Lempel-Ziv-Welch algorithm

Peter Hajnal

Bolyai Institute, University of Szeged, Hungary

2023 fall

We have a non-empty, finite Σ alphabet.

We have a non-empty, finite Σ alphabet. The elements of Σ are called characters.

We have a non-empty, finite Σ alphabet. The elements of Σ are called characters. Σ^* is the set of finite character sequences.

We have a non-empty, finite Σ alphabet. The elements of Σ are called characters. Σ^* is the set of finite character sequences. A finite character sequence is called text/file/sentence/word.

We have a non-empty, finite Σ alphabet. The elements of Σ are called characters. Σ^* is the set of finite character sequences. A finite character sequence is called text/file/sentence/word. ($\varepsilon \in \Sigma^*$ is a special text, the empty text.)

We have a non-empty, finite Σ alphabet. The elements of Σ are called characters. Σ^* is the set of finite character sequences. A finite character sequence is called text/file/sentence/word. ($\varepsilon \in \Sigma^*$ is a special text, the empty text.)

Enoding texts

Coding in general

$$e:\Sigma^*\to\{0,1\},$$

where e is an encoding function.

We have a non-empty, finite Σ alphabet. The elements of Σ are called characters. Σ^* is the set of finite character sequences. A finite character sequence is called text/file/sentence/word. ($\varepsilon \in \Sigma^*$ is a special text, the empty text.)

Enoding texts

$$e:\Sigma^*\to\{0,1\},$$

where e is an encoding function.

Coding scheme

$$e$$
 "+" $d:\{0,1\} \rightarrow \Sigma^*$,

where d is a dencoding function.

We have a non-empty, finite Σ alphabet. The elements of Σ are called characters. Σ^* is the set of finite character sequences. A finite character sequence is called text/file/sentence/word. ($\varepsilon \in \Sigma^*$ is a special text, the empty text.)

Enoding texts

$$e:\Sigma^*\to\{0,1\},$$

where e is an encoding function.

Coding scheme

$$e$$
 "+" $d:\{0,1\} \rightarrow \Sigma^*$,

where d is a dencoding function.

Two parties/sides are involved in coding: Sender/Receiver,

We have a non-empty, finite Σ alphabet. The elements of Σ are called characters. Σ^* is the set of finite character sequences. A finite character sequence is called text/file/sentence/word. ($\varepsilon \in \Sigma^*$ is a special text, the empty text.)

Enoding texts

$$e:\Sigma^*\to\{0,1\},$$

where e is an encoding function.

Coding scheme

$$e$$
 "+" $d:\{0,1\} \rightarrow \Sigma^*$,

where d is a dencoding function.

Two parties/sides are involved in coding: Sender/Receiver, A/B,

We have a non-empty, finite Σ alphabet. The elements of Σ are called characters. Σ^* is the set of finite character sequences. A finite character sequence is called text/file/sentence/word. ($\varepsilon \in \Sigma^*$ is a special text, the empty text.)

Enoding texts

$$e:\Sigma^*\to\{0,1\},$$

where e is an encoding function.

Coding scheme

$$e$$
 "+" $d:\{0,1\} \rightarrow \Sigma^*$,

where d is a dencoding function.

Two parties/sides are involved in coding: Sender/Receiver, A/B, Alice/Bob

Character based encoding with fixed length

There is a constant ℓ and a 1-1 map

$$k: \Sigma \to \{0,1\}^{\ell},$$

Character based encoding with fixed length

There is a constant ℓ and a 1-1 map

$$k: \Sigma \to \{0,1\}^{\ell},$$

(we assume that $|\Sigma| \leq 2^{\ell}$, i.e. $\ell \geq \lceil \log_2 |\Sigma| \rceil$).

