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Data structures

Data structure: ”Structured storage of data”.

Each elementary data has an address and parameters. For
example: weight: real; key: integer; label: boolean; next, previous:
address; ...

The reason to design a data structure is to support the satisfaction
of a sequence of requests/services.

Services like Insert(a,S), Delete(a,S), DeleteMin(S),
DecreaseKey(a,S, δ).
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Services

Let S be a data structure storing integers, a is an elementary data
(its key is the stored number).

DecreaseKey(a,S, δ) service

To serve the request DecreaseKey(a,S, δ) is to modify S such a
way that the key of data a is decremented by δ (we assume that
δ > 0). The rest of the data is unchanged.

DeleteMin(S) service

To satisfy DeleteMin(S) is the modicification of S by finding the
data with minimal key and its deletion from S.

To serve Insert(a,S), Delete(a,S), DeleteMin(S),
DecreaseKey(a,S, δ) we need to design an algorithm.
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Min-heap

In a heap we store integers (keys in data), the data are placed in
different vertices of a rooted tree. The notion of heap means the
following property:

(H) The key in any data/vertex is at most the keys at its
children/descendants.
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A heap in the memory I.

A heap F is an address/pointer, the address of the root node.

A vertex / a data / a key are synonyms.

If our tree is a binary plane tree, then each vertex has a pointer to
the left child and right child. A similar solution can be applied if
the number of children is bounded in our tree.

We run into a problem if we cannot give a bound on the number of
children in our tree, as in our case.
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A heap in the memory II.

If the down-degree is not bounded then the memory location
allocated to a data contains a pointer to the ”first-born-child”.
This location also contains a pointer to the ”next-sibling” and
”previous-sibling”.

Each node has a memory location containing several pointers.

This part of the memory also contains a key. As we develop our
algorithm we will clarify the exact structure of the place assigned
to a node. We will see the full picture when our description is
complete. It is important to check that the locations assigned to
the nodes contain O(1) components.

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023



Data structures Heaps Fibonacci heap The algorithm Matematical analysis Application

A heap in the memory II.

If the down-degree is not bounded then the memory location
allocated to a data contains a pointer to the ”first-born-child”.
This location also contains a pointer to the ”next-sibling” and
”previous-sibling”.

Each node has a memory location containing several pointers.

This part of the memory also contains a key. As we develop our
algorithm we will clarify the exact structure of the place assigned
to a node. We will see the full picture when our description is
complete. It is important to check that the locations assigned to
the nodes contain O(1) components.

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023



Data structures Heaps Fibonacci heap The algorithm Matematical analysis Application

A heap in the memory II.

If the down-degree is not bounded then the memory location
allocated to a data contains a pointer to the ”first-born-child”.
This location also contains a pointer to the ”next-sibling” and
”previous-sibling”.

Each node has a memory location containing several pointers.

This part of the memory also contains a key. As we develop our
algorithm we will clarify the exact structure of the place assigned
to a node. We will see the full picture when our description is
complete. It is important to check that the locations assigned to
the nodes contain O(1) components.

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023



Data structures Heaps Fibonacci heap The algorithm Matematical analysis Application

A heap in the memory II.

If the down-degree is not bounded then the memory location
allocated to a data contains a pointer to the ”first-born-child”.
This location also contains a pointer to the ”next-sibling” and
”previous-sibling”.

Each node has a memory location containing several pointers.

This part of the memory also contains a key. As we develop our
algorithm we will clarify the exact structure of the place assigned
to a node. We will see the full picture when our description is
complete. It is important to check that the locations assigned to
the nodes contain O(1) components.

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023



Data structures Heaps Fibonacci heap The algorithm Matematical analysis Application

A heap in the memory III.: A picture

The structure of a heap K. The keys are the red numbers
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Determining the minimal key in a heap

If we have an address/pointer p then @p denotes the data at
location p.

@p[key ] is the stored numerical value at p.

(H) implies that @K[key ] is the minimal key stored in the heap.

Observation

The minimal key in a heap can be determined in O(1) steps.
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The Fibonacci heap

We describe a simple version of Fibonacci heap. We need to satisfy
three kinds of request: Insert, DeleteMin and DecreaseKey.

A Fibonacci heap is actually a system of heaps. The heaps/the

roots of the heaps are in a double linked circular chain. Hence
every location storing a root has a pointer to the next-heap and to
the previous-heap. A Fibonacci heap F is the link to one of the

heaps.

