head over the
tape; the hand can only write moving to the right).

The
written characters are elements of Σ ∪ {?}, i.e., elements of
the alphabet of language O and a special ’?’ symbol. Writing
’?’ on the question tape indicates the condition of a question.
It queries about the character sequence in Σ∗ between the
previous ’?’ (or the tape-start symbol) and it with respect to
the oracle O.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine

Definition: Oracle Turing Machine

Let O ⊂ Σ∗ be a language.

R is an O-oracle Turing machine if

• it has an extra question/oracle tape.

Only writing is allowed on this tape (there is no head over the
tape; the hand can only write moving to the right). The
written characters are elements of Σ ∪ {?}, i.e., elements of
the alphabet of language O and a special ’?’ symbol.

Writing
’?’ on the question tape indicates the condition of a question.
It queries about the character sequence in Σ∗ between the
previous ’?’ (or the tape-start symbol) and it with respect to
the oracle O.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine

Definition: Oracle Turing Machine

Let O ⊂ Σ∗ be a language.

R is an O-oracle Turing machine if

• it has an extra question/oracle tape.

Only writing is allowed on this tape (there is no head over the
tape; the hand can only write moving to the right). The
written characters are elements of Σ ∪ {?}, i.e., elements of
the alphabet of language O and a special ’?’ symbol. Writing
’?’ on the question tape indicates the condition of a question.

It queries about the character sequence in Σ∗ between the
previous ’?’ (or the tape-start symbol) and it with respect to
the oracle O.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine

Definition: Oracle Turing Machine

Let O ⊂ Σ∗ be a language.

R is an O-oracle Turing machine if

• it has an extra question/oracle tape.

Only writing is allowed on this tape (there is no head over the
tape; the hand can only write moving to the right). The
written characters are elements of Σ ∪ {?}, i.e., elements of
the alphabet of language O and a special ’?’ symbol. Writing
’?’ on the question tape indicates the condition of a question.
It queries about the character sequence in Σ∗ between the
previous ’?’ (or the tape-start symbol) and it with respect to
the oracle O.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine (Continued)

Definition: Oracle Turing Machine (Continued)

• The set of states is of the form

{ORACLE-YES,ORACLE-NO} × S0

where S0 is the set of states in the original Turing machine.

The transition function acts on the state of the current
configuration; it only affects the second component. The first
component changes only if the algorithm poses a question to
the oracle. The change depends naturally on the relationship
of the question character sequence to O.

From these, the run (a sequence of configurations generated from
the initial configuration), and the defined language, are naturally
derived. The cost of the question is 1 time unit and 0 space.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine (Continued)

Definition: Oracle Turing Machine (Continued)

• The set of states is of the form

{ORACLE-YES,ORACLE-NO} × S0

where S0 is the set of states in the original Turing machine.

The transition function acts on the state of the current
configuration; it only affects the second component. The first
component changes only if the algorithm poses a question to
the oracle. The change depends naturally on the relationship
of the question character sequence to O.

From these, the run (a sequence of configurations generated from
the initial configuration), and the defined language, are naturally
derived. The cost of the question is 1 time unit and 0 space.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine (Continued)

Definition: Oracle Turing Machine (Continued)

• The set of states is of the form

{ORACLE-YES,ORACLE-NO} × S0

where S0 is the set of states in the original Turing machine.

The transition function acts on the state of the current
configuration; it only affects the second component.

The first
component changes only if the algorithm poses a question to
the oracle. The change depends naturally on the relationship
of the question character sequence to O.

From these, the run (a sequence of configurations generated from
the initial configuration), and the defined language, are naturally
derived. The cost of the question is 1 time unit and 0 space.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine (Continued)

Definition: Oracle Turing Machine (Continued)

• The set of states is of the form

{ORACLE-YES,ORACLE-NO} × S0

where S0 is the set of states in the original Turing machine.

The transition function acts on the state of the current
configuration; it only affects the second component. The first
component changes only if the algorithm poses a question to
the oracle.

The change depends naturally on the relationship
of the question character sequence to O.

From these, the run (a sequence of configurations generated from
the initial configuration), and the defined language, are naturally
derived. The cost of the question is 1 time unit and 0 space.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine (Continued)

Definition: Oracle Turing Machine (Continued)

• The set of states is of the form

{ORACLE-YES,ORACLE-NO} × S0

where S0 is the set of states in the original Turing machine.

The transition function acts on the state of the current
configuration; it only affects the second component. The first
component changes only if the algorithm poses a question to
the oracle. The change depends naturally on the relationship
of the question character sequence to O.

From these, the run (a sequence of configurations generated from
the initial configuration), and the defined language, are naturally
derived. The cost of the question is 1 time unit and 0 space.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine (Continued)

Definition: Oracle Turing Machine (Continued)

• The set of states is of the form

{ORACLE-YES,ORACLE-NO} × S0

where S0 is the set of states in the original Turing machine.

The transition function acts on the state of the current
configuration; it only affects the second component. The first
component changes only if the algorithm poses a question to
the oracle. The change depends naturally on the relationship
of the question character sequence to O.

From these, the run (a sequence of configurations generated from
the initial configuration), and the defined language, are naturally
derived.

The cost of the question is 1 time unit and 0 space.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Oracle Turing Machine (Continued)

Definition: Oracle Turing Machine (Continued)

• The set of states is of the form

{ORACLE-YES,ORACLE-NO} × S0

where S0 is the set of states in the original Turing machine.

The transition function acts on the state of the current
configuration; it only affects the second component. The first
component changes only if the algorithm poses a question to
the oracle. The change depends naturally on the relationship
of the question character sequence to O.

From these, the run (a sequence of configurations generated from
the initial configuration), and the defined language, are naturally
derived. The cost of the question is 1 time unit and 0 space.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Comparison of the Two Reductions

The Karp reduction is a very specific case of Turing reduction:
After the usual computation, a single question can be posed about
the belonging of L̂.

The answer to the question also represents the computed bit.

Turing reduction is, of course, a much stronger concept. We can
think of L̂ as an unwritten subroutine.

The essence of the reduction is that if someone can efficiently
write the L̂ subroutine, then L can be efficiently decided (assuming
the contribution of R is considered efficient, i.e., it belongs to C).

We do not require the implementation of the subroutine, we only
count the invocation of the subroutine and the reception of the
result as a single step.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Comparison of the Two Reductions

The Karp reduction is a very specific case of Turing reduction:
After the usual computation, a single question can be posed about
the belonging of L̂.

The answer to the question also represents the computed bit.

Turing reduction is, of course, a much stronger concept. We can
think of L̂ as an unwritten subroutine.

The essence of the reduction is that if someone can efficiently
write the L̂ subroutine, then L can be efficiently decided (assuming
the contribution of R is considered efficient, i.e., it belongs to C).

We do not require the implementation of the subroutine, we only
count the invocation of the subroutine and the reception of the
result as a single step.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Comparison of the Two Reductions

The Karp reduction is a very specific case of Turing reduction:
After the usual computation, a single question can be posed about
the belonging of L̂.

The answer to the question also represents the computed bit.