Character based encoding with fixed length

There is a constant ℓ and a 1-1 map

$$k: \Sigma \to \{0,1\}^{\ell},$$

(we assume that $|\Sigma| \le 2^{\ell}$, i.e. $\ell \ge \lceil \log_2 |\Sigma| \rceil$). Encoding based on k is

$$\widehat{k}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{k}(\tau)$ by slicing τ into characters

Character based encoding with fixed length

There is a constant ℓ and a 1-1 map

$$k: \Sigma \to \{0,1\}^{\ell}$$

(we assume that $|\Sigma| \le 2^{\ell}$, i.e. $\ell \ge \lceil \log_2 |\Sigma| \rceil$). Encoding based on k is

$$\widehat{k}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{k}(\tau)$ by slicing τ into characters (if τ is not empty, then we take the first character, and we process the leftover text recursively)

Character based encoding with fixed length

There is a constant ℓ and a 1-1 map

$$k: \Sigma \to \{0,1\}^{\ell}$$

(we assume that $|\Sigma| \le 2^{\ell}$, i.e. $\ell \ge \lceil \log_2 |\Sigma| \rceil$). Encoding based on k is

$$\widehat{k}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{k}(\tau)$ by slicing τ into characters (if τ is not empty, then we take the first character, and we process the leftover text recursively) we encode the characters using k

Character based encoding with fixed length

There is a constant ℓ and a 1-1 map

$$k: \Sigma \to \{0,1\}^{\ell}$$

(we assume that $|\Sigma| \le 2^{\ell}$, i.e. $\ell \ge \lceil \log_2 |\Sigma| \rceil$). Encoding based on k is

$$\widehat{k}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{k}(\tau)$ by slicing τ into characters (if τ is not empty, then we take the first character, and we process the leftover text recursively) we encode the characters using k (compute k at the character, the code of the actual character).

Character based encoding with fixed length

There is a constant ℓ and a 1-1 map

$$k: \Sigma \to \{0,1\}^{\ell},$$

(we assume that $|\Sigma| \le 2^{\ell}$, i.e. $\ell \ge \lceil \log_2 |\Sigma| \rceil$). Encoding based on k is

$$\widehat{k}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{k}(\tau)$ by slicing τ into characters (if τ is not empty, then we take the first character, and we process the leftover text recursively) we encode the characters using k (compute k at the character, the code of the actual character), and concatenate the codes of the characters.

H-tree and prefix-free encoding of characters

There is T rooted, binary, plane (0/1 labels at the two edges going to the two children) tree, and a bijective map between Σ and the leaves of T. The root- $\ell(b)$ path defines the code of the character "b" (ell(b)) is the leaf matched to the character b):

$$k: \Sigma \to \mathcal{L} \subset \{0,1\}^*$$
.

H-tree and prefix-free encoding of characters

There is T rooted, binary, plane (0/1 labels at the two edges going to the two children) tree, and a bijective map between Σ and the leaves of T. The root- $\ell(b)$ path defines the code of the character "b" (ell(b)) is the leaf matched to the character b):

$$k: \Sigma \to \mathcal{L} \subset \{0,1\}^*$$
.

Character based coding with variable length

H-tree and prefix-free encoding of characters

There is T rooted, binary, plane (0/1 labels at the two edges going to the two children) tree, and a bijective map between Σ and the leaves of T. The root- $\ell(b)$ path defines the code of the character "b" (ell(b)) is the leaf matched to the character b):

$$k: \Sigma \to \mathcal{L} \subset \{0,1\}^*$$
.

Character based coding with variable length

Encoding based on k is

$$\widehat{k}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{k}(\tau)$ by slicing τ into characters

H-tree and prefix-free encoding of characters

There is T rooted, binary, plane (0/1 labels at the two edges going to the two children) tree, and a bijective map between Σ and the leaves of T. The root- $\ell(b)$ path defines the code of the character "b" (ell(b)) is the leaf matched to the character b):

$$k: \Sigma \to \mathcal{L} \subset \{0,1\}^*$$
.