In each heap the keys are arranged according to (H). Specially the
root contains the minimal key within a heap. The value of the keys
in the different heaps are ”independent”.

To have a Fibonacci heap we must have

(F) @F [key] is the minimal key in the whole data structure.

Although the different heaps contain independent keys we can find
the minimal key of our data easily: in O(1) steps.
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The basic problem

We start with F and empty data structure.

n denotes the number of requests Insert.

In any moment of our algorithm n will be an upper bound on the
actual numbers of data in F .

We must efficiently design the structure and the three algorithms
to satisfy the requests Insert, DeleteMin, DecreaseKey.
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The rank

Definition: Rank of a data

The rank of data a is the number of children of it.

Definition: Rank of a heap

The rank of H is the rank of the root of H, where H is a heap in
the Fibonacci heap F .

Rank is a dynamically changing parameter as we run our algorithm.
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Our goals

Our main goal is that any heap in F of rank r contains at LEAST
αr data, for suitable constant α > 1.

Így seciálisan a fa-kupacok rangja az egész algoritmus során
O(log n) lesz.

Notation: R

Let R denotes the best upper bound on the ranks of data during
the run of our alfgorithm.

If our goal is fulfilled then R = O(log n).
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Így seciálisan a fa-kupacok rangja az egész algoritmus során
O(log n) lesz.

Notation: R

Let R denotes the best upper bound on the ranks of data during
the run of our alfgorithm.

If our goal is fulfilled then R = O(log n).

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023



Data structures Heaps Fibonacci heap The algorithm Matematical analysis Application

Our goals

Our main goal is that any heap in F of rank r contains at LEAST
αr data, for suitable constant α > 1.
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Break
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Implementing Insert

”Lazy” implementation: We consider the new number as a new
one node heap in our system of heaps.

p := @F [NextHeap]
@F [NextHeap] := a
@a[NextHeap] := p
@a[PreviousHeap] := F
@p[PreviousHeap] := a
If @a[Key ] < @F [Key ] then F := a

The cost is O(1).
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Implementing DeleteMin: The naive approach

The property (F) guarantees that F is the address of the data,
that we need to delete.

The data, we must delete has a First-Child pointer. Starting from
this address we can visit all children of the root. Each child
determines a rooted subtree, that is a heap with data stored in it.

We delete

The cost so far is O(1).

We have to do a final task. We must locate the new minimal key
and update the pointer that defines the new Fibonacci heap. We
do this by going through the list of roots.
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Implementing DeleteMin: Merging phase I.

Merging phase

In the new Fibonacci heap we must browse all roots of the heaps.
During this we will do another job: We ensure that the ranks of
the heaps in the Fibonacci heap will be different.

During the browsing we have a clean list, where the ranks are
different. Furthermore we will have a list leftover heaps.

We define an array (ρ[i ])Ri=0. The elements of the array are
pointers. The pointer ρ[r ] is the address of the only heap with
rank r in the clean list (if there is none, then the value is nil).
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Implementing DeleteMin: Merging phase II.

At the beginning the clean list is empty, the (ρ[i ])Ri=0 is all-nil, the
leftover list contains all the roots.

We take the first leftover heap, F and assume that its rank is d .

It is valuable to store the rank of a node at the memory location
assigned to it. Of course this means an updating task throghout
the algorithms. For example we should extend the Insert

algorithm.

We read ρ[d ].

(i) If we see nil, then the actual heap is placed from the
leftover-list to the clean-list. We update ρ[d ].

(ii) If we see an address, then we found the only heap, F ′ with
rank d in the clean-list. We delete F from the leftover-list,
but we cannot simply place it to the clean-list. We merge the
heaps F and F ′.
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Implementing DeleteMin: Merging phase III.: Definition of
merging

Definition: Merging heaps

From two heaps we construct a new one, that contains the union
of the data stored in the two heaps.

The root will be one the original two roots. The root, that contains
the smaller key. The other root will be added to it as a child.

The inner structures of the two heaps are preserved.

The rank of the new root is its original rank increased by 1.
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Implementing DeleteMin: Merging phase IV.: Recursion

The problem: The clean-list might contain a heap with rank d + 1.

We do merging recursively until in the clean-list all keys are
different.