Turing reduction is, of course, a much stronger concept. We can
think of L̂ as an unwritten subroutine.

The essence of the reduction is that if someone can efficiently
write the L̂ subroutine, then L can be efficiently decided (assuming
the contribution of R is considered efficient, i.e., it belongs to C).

We do not require the implementation of the subroutine, we only
count the invocation of the subroutine and the reception of the
result as a single step.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Comparison of the Two Reductions

The Karp reduction is a very specific case of Turing reduction:
After the usual computation, a single question can be posed about
the belonging of L̂.

The answer to the question also represents the computed bit.

Turing reduction is, of course, a much stronger concept. We can
think of L̂ as an unwritten subroutine.

The essence of the reduction is that if someone can efficiently
write the L̂ subroutine, then L can be efficiently decided (assuming
the contribution of R is considered efficient, i.e., it belongs to C).

We do not require the implementation of the subroutine, we only
count the invocation of the subroutine and the reception of the
result as a single step.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Comparison of the Two Reductions

The Karp reduction is a very specific case of Turing reduction:
After the usual computation, a single question can be posed about
the belonging of L̂.

The answer to the question also represents the computed bit.

Turing reduction is, of course, a much stronger concept. We can
think of L̂ as an unwritten subroutine.

The essence of the reduction is that if someone can efficiently
write the L̂ subroutine, then L can be efficiently decided (assuming
the contribution of R is considered efficient, i.e., it belongs to C).

We do not require the implementation of the subroutine, we only
count the invocation of the subroutine and the reception of the
result as a single step.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Comparison of the Two Reductions

The Karp reduction is a very specific case of Turing reduction:
After the usual computation, a single question can be posed about
the belonging of L̂.

The answer to the question also represents the computed bit.

Turing reduction is, of course, a much stronger concept. We can
think of L̂ as an unwritten subroutine.

The essence of the reduction is that if someone can efficiently
write the L̂ subroutine, then L can be efficiently decided (assuming
the contribution of R is considered efficient, i.e., it belongs to C).

We do not require the implementation of the subroutine, we only
count the invocation of the subroutine and the reception of the
result as a single step.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity

Finally, we mention an important property of some reductions.

Transitivity of reductions

(i) 4P is transitive.

(ii) 4L is transitive.

(iii) Let s(n) ≥ log n be a nice space function. If
L1 4SPACE(O(s(n)) L2 and L2 4L L3, then
L1 4SPACE(O(s(n)) L3

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity

Finally, we mention an important property of some reductions.

Transitivity of reductions

(i) 4P is transitive.

(ii) 4L is transitive.

(iii) Let s(n) ≥ log n be a nice space function. If
L1 4SPACE(O(s(n)) L2 and L2 4L L3, then
L1 4SPACE(O(s(n)) L3

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity

Finally, we mention an important property of some reductions.

Transitivity of reductions

(i) 4P is transitive.

(ii) 4L is transitive.

(iii) Let s(n) ≥ log n be a nice space function. If
L1 4SPACE(O(s(n)) L2 and L2 4L L3, then
L1 4SPACE(O(s(n)) L3

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity

Finally, we mention an important property of some reductions.

Transitivity of reductions

(i) 4P is transitive.

(ii) 4L is transitive.

(iii) Let s(n) ≥ log n be a nice space function. If
L1 4SPACE(O(s(n)) L2 and L2 4L L3, then
L1 4SPACE(O(s(n)) L3

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity

Finally, we mention an important property of some reductions.

Transitivity of reductions

(i) 4P is transitive.

(ii) 4L is transitive.

(iii) Let s(n) ≥ log n be a nice space function. If
L1 4SPACE(O(s(n)) L2 and L2 4L L3, then
L1 4SPACE(O(s(n)) L3

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity

Finally, we mention an important property of some reductions.

Transitivity of reductions

(i) 4P is transitive.

(ii) 4L is transitive.

(iii) Let s(n) ≥ log n be a nice space function. If
L1 4SPACE(O(s(n)) L2 and L2 4L L3, then
L1 4SPACE(O(s(n)) L3

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions

Assume that L1 4P L2 and L2 4P L3. Let R1 and R2 be the two
algorithms verifying the two reductions.

Specifically, R1 and R2 are both polynomial. Let p1 and p2 be the
two polynomials giving the time bounds of R1 and R2. We can
assume that p2 is monotonically increasing.

Run R1 on input ω, which calculates the character sequence ω̃.
Then run R2 on ω̃, leading to the computation of ˜̃ω.

The resulting Turing machine is denoted as R. We will show that
R verifies the L1 4P L3 reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions

Assume that L1 4P L2 and L2 4P L3.

Let R1 and R2 be the two
algorithms verifying the two reductions.

Specifically, R1 and R2 are both polynomial. Let p1 and p2 be the
two polynomials giving the time bounds of R1 and R2. We can
assume that p2 is monotonically increasing.

Run R1 on input ω, which calculates the character sequence ω̃.
Then run R2 on ω̃, leading to the computation of ˜̃ω.

The resulting Turing machine is denoted as R. We will show that
R verifies the L1 4P L3 reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions

Assume that L1 4P L2 and L2 4P L3. Let R1 and R2 be the two
algorithms verifying the two reductions.

Specifically, R1 and R2 are both polynomial. Let p1 and p2 be the
two polynomials giving the time bounds of R1 and R2. We can
assume that p2 is monotonically increasing.

Run R1 on input ω, which calculates the character sequence ω̃.
Then run R2 on ω̃, leading to the computation of ˜̃ω.

The resulting Turing machine is denoted as R. We will show that
R verifies the L1 4P L3 reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions

Assume that L1 4P L2 and L2 4P L3. Let R1 and R2 be the two
algorithms verifying the two reductions.

Specifically, R1 and R2 are both polynomial.

Let p1 and p2 be the
two polynomials giving the time bounds of R1 and R2. We can
assume that p2 is monotonically increasing.

Run R1 on input ω, which calculates the character sequence ω̃.
Then run R2 on ω̃, leading to the computation of ˜̃ω.

The resulting Turing machine is denoted as R. We will show that
R verifies the L1 4P L3 reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions

Assume that L1 4P L2 and L2 4P L3. Let R1 and R2 be the two
algorithms verifying the two reductions.

Specifically, R1 and R2 are both polynomial. Let p1 and p2 be the
two polynomials giving the time bounds of R1 and R2. We can
assume that p2 is monotonically increasing.

Run R1 on input ω, which calculates the character sequence ω̃.
Then run R2 on ω̃, leading to the computation of ˜̃ω.

The resulting Turing machine is denoted as R. We will show that
R verifies the L1 4P L3 reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions

Assume that L1 4P L2 and L2 4P L3. Let R1 and R2 be the two
algorithms verifying the two reductions.

Specifically, R1 and R2 are both polynomial. Let p1 and p2 be the
two polynomials giving the time bounds of R1 and R2. We can
assume that p2 is monotonically increasing.

Run R1 on input ω, which calculates the character sequence ω̃.

Then run R2 on ω̃, leading to the computation of ˜̃ω.