Character based coding with variable length

Encoding based on k is

$$\widehat{k}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{k}(\tau)$ by slicing τ into characters (if τ is not empty, then we take the first character, and we process the leftover text recursively)

H-tree and prefix-free encoding of characters

There is T rooted, binary, plane (0/1 labels at the two edges going to the two children) tree, and a bijective map between Σ and the leaves of T. The root- $\ell(b)$ path defines the code of the character "b" (ell(b)) is the leaf matched to the character b):

$$k: \Sigma \to \mathcal{L} \subset \{0,1\}^*$$
.

Character based coding with variable length

Encoding based on k is

$$\widehat{k}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{k}(\tau)$ by slicing τ into characters (if τ is not empty, then we take the first character, and we process the leftover text recursively) we encode the characters using k

H-tree and prefix-free encoding of characters

There is T rooted, binary, plane (0/1 labels at the two edges going to the two children) tree, and a bijective map between Σ and the leaves of T. The root- $\ell(b)$ path defines the code of the character "b" (ell(b)) is the leaf matched to the character b):

$$k: \Sigma \to \mathcal{L} \subset \{0,1\}^*$$
.

Character based coding with variable length

Encoding based on k is

$$\widehat{k}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $k(\tau)$ by slicing τ into characters (if τ is not empty, then we take the first character, and we process the leftover text recursively) we encode the characters using k (compute k at the character, the code of the actual character),

H-tree and prefix-free encoding of characters

There is T rooted, binary, plane (0/1 labels at the two edges going to the two children) tree, and a bijective map between Σ and the leaves of T. The root- $\ell(b)$ path defines the code of the character "b" (ell(b)) is the leaf matched to the character b):

$$k: \Sigma \to \mathcal{L} \subset \{0,1\}^*$$
.

Character based coding with variable length

Encoding based on k is

$$\widehat{k}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{k}(\tau)$ by slicing τ into characters (if τ is not empty, then we take the first character, and we process the leftover text recursively) we encode the characters using k (compute k at the character, the code of the actual character), and concatenate the codes of the characters.

Let D be a finite set of keywords: $D \subset \Sigma^*$. We always assume that $\Sigma \equiv \Sigma^1 \subset D$.

Let D be a finite set of keywords: $D\subset \Sigma^*$. We always assume that $\Sigma\equiv \Sigma^1\subset D$.

Character based coding with fixed length

There is a constant ℓ and a 1-1 "dictionary" map

$$d:D\to\{0,1\}^{\ell}.$$

Let D be a finite set of keywords: $D\subset \Sigma^*$. We always assume that $\Sigma\equiv \Sigma^1\subset D$.

Character based coding with fixed length

There is a constant ℓ and a 1-1 "dictionary" map

$$d:D\to\{0,1\}^{\ell}.$$

Let D be a finite set of keywords: $D\subset \Sigma^*$. We always assume that $\Sigma\equiv \Sigma^1\subset D$.

Character based coding with fixed length

There is a constant ℓ and a 1-1 "dictionary" map

$$d:D\to\{0,1\}^{\ell}.$$

Encoding based on d is

$$\widehat{d}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{d}(\tau)$ by slicing τ into words $(\in D)$

Let D be a finite set of keywords: $D\subset \Sigma^*$. We always assume that $\Sigma\equiv \Sigma^1\subset D$.

Character based coding with fixed length

There is a constant ℓ and a 1-1 "dictionary" map

$$d: D \to \{0,1\}^{\ell}$$
.

Encoding based on d is

$$\widehat{d}: \Sigma^* \rightarrow \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{d}(\tau)$ by slicing τ into words($\in D$) (if τ is not empty, then we take the LONGEST prefix of it, that is in the dictionary, and we process the leftover text recursively)

Let D be a finite set of keywords: $D \subset \Sigma^*$. We always assume that $\Sigma \equiv \Sigma^1 \subset D$.