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023



Data structures Heaps Fibonacci heap The algorithm Matematical analysis Application

Implementing DeleteMin: Merging phase IV.: Recursion

The problem: The clean-list might contain a heap with rank d + 1.

We do merging recursively until in the clean-list all keys are
different.

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023



Data structures Heaps Fibonacci heap The algorithm Matematical analysis Application

Implementing DeleteMin: Merging phase IV.: Recursion

The problem: The clean-list might contain a heap with rank d + 1.

We do merging recursively until in the clean-list all keys are
different.

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023



Data structures Heaps Fibonacci heap The algorithm Matematical analysis Application

Implementing DeleteMin: Merging phase IV.: The cost

Observation

The cost of one merge operation is O(1).

The total cost of the merge phase is more complicated.

Assume that our initial Fibonacci heap contained k heaps, and
after satisfying the DeleteMin request the new Fibonacci heap
contains k ′ heap. Let d denote the rank of the original heap,
containing the minimum key.

The number of merging is (k − 1) + r − k ′.

The total cost is O(k + r).
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Implementing DecreaseKey: The naive phase

key ← key − δ is 1 arithmetical operation.

The main problem is that the property (H) must be preserved.

The naive solution: The node, with decreased key generate a
rooted subtree, a heap. We cut off this subtree from its parent
node. We will consider it as a neww heap in the Fibonacci heap.

We created a new problem: In the Fibonacci heap we might have
repeated ranks. We don’t care. The next DeleteMin service will
make some work in that direction.

We must preserve (F). Easy task.
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Implementing DecreaseKey: Don’t cut too many children

Cutting off children is dangerous: it might leave the rank of the
heap untouched, but it might reduce the stored

To the memory location of a node we add a new Boolean
component, Trimmed :

”
Did we cut off a child of this node?”. If

yes then its value is ‘!’, otherwise ‘∅’.
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Implementing DecreaseKey: Cascading cuts

Cascading cuts

When serving DecreaseKey we cut off a node. At this point we
check that @a[Trimmed] =? ‘!’.

(i) If yes (this cut is not the first one at this node), then we cut it
off from its parent too. We recurse (cascade) until we reach
the root or we encounter a node, where @a[Trimmed] =‘∅’.

(ii) If no, i.e. @a[Trimmed] =‘∅’ then cascading stops. We update
the Trimmed-value.
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Implementing DecreaseKey: Final remarks

A cut off/truncation is a local job, its cost is O(1).

The total cost depends on how many times we perform truncations
(the length of the cascading).

Observation

In the Cascading phase we might have many truncations, but only
once we set a Trimmed component to be ’ !’.
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Analysis: The main Lemma

Definition

Let `(r) be the maximum number that during the algorithm the
descendants of a vertex (including itself) of rank r contains at
least `(r) data.

`(0) = 1 and `(1) = 2 are straight forward.

Lemma

Assuming r ≥ 3, we have

`(r) ≥ `(r − 2) + `(r − 3) + . . .+ `(0) + 2.
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Analysis: The proof of the main Lemma I.

We take an arbitrary moment during the run of the Fibonacci heap
algorithm, and we consider an arbitrary node v . Let r be the
actual number of its children: v1, v2, . . . , vr .

The history of vi can be complex: It might become a child of v by
a merge, while serving a DeleteMin request. Later it might be cut
off from v , and so on. But there must be a last time when it
became child of v , and stayed as a child till now. The only reason
of becoming a child is performing a merge. The indices of the vi
reflect the last time it became a child of v .

When vi became a child of v , then v1, v2, . . ., vi−1 were already
children of v . At this moment the rank of v was at least i − 1. A
Merge caused this event, so at that moment of the merge the rank
of vi was at least i − 1 too.
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Analysis: The proof of the main Lemma II.

At our actual moment vi is still a child of v . So in the Cascading
phase we cut off at most one of its children. The rank of vi is at
least i − 2 even now.

We can choose a moment and a node v , such that in this moment
the rank of v is r and the number of descendants of v is `(r).

We have some knowledge about the down-degrees of the children
of v . Hence the corresponding descendants can be bounded.

v2, v3, . . ., vr and their descendants give

`(0) + `(1) + . . .+ `(r − 2)

nodes. v and v1 two further nodes.

The claim is proven.
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Analysis: Fibonacci numbers

Definition: Fibonacci sequence/Fibonacci numbers

Let F0 = 1,F1 = 2, furthermore Fn = Fn−1 + Fn−2 if n ≥ 2.