The resulting Turing machine is denoted as R. We will show that
R verifies the L1 4P L3 reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions

Assume that L1 4P L2 and L2 4P L3. Let R1 and R2 be the two
algorithms verifying the two reductions.

Specifically, R1 and R2 are both polynomial. Let p1 and p2 be the
two polynomials giving the time bounds of R1 and R2. We can
assume that p2 is monotonically increasing.

Run R1 on input ω, which calculates the character sequence ω̃.
Then run R2 on ω̃, leading to the computation of ˜̃ω.

The resulting Turing machine is denoted as R. We will show that
R verifies the L1 4P L3 reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions

Assume that L1 4P L2 and L2 4P L3. Let R1 and R2 be the two
algorithms verifying the two reductions.

Specifically, R1 and R2 are both polynomial. Let p1 and p2 be the
two polynomials giving the time bounds of R1 and R2. We can
assume that p2 is monotonically increasing.

Run R1 on input ω, which calculates the character sequence ω̃.
Then run R2 on ω̃, leading to the computation of ˜̃ω.

The resulting Turing machine is denoted as R.

We will show that
R verifies the L1 4P L3 reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions

Assume that L1 4P L2 and L2 4P L3. Let R1 and R2 be the two
algorithms verifying the two reductions.

Specifically, R1 and R2 are both polynomial. Let p1 and p2 be the
two polynomials giving the time bounds of R1 and R2. We can
assume that p2 is monotonically increasing.

Run R1 on input ω, which calculates the character sequence ω̃.
Then run R2 on ω̃, leading to the computation of ˜̃ω.

The resulting Turing machine is denoted as R. We will show that
R verifies the L1 4P L3 reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions (Continued)

ω ∈ L1 if and only if ω̃ ∈ L2. Which holds if and only if ˜̃ω ∈ L3.

We still need to show that R is polynomial. The time complexity
of R on input ω is p1(|ω|) + p2(|ω̃|). ω̃ is computed by a machine
with time bound p1, so |ω̃| ≤ p1(ω).

Thus, for input ω, the upper bound on the runtime becomes

p1(|ω|) + p2(|ω̃|) ≤ p1(|ω|) + p2(p1(|ω|)).

This is a polynomial upper bound.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions (Continued)

ω ∈ L1 if and only if ω̃ ∈ L2.

Which holds if and only if ˜̃ω ∈ L3.

We still need to show that R is polynomial. The time complexity
of R on input ω is p1(|ω|) + p2(|ω̃|). ω̃ is computed by a machine
with time bound p1, so |ω̃| ≤ p1(ω).

Thus, for input ω, the upper bound on the runtime becomes

p1(|ω|) + p2(|ω̃|) ≤ p1(|ω|) + p2(p1(|ω|)).

This is a polynomial upper bound.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions (Continued)

ω ∈ L1 if and only if ω̃ ∈ L2. Which holds if and only if ˜̃ω ∈ L3.

We still need to show that R is polynomial. The time complexity
of R on input ω is p1(|ω|) + p2(|ω̃|). ω̃ is computed by a machine
with time bound p1, so |ω̃| ≤ p1(ω).

Thus, for input ω, the upper bound on the runtime becomes

p1(|ω|) + p2(|ω̃|) ≤ p1(|ω|) + p2(p1(|ω|)).

This is a polynomial upper bound.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions (Continued)

ω ∈ L1 if and only if ω̃ ∈ L2. Which holds if and only if ˜̃ω ∈ L3.

We still need to show that R is polynomial.

The time complexity
of R on input ω is p1(|ω|) + p2(|ω̃|). ω̃ is computed by a machine
with time bound p1, so |ω̃| ≤ p1(ω).

Thus, for input ω, the upper bound on the runtime becomes

p1(|ω|) + p2(|ω̃|) ≤ p1(|ω|) + p2(p1(|ω|)).

This is a polynomial upper bound.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions (Continued)

ω ∈ L1 if and only if ω̃ ∈ L2. Which holds if and only if ˜̃ω ∈ L3.

We still need to show that R is polynomial. The time complexity
of R on input ω is p1(|ω|) + p2(|ω̃|).

ω̃ is computed by a machine
with time bound p1, so |ω̃| ≤ p1(ω).

Thus, for input ω, the upper bound on the runtime becomes

p1(|ω|) + p2(|ω̃|) ≤ p1(|ω|) + p2(p1(|ω|)).

This is a polynomial upper bound.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions (Continued)

ω ∈ L1 if and only if ω̃ ∈ L2. Which holds if and only if ˜̃ω ∈ L3.

We still need to show that R is polynomial. The time complexity
of R on input ω is p1(|ω|) + p2(|ω̃|). ω̃ is computed by a machine
with time bound p1, so |ω̃| ≤ p1(ω).

Thus, for input ω, the upper bound on the runtime becomes

p1(|ω|) + p2(|ω̃|) ≤ p1(|ω|) + p2(p1(|ω|)).

This is a polynomial upper bound.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions (Continued)

ω ∈ L1 if and only if ω̃ ∈ L2. Which holds if and only if ˜̃ω ∈ L3.

We still need to show that R is polynomial. The time complexity
of R on input ω is p1(|ω|) + p2(|ω̃|). ω̃ is computed by a machine
with time bound p1, so |ω̃| ≤ p1(ω).

Thus, for input ω, the upper bound on the runtime becomes

p1(|ω|) + p2(|ω̃|) ≤ p1(|ω|) + p2(p1(|ω|)).

This is a polynomial upper bound.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Polynomial Time Reductions (Continued)

ω ∈ L1 if and only if ω̃ ∈ L2. Which holds if and only if ˜̃ω ∈ L3.

We still need to show that R is polynomial. The time complexity
of R on input ω is p1(|ω|) + p2(|ω̃|). ω̃ is computed by a machine
with time bound p1, so |ω̃| ≤ p1(ω).

Thus, for input ω, the upper bound on the runtime becomes

p1(|ω|) + p2(|ω̃|) ≤ p1(|ω|) + p2(p1(|ω|)).

This is a polynomial upper bound.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions

Assume that L1 4L L2 and L2 4L L3. Let R1 and R2 be the two
algorithms verifying the two reductions. Specifically, R1 and R2 are
both logarithmic. We construct an algorithm R from the two

reductions as follows: Run R1 on input ω, which calculates the
character sequence ω̃. Then run R2 on ω̃, leading to the
computation of ˜̃ω.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions

Assume that L1 4L L2 and L2 4L L3.

Let R1 and R2 be the two
algorithms verifying the two reductions. Specifically, R1 and R2 are
both logarithmic. We construct an algorithm R from the two

reductions as follows: Run R1 on input ω, which calculates the
character sequence ω̃. Then run R2 on ω̃, leading to the
computation of ˜̃ω.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions

Assume that L1 4L L2 and L2 4L L3. Let R1 and R2 be the two
algorithms verifying the two reductions.