Character based coding with fixed length

There is a constant ℓ and a 1-1 "dictionary" map

$$d:D\to\{0,1\}^{\ell}.$$

Encoding based on d is

$$\widehat{d}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{d}(\tau)$ by slicing τ into words($\in D$) (if τ is not empty, then we take the LONGEST prefix of it, that is in the dictionary, and we process the leftover text recursively) we encode the word, actually cut off, using k

Let D be a finite set of keywords: $D \subset \Sigma^*$. We always assume that $\Sigma \equiv \Sigma^1 \subset D$.

Character based coding with fixed length

There is a constant ℓ and a 1-1 "dictionary" map

$$d:D\to\{0,1\}^{\ell}.$$

Encoding based on d is

$$\widehat{d}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{d}(\tau)$ by slicing τ into words($\in D$) (if τ is not empty, then we take the LONGEST prefix of it, that is in the dictionary, and we process the leftover text recursively) we encode the word, actually cut off, using k (compute k at the word, the code of the actual word),

Let D be a finite set of keywords: $D \subset \Sigma^*$. We always assume that $\Sigma \equiv \Sigma^1 \subset D$.

Character based coding with fixed length

There is a constant ℓ and a 1-1 "dictionary" map

$$d:D\to\{0,1\}^{\ell}.$$

Encoding based on d is

$$\widehat{d}: \Sigma^* \to \{0,1\}^*,$$

where for a text $\tau \in \Sigma^*$, we obtain $\widehat{d}(\tau)$ by slicing τ into words($\in D$) (if τ is not empty, then we take the LONGEST prefix of it, that is in the dictionary, and we process the leftover text recursively) we encode the word, actually cut off, using k (compute k at the word, the code of the actual word), and concatenate the codes of the words.

Dictionary based decoding with fixed length

Dictionary based decoding with fixed length

If the dictionary, (D, d) is known for both parties,

Dictionary based decoding with fixed length

If the dictionary, (D, d) is known for both parties, then the decoding is very easy.

Break

We assume that $\Sigma = \Sigma_{ASCII}$, the character set of the ASCII code.

Increasing length LZW

We assume that $\Sigma = \Sigma_{ASCII}$, the character set of the ASCII code.

We choose a suitable length $\ell > 7 = \log_2 |\Sigma_{\textit{ASCII}}|$.

Increasing length LZW

We assume that $\Sigma = \Sigma_{ASCII}$, the character set of the ASCII code.

We choose a suitable length $\ell > 7 = \log_2 |\Sigma_{ASCII}|.$ Our dictionary is capable to store 2^ℓ words.

We assume that $\Sigma = \Sigma_{ASCII}$, the character set of the ASCII code.

We choose a suitable length $\ell > 7 = \log_2 |\Sigma_{ASCII}|$. Our dictionary is capable to store 2^ℓ words.

The initial dictionary contains Σ and two special "messages" (not words): START, STOP.

We assume that $\Sigma = \Sigma_{ASCII}$, the character set of the ASCII code.

We choose a suitable length $\ell > 7 = \log_2 |\Sigma_{ASCII}|.$ Our dictionary is capable to store 2^ℓ words.

The initial dictionary contains Σ and two special "messages" (not words): START, STOP.

The code of ASCII characters are the ASCII code padded by $0^{\ell-7}$ at the beginning. The code of "START" is 128, the code of "STOP" is 129.

We assume that $\Sigma = \Sigma_{ASCII}$, the character set of the ASCII code.

We choose a suitable length $\ell > 7 = \log_2 |\Sigma_{ASCII}|$. Our dictionary is capable to store 2^ℓ words.

The initial dictionary contains Σ and two special "messages" (not words): START, STOP.

The code of ASCII characters are the ASCII code padded by $0^{\ell-7}$ at the beginning. The code of "START" is 128, the code of "STOP" is 129.