By induction one obtains: Fn ≥
(
1+
√
5

2

)n
.

Again by induction:

`(r) ≥ Fr ≥

(
1 +
√

5

2

)r

.

Our promise is proven. So now on we know that R = O(log n).

We also know why is that a data structure from the XXth century
got its name from a mathematician who was born in XIth century.
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got its name from a mathematician who was born in XIth century.

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023



Data structures Heaps Fibonacci heap The algorithm Matematical analysis Application

Analysis: Fibonacci numbers

Definition: Fibonacci sequence/Fibonacci numbers

Let F0 = 1,F1 = 2, furthermore Fn = Fn−1 + Fn−2 if n ≥ 2.

By induction one obtains: Fn ≥
(
1+
√
5

2

)n
.

Again by induction:

`(r) ≥ Fr ≥

(
1 +
√

5

2

)r

.

Our promise is proven. So now on we know that R = O(log n).

We also know why is that a data structure from the XXth century
got its name from a mathematician who was born in XIth century.

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023



Data structures Heaps Fibonacci heap The algorithm Matematical analysis Application

Amortized analyis: Insert

The real cost of Insert is O(1).

We define the amortized cost the previous amount plus a ”merge
deposit”. We think this extra as an amount placed next to node.
We might ude to perform a merging in the future and use this
money to pay for it.

(P): Promise

Any moment of the run the roots of the heaps in the Fibonacci
heap have a ”merge deposit”.

Theorem

The amortized cost of Insert operation is O(1).
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Amortized analyis: DeleteMin

Theorem

The amortized cost of an DeleteMin operation is
O(R) = O(log n).

The list of children of the deleted node should be added to the list
of heaps. The cost is O(1).

The children become roots of heaps. To keep (P) we put a ”merge
deposit” to them. Its cost is O(R).

We have an initial array of length R. To form this costs O(R).

Updating the array can be managed from the ”merge deposits”.
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Amortized analyis: DecreaseKey

The naive cost of DecreaseKey is O(1). We call it ”cut-cost”.

We add two ”merge-deposits” and one ”cut-deposit” to the cost
so far. This way we get the amortized cost.

The cut puts a subtree (the generated subtree by the node where
the decrement happened) among the heaps. That require a
”merge deposit” at the root. This can be paid by the first
”merge-deposit”.

Remember that the end of the Cascading a Trimmed component
might be set ’ !’. That means a possible cut in the future. The
”cut-deposit” and the second ”merge-deposit” will be placed next
to the node with ’ !’.

We maintain the property that nodes with ’ !’ always have ”cut-”
and ”merge-deposit” placed to it. The cost of the Cascading can
be paid from deposits.
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Amortized analyis: DecreaseKey: Summary

Theorem

The amortized cost of DecreaseKey is O(1).
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The Theorem

Theorem

We start with an empty Fibonacci heap, and satisfy a sequence of
requests consisting of n Insert, m DeleteMin and d
DecreaseKey. The the cost of our algorithm is

O(n + m · log n + d).
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Break
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The shortest path problem

The input of the shortest path problem (G , `, s), where G is a
directed graph, ` is a length function on E (G ), and finally s is
special node called source.

The length function on the edge set can be extended to a length
function on walks. Based on that we can define the distance from
vertex x to vertex y .

The output the problem is for each node v ∈ V (G ) determining
the length of the shortest path from s to v .
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Dijkstra’s algorithm

Our description of the algorithm was maintaining a vertex set Ŝ
with a number/key assigned to each element of Ŝ .

We choose the element m with minimal key from Ŝ and deleted
them. // We knew the distance from s.

We update of the keys in Ŝ : Some keys will be decreased.

The out-neighbors of m (from the leftover set of vertices) are
inserted into Ŝ with suitable key.

We do this until Ŝ becomes empty.
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Implementation of Dijkstra’s algorithm based on Fibonacci
heap

Our description emphasizes the fact that Fibonacci heaps can be
used it to design an algorithm the performs Dijkstra algorithm.

During the run of Dijkstra’s algorithm we have |V | Insert, |E |
DecreaseKey and |V | DeleteMin operations.

Theorem

Dijkstra’s algorithms can be implemented in

O(|V | log |V |+ |E |)

time.
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This is the end!

Thank you for your attention!

Peter Hajnal Data structures, Fibonacci heap, University of Szeged, 2023
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