Specifically, R1 and R2 are
both logarithmic. We construct an algorithm R from the two

reductions as follows: Run R1 on input ω, which calculates the
character sequence ω̃. Then run R2 on ω̃, leading to the
computation of ˜̃ω.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions

Assume that L1 4L L2 and L2 4L L3. Let R1 and R2 be the two
algorithms verifying the two reductions. Specifically, R1 and R2 are
both logarithmic.

We construct an algorithm R from the two

reductions as follows: Run R1 on input ω, which calculates the
character sequence ω̃. Then run R2 on ω̃, leading to the
computation of ˜̃ω.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions

Assume that L1 4L L2 and L2 4L L3. Let R1 and R2 be the two
algorithms verifying the two reductions. Specifically, R1 and R2 are
both logarithmic. We construct an algorithm R from the two

reductions as follows: Run R1 on input ω, which calculates the
character sequence ω̃. Then run R2 on ω̃, leading to the
computation of ˜̃ω.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

The algorithm obtained this way is NOT good: The intermediate
ω̃ requires a worktape during computation. This is expected to
exceed logarithmic space. Nevertheless, keep in mind this R
algorithm’s execution. In the actual R̃ reduction, we recognize
fragments of R’s execution.

The worktapes of R̃ correspond to R1’s worktapes plus R2’s
worktapes. We have two extra tapes instead of the previous tape,
one for the output of R1 and shared with R2’s input tape, and the
other tape’s content is the position index of R1’s output tape while
the other tape’s content is the position index of R2’s input tape.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

The algorithm obtained this way is NOT good:

The intermediate
ω̃ requires a worktape during computation. This is expected to
exceed logarithmic space. Nevertheless, keep in mind this R
algorithm’s execution. In the actual R̃ reduction, we recognize
fragments of R’s execution.

The worktapes of R̃ correspond to R1’s worktapes plus R2’s
worktapes. We have two extra tapes instead of the previous tape,
one for the output of R1 and shared with R2’s input tape, and the
other tape’s content is the position index of R1’s output tape while
the other tape’s content is the position index of R2’s input tape.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

The algorithm obtained this way is NOT good: The intermediate
ω̃ requires a worktape during computation.

This is expected to
exceed logarithmic space. Nevertheless, keep in mind this R
algorithm’s execution. In the actual R̃ reduction, we recognize
fragments of R’s execution.

The worktapes of R̃ correspond to R1’s worktapes plus R2’s
worktapes. We have two extra tapes instead of the previous tape,
one for the output of R1 and shared with R2’s input tape, and the
other tape’s content is the position index of R1’s output tape while
the other tape’s content is the position index of R2’s input tape.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

The algorithm obtained this way is NOT good: The intermediate
ω̃ requires a worktape during computation. This is expected to
exceed logarithmic space.

Nevertheless, keep in mind this R
algorithm’s execution. In the actual R̃ reduction, we recognize
fragments of R’s execution.

The worktapes of R̃ correspond to R1’s worktapes plus R2’s
worktapes. We have two extra tapes instead of the previous tape,
one for the output of R1 and shared with R2’s input tape, and the
other tape’s content is the position index of R1’s output tape while
the other tape’s content is the position index of R2’s input tape.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

The algorithm obtained this way is NOT good: The intermediate
ω̃ requires a worktape during computation. This is expected to
exceed logarithmic space. Nevertheless, keep in mind this R
algorithm’s execution.

In the actual R̃ reduction, we recognize
fragments of R’s execution.

The worktapes of R̃ correspond to R1’s worktapes plus R2’s
worktapes. We have two extra tapes instead of the previous tape,
one for the output of R1 and shared with R2’s input tape, and the
other tape’s content is the position index of R1’s output tape while
the other tape’s content is the position index of R2’s input tape.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

The algorithm obtained this way is NOT good: The intermediate
ω̃ requires a worktape during computation. This is expected to
exceed logarithmic space. Nevertheless, keep in mind this R
algorithm’s execution. In the actual R̃ reduction, we recognize
fragments of R’s execution.

The worktapes of R̃ correspond to R1’s worktapes plus R2’s
worktapes. We have two extra tapes instead of the previous tape,
one for the output of R1 and shared with R2’s input tape, and the
other tape’s content is the position index of R1’s output tape while
the other tape’s content is the position index of R2’s input tape.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

The algorithm obtained this way is NOT good: The intermediate
ω̃ requires a worktape during computation. This is expected to
exceed logarithmic space. Nevertheless, keep in mind this R
algorithm’s execution. In the actual R̃ reduction, we recognize
fragments of R’s execution.

The worktapes of R̃ correspond to R1’s worktapes plus R2’s
worktapes.

We have two extra tapes instead of the previous tape,
one for the output of R1 and shared with R2’s input tape, and the
other tape’s content is the position index of R1’s output tape while
the other tape’s content is the position index of R2’s input tape.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

The algorithm obtained this way is NOT good: The intermediate
ω̃ requires a worktape during computation. This is expected to
exceed logarithmic space. Nevertheless, keep in mind this R
algorithm’s execution. In the actual R̃ reduction, we recognize
fragments of R’s execution.

The worktapes of R̃ correspond to R1’s worktapes plus R2’s
worktapes. We have two extra tapes instead of the previous tape,
one for the output of R1 and shared with R2’s input tape, and the
other tape’s content is the position index of R1’s output tape while
the other tape’s content is the position index of R2’s input tape.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

R̃ performs the simulation of R2 without the content of the ω̃
input tape.

We need to work for every read operation.

Now we know which character of the calculated ω̃ we are
interested in. We start the simulation of R1. During the
simulation, we do not write down the calculated characters, only
store the position of the output head. If R1 writes, then we
compare the new position with the desired position for reading.

If the two positions match, we read the unwritten character from
the state and stop the R1 simulation, continue the R2 simulation.
If the two positions differ, we continue the R1 simulation.

(iii) The ideas of the previous proof still work here.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

R̃ performs the simulation of R2 without the content of the ω̃
input tape.

We need to work for every read operation.

Now we know which character of the calculated ω̃ we are
interested in. We start the simulation of R1. During the
simulation, we do not write down the calculated characters, only
store the position of the output head. If R1 writes, then we
compare the new position with the desired position for reading.

If the two positions match, we read the unwritten character from
the state and stop the R1 simulation, continue the R2 simulation.
If the two positions differ, we continue the R1 simulation.

(iii) The ideas of the previous proof still work here.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

R̃ performs the simulation of R2 without the content of the ω̃
input tape.

We need to work for every read operation.

Now we know which character of the calculated ω̃ we are
interested in. We start the simulation of R1. During the
simulation, we do not write down the calculated characters, only
store the position of the output head. If R1 writes, then we
compare the new position with the desired position for reading.

If the two positions match, we read the unwritten character from
the state and stop the R1 simulation, continue the R2 simulation.
If the two positions differ, we continue the R1 simulation.

(iii) The ideas of the previous proof still work here.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

R̃ performs the simulation of R2 without the content of the ω̃
input tape.

We need to work for every read operation.

Now we know which character of the calculated ω̃ we are
interested in.

We start the simulation of R1. During the
simulation, we do not write down the calculated characters, only
store the position of the output head. If R1 writes, then we
compare the new position with the desired position for reading.