Example

We assume $\ell=12.$ The ASCII code of the letter 'a' is $97\equiv 110~0001.$ In the dictionary its code is $97\equiv 0000~0110~0001.$

Finding the new chunk of the text to be processed: Assume that the sender found the word w as a prefix of the unprocessed/leftover text, but $w^+ = w^{"}c^{"}$ was not prefix.

Finding the new chunk of the text to be processed: Assume that the sender found the word w as a prefix of the unprocessed/leftover text, but $w^+ = w^{"}c^{"}$ was not prefix.

Encoding the actual chunk: From the dictionary we get the code for w. We send it over.

Finding the new chunk of the text to be processed: Assume that the sender found the word w as a prefix of the unprocessed/leftover text, but $w^+ = w^{\prime\prime} c^{\prime\prime}$ was not prefix.

Encoding the actual chunk: From the dictionary we get the code for w. We send it over.

Update: Update the processed and leftover arts of the text.

Finding the new chunk of the text to be processed: Assume that the sender found the word w as a prefix of the unprocessed/leftover text, but $w^+ = w^{\prime\prime} c^{\prime\prime}$ was not prefix.

Encoding the actual chunk: From the dictionary we get the code for w. We send it over.

Update: Update the processed and leftover arts of the text.

Extending the dictionary: We add the word w^+ with the first available bit sequence in the dictionary.

Finding the new chunk of the text to be processed: Assume that the sender found the word w as a prefix of the unprocessed/leftover text, but $w^+ = w^{\prime\prime} c^{\prime\prime}$ was not prefix.

Encoding the actual chunk: From the dictionary we get the code for w. We send it over.

Update: Update the processed and leftover arts of the text.

Extending the dictionary: We add the word w^+ with the first available bit sequence in the dictionary. We skip the extension step if the dictionary is full.

Finding the new chunk of the text to be processed: Assume that the sender found the word w as a prefix of the unprocessed/leftover text, but $w^+ = w^{"}c^{"}$ was not prefix.

Encoding the actual chunk: From the dictionary we get the code for w. We send it over.

Update: Update the processed and leftover arts of the text.

Extending the dictionary: We add the word w^+ with the first available bit sequence in the dictionary. We skip the extension step if the dictionary is full.

Stop: If we processed the whole set we send "129".


```
Example
```

```
Example
                            128
                                 109
                                       97
    sender
                                                          receiver
```

```
Example
                        128
                                  97
                             109
    sender
                                                  receiver
                                                  m|a|??...
  m|a|ma ma mamaligát főz
                 START
                          128
                                START
                                         128
                 STOP
                          129
                                STOP
                                         129
                          130
                                ma
                                         130
                 ma
                          131
                                a?
                                         131
                 am
```

```
Example
```

```
Example
                          128
                               109
                                          130
                                     97
         sender
                                                       receiver
```

```
Example
                        128
                             109
                                  97
                                       130
                                                   receiver
         sender
                                                  m|a|ma|??...
   m|a|ma| ma mamaligát főz
```

```
Example
                     128
                          109
                                   130
                               97
        sender
                                              receiver
   m|a|ma| ma mamaligát főz
                                              m|a|ma|??...
                               START
                 START
                          128
                                         128
                 STOP
                               STOP
                          129
                                         129
                          130
                                ma
                                         130
                 ma
                          131
                                         131
                               am
                 am
                          132
                                ma?
                                         132
                 ma_
```