If the two positions match, we read the unwritten character from
the state and stop the R1 simulation, continue the R2 simulation.
If the two positions differ, we continue the R1 simulation.

(iii) The ideas of the previous proof still work here.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

R̃ performs the simulation of R2 without the content of the ω̃
input tape.

We need to work for every read operation.

Now we know which character of the calculated ω̃ we are
interested in. We start the simulation of R1. During the
simulation, we do not write down the calculated characters, only
store the position of the output head.

If R1 writes, then we
compare the new position with the desired position for reading.

If the two positions match, we read the unwritten character from
the state and stop the R1 simulation, continue the R2 simulation.
If the two positions differ, we continue the R1 simulation.

(iii) The ideas of the previous proof still work here.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

R̃ performs the simulation of R2 without the content of the ω̃
input tape.

We need to work for every read operation.

Now we know which character of the calculated ω̃ we are
interested in. We start the simulation of R1. During the
simulation, we do not write down the calculated characters, only
store the position of the output head. If R1 writes, then we
compare the new position with the desired position for reading.

If the two positions match, we read the unwritten character from
the state and stop the R1 simulation, continue the R2 simulation.
If the two positions differ, we continue the R1 simulation.

(iii) The ideas of the previous proof still work here.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

R̃ performs the simulation of R2 without the content of the ω̃
input tape.

We need to work for every read operation.

Now we know which character of the calculated ω̃ we are
interested in. We start the simulation of R1. During the
simulation, we do not write down the calculated characters, only
store the position of the output head. If R1 writes, then we
compare the new position with the desired position for reading.

If the two positions match, we read the unwritten character from
the state and stop the R1 simulation,

continue the R2 simulation.
If the two positions differ, we continue the R1 simulation.

(iii) The ideas of the previous proof still work here.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

R̃ performs the simulation of R2 without the content of the ω̃
input tape.

We need to work for every read operation.

Now we know which character of the calculated ω̃ we are
interested in. We start the simulation of R1. During the
simulation, we do not write down the calculated characters, only
store the position of the output head. If R1 writes, then we
compare the new position with the desired position for reading.

If the two positions match, we read the unwritten character from
the state and stop the R1 simulation, continue the R2 simulation.

If the two positions differ, we continue the R1 simulation.

(iii) The ideas of the previous proof still work here.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

R̃ performs the simulation of R2 without the content of the ω̃
input tape.

We need to work for every read operation.

Now we know which character of the calculated ω̃ we are
interested in. We start the simulation of R1. During the
simulation, we do not write down the calculated characters, only
store the position of the output head. If R1 writes, then we
compare the new position with the desired position for reading.

If the two positions match, we read the unwritten character from
the state and stop the R1 simulation, continue the R2 simulation.
If the two positions differ, we continue the R1 simulation.

(iii) The ideas of the previous proof still work here.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Transitivity of Logarithmic Space Reductions (Continued)

R̃ performs the simulation of R2 without the content of the ω̃
input tape.

We need to work for every read operation.

Now we know which character of the calculated ω̃ we are
interested in. We start the simulation of R1. During the
simulation, we do not write down the calculated characters, only
store the position of the output head. If R1 writes, then we
compare the new position with the desired position for reading.

If the two positions match, we read the unwritten character from
the state and stop the R1 simulation, continue the R2 simulation.
If the two positions differ, we continue the R1 simulation.

(iii) The ideas of the previous proof still work here.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Lemma

Lemma

(i) L 4P L̂ and L̂ ∈ P, then L ∈ P.

(ii) L 4L L̂ and L̂ ∈ L, then L ∈ L.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Lemma

Lemma

(i) L 4P L̂ and L̂ ∈ P, then L ∈ P.

(ii) L 4L L̂ and L̂ ∈ L, then L ∈ L.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Lemma

Lemma

(i) L 4P L̂ and L̂ ∈ P, then L ∈ P.

(ii) L 4L L̂ and L̂ ∈ L, then L ∈ L.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Lemma

Lemma

(i) L 4P L̂ and L̂ ∈ P, then L ∈ P.

(ii) L 4L L̂ and L̂ ∈ L, then L ∈ L.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proof of the Lemma

(i) Consider a Turing machine A that performs the reduction from
L to L̂, and Â, which decides the membership problem for L̂ in P.

Let ω be the given input.

Perform the computation

ω → A(ω) ∈ Σp(n) → Â(A(ω)) ∈ {ACCEPT,REJECT}

for the following values of n.

The first step is limited by a polynomial p in the input size n. The
longest input that we can compute falls into Σp(n). The second
step is limited by a polynomial q in the input size. The total time
is (p + q ◦ p)(n), which is a polynomial function of n.

The combined action of the two algorithms, based on the concept
of Karp reduction, decides exactly the language L, which means L
is also decidable in polynomial time.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proof of the Lemma

(i) Consider a Turing machine A that performs the reduction from
L to L̂, and Â, which decides the membership problem for L̂ in P.

Let ω be the given input.

Perform the computation

ω → A(ω) ∈ Σp(n) → Â(A(ω)) ∈ {ACCEPT,REJECT}

for the following values of n.

The first step is limited by a polynomial p in the input size n. The
longest input that we can compute falls into Σp(n). The second
step is limited by a polynomial q in the input size. The total time
is (p + q ◦ p)(n), which is a polynomial function of n.

The combined action of the two algorithms, based on the concept
of Karp reduction, decides exactly the language L, which means L
is also decidable in polynomial time.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proof of the Lemma

(i) Consider a Turing machine A that performs the reduction from
L to L̂, and Â, which decides the membership problem for L̂ in P.

Let ω be the given input.

Perform the computation

ω → A(ω) ∈ Σp(n) → Â(A(ω)) ∈ {ACCEPT,REJECT}

for the following values of n.

The first step is limited by a polynomial p in the input size n. The
longest input that we can compute falls into Σp(n). The second
step is limited by a polynomial q in the input size. The total time
is (p + q ◦ p)(n), which is a polynomial function of n.

The combined action of the two algorithms, based on the concept
of Karp reduction, decides exactly the language L, which means L
is also decidable in polynomial time.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proof of the Lemma

(i) Consider a Turing machine A that performs the reduction from
L to L̂, and Â, which decides the membership problem for L̂ in P.

Let ω be the given input.

Perform the computation

ω → A(ω) ∈ Σp(n) → Â(A(ω)) ∈ {ACCEPT,REJECT}

for the following values of n.

The first step is limited by a polynomial p in the input size n. The
longest input that we can compute falls into Σp(n). The second
step is limited by a polynomial q in the input size. The total time
is (p + q ◦ p)(n), which is a polynomial function of n.

The combined action of the two algorithms, based on the concept
of Karp reduction, decides exactly the language L, which means L
is also decidable in polynomial time.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proof of the Lemma

(i) Consider a Turing machine A that performs the reduction from
L to L̂, and Â, which decides the membership problem for L̂ in P.

Let ω be the given input.

Perform the computation

ω → A(ω) ∈ Σp(n) → Â(A(ω)) ∈ {ACCEPT,REJECT}

for the following values of n.

The first step is limited by a polynomial p in the input size n. The
longest input that we can compute falls into Σp(n).

The second
step is limited by a polynomial q in the input size. The total time
is (p + q ◦ p)(n), which is a polynomial function of n.

The combined action of the two algorithms, based on the concept
of Karp reduction, decides exactly the language L, which means L
is also decidable in polynomial time.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proof of the Lemma

(i) Consider a Turing machine A that performs the reduction from
L to L̂, and Â, which decides the membership problem for L̂ in P.

Let ω be the given input.

Perform the computation

ω → A(ω) ∈ Σp(n) → Â(A(ω)) ∈ {ACCEPT,REJECT}

for the following values of n.

The first step is limited by a polynomial p in the input size n. The
longest input that we can compute falls into Σp(n). The second
step is limited by a polynomial q in the input size. The total time
is (p + q ◦ p)(n), which is a polynomial function of n.

The combined action of the two algorithms, based on the concept
of Karp reduction, decides exactly the language L, which means L
is also decidable in polynomial time.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proof of the Lemma

(i) Consider a Turing machine A that performs the reduction from
L to L̂, and Â, which decides the membership problem for L̂ in P.

Let ω be the given input.

Perform the computation

ω → A(ω) ∈ Σp(n) → Â(A(ω)) ∈ {ACCEPT,REJECT}

for the following values of n.

The first step is limited by a polynomial p in the input size n. The
longest input that we can compute falls into Σp(n). The second
step is limited by a polynomial q in the input size. The total time
is (p + q ◦ p)(n), which is a polynomial function of n.

The combined action of the two algorithms, based on the concept
of Karp reduction, decides exactly the language L, which means L
is also decidable in polynomial time.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proof of the Lemma

(ii) Based on the ideas of part (i) and the previous lemma, it is
obvious.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Proof of the Lemma

(ii) Based on the ideas of part (i) and the previous lemma, it is
obvious.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Break

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Let L be an arbitrary language in NL. Then

L 4L DIRECTED-REACHABILITY.

The proof of this example is essentially what has been discussed
earlier. We summarize the essential ideas of the previous reasoning
in a theorem.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Let L be an arbitrary language in NL. Then

L 4L DIRECTED-REACHABILITY.

The proof of this example is essentially what has been discussed
earlier. We summarize the essential ideas of the previous reasoning
in a theorem.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Let L be an arbitrary language in NL. Then

L 4L DIRECTED-REACHABILITY.

The proof of this example is essentially what has been discussed
earlier.

We summarize the essential ideas of the previous reasoning
in a theorem.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Example of a Reduction

Example

Let L be an arbitrary language in NL. Then

L 4L DIRECTED-REACHABILITY.

The proof of this example is essentially what has been discussed
earlier. We summarize the essential ideas of the previous reasoning
in a theorem.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The Theorem

Theorem

Let L ∈T NL. It can be assumed that the Turing machine proving
containment has two different halting configurations on inputs of
given length (so accepting runs end in the same configuration).
To ω ∈ Σ∗, we assign the graph of the (directed) reduced

configurations
−→
G =

−→
G T ,ω of the Turing machine. This assignment

includes v0 as the vertex corresponding to the initial configuration,
and v+ as the vertex corresponding to the accepting configuration.
This assignment has the following properties:

(i) ω ∈ L if and only if d
−→
G ω,T , v0, v+e ∈

−→
st -REACHABILITY.

(ii) The assignment is computable and its space complexity is
O(log(n)).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

The Theorem

Theorem

Let L ∈T NL. It can be assumed that the Turing machine proving
containment has two different halting configurations on inputs of
given length (so accepting runs end in the same configuration).
To ω ∈ Σ∗, we assign the graph of the (directed) reduced

configurations
−→
G =

−→
G T ,ω of the Turing machine. This assignment

includes v0 as the vertex corresponding to the initial configuration,
and v+ as the vertex corresponding to the accepting configuration.
This assignment has the following properties:

(i) ω ∈ L if and only if d
−→
G ω,T , v0, v+e ∈

−→
st -REACHABILITY.

(ii) The assignment is computable and its space complexity is
O(log(n)).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Consequences

This example is much more general than the previous one. To see
this, let’s look at some consequences.

Corollary

If
−→
st -REACHABILITY ∈ P, then NL ⊂ P.

The condition is true, this simply follows from descriptions and
analysis of graph traversal algorithms, well-known in algorithm
theory lectures.

The above corollary is essentially re-proving NL ⊂ P, our earlier
result.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Consequences

This example is much more general than the previous one. To see
this, let’s look at some consequences.

Corollary

If
−→
st -REACHABILITY ∈ P, then NL ⊂ P.

The condition is true, this simply follows from descriptions and
analysis of graph traversal algorithms, well-known in algorithm
theory lectures.

The above corollary is essentially re-proving NL ⊂ P, our earlier
result.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Consequences

This example is much more general than the previous one. To see
this, let’s look at some consequences.

Corollary

If
−→
st -REACHABILITY ∈ P, then NL ⊂ P.

The condition is true, this simply follows from descriptions and
analysis of graph traversal algorithms, well-known in algorithm
theory lectures.

The above corollary is essentially re-proving NL ⊂ P, our earlier
result.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Consequences

This example is much more general than the previous one. To see
this, let’s look at some consequences.

Corollary

If
−→
st -REACHABILITY ∈ P, then NL ⊂ P.

The condition is true, this simply follows from descriptions and
analysis of graph traversal algorithms, well-known in algorithm
theory lectures.

The above corollary is essentially re-proving NL ⊂ P, our earlier
result.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Consequences

This example is much more general than the previous one. To see
this, let’s look at some consequences.

Corollary

If
−→
st -REACHABILITY ∈ P, then NL ⊂ P.

The condition is true, this simply follows from descriptions and
analysis of graph traversal algorithms, well-known in algorithm
theory lectures.

The above corollary is essentially re-proving NL ⊂ P, our earlier
result.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Consequence

Corollary

If DIRECTED-REACHABILITY ∈ L, then NL = L.

The conclusion is actually only NL ⊂ L (the other direction of
containment is obvious).

Here, the truth of the condition is not known, and many believe it
is not true.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Consequence

Corollary

If DIRECTED-REACHABILITY ∈ L, then NL = L.

The conclusion is actually only NL ⊂ L (the other direction of
containment is obvious).

Here, the truth of the condition is not known, and many believe it
is not true.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Consequence

Corollary

If DIRECTED-REACHABILITY ∈ L, then NL = L.

The conclusion is actually only NL ⊂ L (the other direction of
containment is obvious).

Here, the truth of the condition is not known, and many believe it
is not true.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Consequence

Corollary

If DIRECTED-REACHABILITY ∈ L, then NL = L.

The conclusion is actually only NL ⊂ L (the other direction of
containment is obvious).