Increasing length LZW

```
Example
```

```
Example
                       128
                             109
                                        130
                                             32
                                   97
          sender
                                                      receiver
```

```
Example
                     128
                          109
                                   130
                                        32
                               97
         sender
                                               receiver
  m a ma mamaligát főz
                                               m|a|ma|_|??...
```

```
Example
                    128
                         109
                                  130
                                       32
                              97
         sender
                                              receiver
                                              m|a|ma|_|??...
  m|a|ma| |ma mamaligát főz
                                START
                 START
                          128
                                          128
                 STOP
                                STOP
                          129
                                          129
                          130
                                ma
                                          130
                 ma
                          131
                                          131
                                am
                 am
                          132
                                          132
                                ma_
                 ma_
                                _?
                          133
                                          133
                 _m
```

```
Example
```

```
Example
                 128
                       109
                                 130
                                       32
                             97
                                            132
      sender
                                                   receiver
```

```
Example
                128
                     109
                               130
                                    32
                          97
                                        132
     sender
                                               receiver
m|a|ma| |ma |mamaligát főz
                                               m|a|ma|_|ma_|??...
```

```
Example
              128
                   109
                        97
                            130
                                 32
                                     132
     sender
                                           receiver
                                           m|a|ma|_|ma_|??...
m|a|ma| |ma |mamaligát főz
                                START
                 START
                          128
                                          128
                 STOP
                                STOP
                          129
                                          129
                          130
                                ma
                                          130
                 ma
                          131
                                          131
                                am
                 am
                          132
                                          132
                                ma_
                 ma_
                          133
                                          133
                 _m
                                ∟m
                          134
                                ma_?
                                          134
                 ma_m
```

Fixed length LZW: Sender vs receiver

Fixed length LZW: Sender vs receiver

Theorem

Before the whole text is encoded the receiver dictionary is the same as the sender dictionary except the last line, where the word"s last character is unknown.

Fixed length LZW: Sender vs receiver

Theorem

Before the whole text is encoded the receiver dictionary is the same as the sender dictionary except the last line, where the word"s last character is unknown.

Corollary

After obtaining a new part of the code the receiver side can make up for the disadvantage in the previous dictionary.

Break

In our first version of LZW the length ℓ of code bit sequences is fixed.

In our first version of LZW the length ℓ of code bit sequences is fixed.

This is a problem.

In our first version of LZW the length ℓ of code bit sequences is fixed.

This is a problem. If we set ℓ too large, then the final dictionary will be short compared to the possibility.

In our first version of LZW the length ℓ of code bit sequences is fixed.

This is a problem. If we set ℓ too large, then the final dictionary will be short compared to the possibility. If we set ℓ too small, then the dictionary might be full very soon.

In our first version of LZW the length ℓ of code bit sequences is fixed.

This is a problem. If we set ℓ too large, then the final dictionary will be short compared to the possibility. If we set ℓ too small, then the dictionary might be full very soon.

The solution is a simple modification:

In our first version of LZW the length ℓ of code bit sequences is fixed.

This is a problem. If we set ℓ too large, then the final dictionary will be short compared to the possibility. If we set ℓ too small, then the dictionary might be full very soon.

The solution is a simple modification:

Initialization: Set $\ell = 8$.

In our first version of LZW the length ℓ of code bit sequences is fixed.

This is a problem. If we set ℓ too large, then the final dictionary will be short compared to the possibility. If we set ℓ too small, then the dictionary might be full very soon.

The solution is a simple modification:

Initialization: Set $\ell = 8$.

The NEW extending the dictionary: We add the word w^+ with the first available bit sequence in the dictionary.

In our first version of LZW the length ℓ of code bit sequences is fixed.

This is a problem. If we set ℓ too large, then the final dictionary will be short compared to the possibility. If we set ℓ too small, then the dictionary might be full very soon.

The solution is a simple modification:

Initialization: Set $\ell = 8$.

The NEW extending the dictionary: We add the word w^+ with the first available bit sequence in the dictionary. If the dictionary is full, then $\ell \leftarrow \ell + 1$. Available bit sequences will appear, the dictionary extension is possible.

Theorem

The receiver side can decode the actual length, set by the sender side.

Theorem

The receiver side can decode the actual length, set by the sender side.

Proof: Easy.

Theorem

The receiver side can decode the actual length, set by the sender side.

Proof: Easy. The dictionary on the receiver side has the same number of lines. The timing of the incrementation of the length depends on the number of lines.

This is the end!

Thank you for your attention!