Here, the truth of the condition is not known, and many believe it
is not true.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Definition of Completeness

The above reasoning is very important. The essence of the
argument is that, based on the example,
DIRECTED-REACHABILITY encapsulates the complexity of the
entire NL language class. This leads to the creation of a more
general concept:

Definition

A language L̂ is complete in class C under complexity R reduction
if:

(i) L̂ ∈ C,

(ii) for every L ∈ C, L 4R L̂.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Definition of Completeness

The above reasoning is very important. The essence of the
argument is that, based on the example,
DIRECTED-REACHABILITY encapsulates the complexity of the
entire NL language class. This leads to the creation of a more
general concept:

Definition

A language L̂ is complete in class C under complexity R reduction
if:

(i) L̂ ∈ C,

(ii) for every L ∈ C, L 4R L̂.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Definition of Completeness

The above reasoning is very important. The essence of the
argument is that, based on the example,
DIRECTED-REACHABILITY encapsulates the complexity of the
entire NL language class. This leads to the creation of a more
general concept:

Definition

A language L̂ is complete in class C under complexity R reduction
if:

(i) L̂ ∈ C,

(ii) for every L ∈ C, L 4R L̂.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

We highlight four special cases.

Definition

The language L̂ is NP-complete if it is complete in NP under P
reduction. That is, L̂ is NP-complete if

(i) L̂ ∈ NP,

(ii) for every L ∈ NP, L 4P L̂.

The above convention is an alternative to working with 4L
reduction. This stricter interpretation will still be true for most
later NP-completeness-proving reductions. However, we only
require the polynomial time complexity of the reductions, as we
demand easier verifiability.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

We highlight four special cases.

Definition

The language L̂ is NP-complete if it is complete in NP under P
reduction. That is, L̂ is NP-complete if

(i) L̂ ∈ NP,

(ii) for every L ∈ NP, L 4P L̂.

The above convention is an alternative to working with 4L
reduction. This stricter interpretation will still be true for most
later NP-completeness-proving reductions. However, we only
require the polynomial time complexity of the reductions, as we
demand easier verifiability.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

We highlight four special cases.

Definition

The language L̂ is NP-complete if it is complete in NP under P
reduction. That is, L̂ is NP-complete if

(i) L̂ ∈ NP,

(ii) for every L ∈ NP, L 4P L̂.

The above convention is an alternative to working with 4L
reduction. This stricter interpretation will still be true for most
later NP-completeness-proving reductions. However, we only
require the polynomial time complexity of the reductions, as we
demand easier verifiability.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

We highlight four special cases.

Definition

The language L̂ is NP-complete if it is complete in NP under P
reduction. That is, L̂ is NP-complete if

(i) L̂ ∈ NP,

(ii) for every L ∈ NP, L 4P L̂.

The above convention is an alternative to working with 4L
reduction. This stricter interpretation will still be true for most
later NP-completeness-proving reductions. However, we only
require the polynomial time complexity of the reductions, as we
demand easier verifiability.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

We highlight four special cases.

Definition

The language L̂ is NP-complete if it is complete in NP under P
reduction. That is, L̂ is NP-complete if

(i) L̂ ∈ NP,

(ii) for every L ∈ NP, L 4P L̂.

The above convention is an alternative to working with 4L
reduction. This stricter interpretation will still be true for most
later NP-completeness-proving reductions. However, we only
require the polynomial time complexity of the reductions, as we
demand easier verifiability.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

We highlight four special cases.

Definition

The language L̂ is NP-complete if it is complete in NP under P
reduction. That is, L̂ is NP-complete if

(i) L̂ ∈ NP,

(ii) for every L ∈ NP, L 4P L̂.

The above convention is an alternative to working with 4L
reduction.

This stricter interpretation will still be true for most
later NP-completeness-proving reductions. However, we only
require the polynomial time complexity of the reductions, as we
demand easier verifiability.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

We highlight four special cases.

Definition

The language L̂ is NP-complete if it is complete in NP under P
reduction. That is, L̂ is NP-complete if

(i) L̂ ∈ NP,

(ii) for every L ∈ NP, L 4P L̂.

The above convention is an alternative to working with 4L
reduction. This stricter interpretation will still be true for most
later NP-completeness-proving reductions.

However, we only
require the polynomial time complexity of the reductions, as we
demand easier verifiability.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

We highlight four special cases.

Definition

The language L̂ is NP-complete if it is complete in NP under P
reduction. That is, L̂ is NP-complete if

(i) L̂ ∈ NP,

(ii) for every L ∈ NP, L 4P L̂.

The above convention is an alternative to working with 4L
reduction. This stricter interpretation will still be true for most
later NP-completeness-proving reductions. However, we only
require the polynomial time complexity of the reductions, as we
demand easier verifiability.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

Definition

The language L is NL-complete if it is complete in NL under L
reduction.

Definition

The language L is P-complete if it is complete in P under L
reduction.

Definition

The language L is PSPACE-complete if it is complete in
PSPACE under P reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

Definition

The language L is NL-complete if it is complete in NL under L
reduction.

Definition

The language L is P-complete if it is complete in P under L
reduction.

Definition

The language L is PSPACE-complete if it is complete in
PSPACE under P reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

Definition

The language L is NL-complete if it is complete in NL under L
reduction.

Definition

The language L is P-complete if it is complete in P under L
reduction.

Definition

The language L is PSPACE-complete if it is complete in
PSPACE under P reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Special Cases

Definition

The language L is NL-complete if it is complete in NL under L
reduction.

Definition

The language L is P-complete if it is complete in P under L
reduction.

Definition

The language L is PSPACE-complete if it is complete in
PSPACE under P reduction.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Hardness

Definition

L̂ is hard for class C under R complexity reduction, if for every
L ∈ C, L 4R L̂.

In other words, hardness is the concept of completeness without
condition (i). That is, we do not require membership in the class,
only the reducibility of elements of the class.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Hardness

Definition

L̂ is hard for class C under R complexity reduction, if for every
L ∈ C, L 4R L̂.

In other words, hardness is the concept of completeness without
condition (i). That is, we do not require membership in the class,
only the reducibility of elements of the class.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Hardness

Definition

L̂ is hard for class C under R complexity reduction, if for every
L ∈ C, L 4R L̂.

In other words, hardness is the concept of completeness without
condition (i). That is, we do not require membership in the class,
only the reducibility of elements of the class.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Hardness

Definition

L̂ is hard for class C under R complexity reduction, if for every
L ∈ C, L 4R L̂.

In other words, hardness is the concept of completeness without
condition (i). That is, we do not require membership in the class,
only the reducibility of elements of the class.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

A Concrete NL-Complete Problem

Theorem

DIRECTED-REACHABILITY is NL-complete.

When examining reductions, we saw the NL-hardness. We
previously saw the membership in NL.

Based on the theorem, our knowledge about
DIRECTED-REACHABILITY extends to the entire NL class.

We already saw an example of this:
−→
st -REACHABILITY∈ P. This

led to NL ⊂ P.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

A Concrete NL-Complete Problem

Theorem

DIRECTED-REACHABILITY is NL-complete.

When examining reductions, we saw the NL-hardness. We
previously saw the membership in NL.

Based on the theorem, our knowledge about
DIRECTED-REACHABILITY extends to the entire NL class.

We already saw an example of this:
−→
st -REACHABILITY∈ P. This

led to NL ⊂ P.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

A Concrete NL-Complete Problem

Theorem

DIRECTED-REACHABILITY is NL-complete.

When examining reductions, we saw the NL-hardness. We
previously saw the membership in NL.

Based on the theorem, our knowledge about
DIRECTED-REACHABILITY extends to the entire NL class.

We already saw an example of this:
−→
st -REACHABILITY∈ P. This

led to NL ⊂ P.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

A Concrete NL-Complete Problem

Theorem

DIRECTED-REACHABILITY is NL-complete.

When examining reductions, we saw the NL-hardness. We
previously saw the membership in NL.

Based on the theorem, our knowledge about
DIRECTED-REACHABILITY extends to the entire NL class.

We already saw an example of this:
−→
st -REACHABILITY∈ P. This

led to NL ⊂ P.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

A Concrete NL-Complete Problem

Theorem

DIRECTED-REACHABILITY is NL-complete.

When examining reductions, we saw the NL-hardness. We
previously saw the membership in NL.

Based on the theorem, our knowledge about
DIRECTED-REACHABILITY extends to the entire NL class.

We already saw an example of this:
−→
st -REACHABILITY∈ P. This

led to NL ⊂ P.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Implication of Savitch’s Algorithm

Savitch’s algorithm saves space. The DIRECTED-REACHABILITY
is solved in log2 space. This immediately leads to the following
theorem:

Theorem

NL ⊂ SPACE(log2 n).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Implication of Savitch’s Algorithm

Savitch’s algorithm saves space. The DIRECTED-REACHABILITY
is solved in log2 space. This immediately leads to the following
theorem:

Theorem

NL ⊂ SPACE(log2 n).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Implication of Savitch’s Algorithm

Savitch’s algorithm saves space. The DIRECTED-REACHABILITY
is solved in log2 space. This immediately leads to the following
theorem:

Theorem

NL ⊂ SPACE(log2 n).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Theorem

For a nice function s(n) > log n, any problem in NSPACE(s(n))
can be reduced to a

−→
st -REACHABILITY problem in O(s(n))

space, whose vertex set has size 2O(s(n)).

This reachability problem can be solved in O(s2(n)) space
(Savitch’s algorithm). This resulted in the following theorem:

Theorem

Let s(n) > log n be a nice space function. Then

NSPACE(s(n)) ⊂ SPACE(O(s2(n))).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Theorem

For a nice function s(n) > log n, any problem in NSPACE(s(n))
can be reduced to a

−→
st -REACHABILITY problem in O(s(n))

space, whose vertex set has size 2O(s(n)).

This reachability problem can be solved in O(s2(n)) space
(Savitch’s algorithm). This resulted in the following theorem:

Theorem

Let s(n) > log n be a nice space function. Then

NSPACE(s(n)) ⊂ SPACE(O(s2(n))).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Theorem

For a nice function s(n) > log n, any problem in NSPACE(s(n))
can be reduced to a

−→
st -REACHABILITY problem in O(s(n))

space, whose vertex set has size 2O(s(n)).

This reachability problem can be solved in O(s2(n)) space
(Savitch’s algorithm). This resulted in the following theorem:

Theorem

Let s(n) > log n be a nice space function. Then

NSPACE(s(n)) ⊂ SPACE(O(s2(n))).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Theorem

For a nice function s(n) > log n, any problem in NSPACE(s(n))
can be reduced to a

−→
st -REACHABILITY problem in O(s(n))

space, whose vertex set has size 2O(s(n)).

This reachability problem can be solved in O(s2(n)) space
(Savitch’s algorithm). This resulted in the following theorem:

Theorem

Let s(n) > log n be a nice space function. Then

NSPACE(s(n)) ⊂ SPACE(O(s2(n))).

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Implications

Specifically, we get the inclusion NPSPACE ⊂ PSPACE . That
is,

Theorem

PSPACE = NPSPACE .

We know that deterministic classes are closed under
complementation. Specifically, we obtain the following:

Theorem

NPSPACE is closed under complementation.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Implications

Specifically, we get the inclusion NPSPACE ⊂ PSPACE . That
is,

Theorem

PSPACE = NPSPACE .

We know that deterministic classes are closed under
complementation. Specifically, we obtain the following:

Theorem

NPSPACE is closed under complementation.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Implications

Specifically, we get the inclusion NPSPACE ⊂ PSPACE . That
is,

Theorem

PSPACE = NPSPACE .

We know that deterministic classes are closed under
complementation. Specifically, we obtain the following:

Theorem

NPSPACE is closed under complementation.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Implications

Specifically, we get the inclusion NPSPACE ⊂ PSPACE . That
is,

Theorem

PSPACE = NPSPACE .

We know that deterministic classes are closed under
complementation. Specifically, we obtain the following:

Theorem

NPSPACE is closed under complementation.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Implications

Specifically, we get the inclusion NPSPACE ⊂ PSPACE . That
is,

Theorem

PSPACE = NPSPACE .

We know that deterministic classes are closed under
complementation. Specifically, we obtain the following:

Theorem

NPSPACE is closed under complementation.

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Abstraction

Corollary

Let S be a class of nice space functions that is closed under
squaring. Then NPSPACE(∪s∈Ss(n)) = PSPACE(∪s∈Ss(n)).

Specifically, NPSPACE(∪s∈Ss(n)) is closed under
complementation, i.e.,

NPSPACE(∪s∈Ss(n)) = coNPSPACE(∪s∈Ss(n)).

Thus, another special case: EXPSPACE = NEXPSPACE .

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Abstraction

Corollary

Let S be a class of nice space functions that is closed under
squaring. Then NPSPACE(∪s∈Ss(n)) = PSPACE(∪s∈Ss(n)).

Specifically, NPSPACE(∪s∈Ss(n)) is closed under
complementation, i.e.,

NPSPACE(∪s∈Ss(n)) = coNPSPACE(∪s∈Ss(n)).

Thus, another special case: EXPSPACE = NEXPSPACE .

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Abstraction

Corollary

Let S be a class of nice space functions that is closed under
squaring. Then NPSPACE(∪s∈Ss(n)) = PSPACE(∪s∈Ss(n)).

Specifically, NPSPACE(∪s∈Ss(n)) is closed under
complementation, i.e.,

NPSPACE(∪s∈Ss(n)) = coNPSPACE(∪s∈Ss(n)).

Thus, another special case: EXPSPACE = NEXPSPACE .

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

Abstraction

Corollary

Let S be a class of nice space functions that is closed under
squaring. Then NPSPACE(∪s∈Ss(n)) = PSPACE(∪s∈Ss(n)).

Specifically, NPSPACE(∪s∈Ss(n)) is closed under
complementation, i.e.,

NPSPACE(∪s∈Ss(n)) = coNPSPACE(∪s∈Ss(n)).

Thus, another special case: EXPSPACE = NEXPSPACE .

Peter Hajnal Reductions, SzTE, 2023

Difficulty, Relative Difficulty Reductions of Problems Completeness

This is the End!

Thank you for your attention!

Peter Hajnal Reductions, SzTE, 2023

	Difficulty, Relative Difficulty
	Reductions of Problems
	Simple Examples
	Turing Reduction

	Completeness

