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The flow problem Ford-Fulkerson algorithm Cycling The fundamental theorem of flows

Basic notions

Definition: Network

Let
−→
G be a directed graph, s, t ∈ V (G ) two distinct distinguished

vertices (called source and sink), and c : E (G )→ R++ capacity

function. The (
−→
G , s, t, c) quadruple is called network.

Definition: Flow (in network)

The function f : E (G )→ R is a flow in the network H, if

(F1) for each edge e we have 0 ≤ f (e) ≤ c(e)

(F2) for each v ∈ V \ {s, t} we have∑
e:e∈Ein(v) f (e) =

∑
e:e∈Eout(v) f (e), where Ein(x) is the set of

ingoing edges of x , Eout(x) is the set of outgoing edges of x .

(F1) is called capacity constrain. (F2) is called flow preservation.
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Comparing flows in network

Example

The function f ≡ 0 is a flow in any network.

Definition: The value of a flow

v(f ) =
∑

e∈Ein(t) f (e)−
∑

e∈Eout(t) f (e).
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The flow problem

Definition: The flow problem

Given a network, find a maximum value flow in it.

We said maximum value. Is it correct? YES.

The flow f : E (G )→ R+ can be considered as a vector
−→
f ∈ RE(G). The capacity constrain and flow preservation low
define a compact subset of RE(G). The value is a continuous
function over this compact domain. The maximum value exists
based on your calculus courses from BSc.

The flow problem is a special case of linear programming (LP).
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Initial remarks

Let P be an st-path (not necessarily directed) in
−→
G . I.e. We delete

the orientations of the edges, hence obtain an undirected graph G .
P is a path in G .

We can classify the edges of P into two categories: As we walk
along P from the source to the sink we might follow the orientation

of a directed edge of
−→
G , or we traverse it in the opposite direction.

An edge of P can be a forward or a backward edge.

E (P) = Eforward(P)
⋃
Ebackward(P).
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Example

s

t
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Augmenting paths

Definition

Let H = (
−→
G , s, t, c) be a network. P is augmenting path for f (or

simply f -augmenting path) if P is a path in G s.t.

(A1) P starts at the source, s.

(A2) P ends at the sink, t.

(A3) For each edge e ∈ Eforward(P) we have f (e) < c(e), for each
e ∈ Ebackward(P) f (e) > 0.
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Why augmenting?

Lemma

Let f be a flow in the network H = (
−→
G , s, t, c), and P be an

f -augmenting path. Then the flow f is non-optimal. I.e. there is a
flow f +, that has greater value than f .
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Proof

Introduce a few parameter

• δforward := mine∈Eforward(P)(c(e)− f (e)).

• δbackward := mine∈Ebackward
f (e),

• δ := min{δbackward, δforward}.

• If P is an augmenting path, then δ > 0.

• Now we can describe the improved flow:

f +(e) =


f (e), e /∈ E (P),

f (e) + δ, e ∈ Eforward(P),

f (e)− δ, e ∈ Ebackward(P).
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Proof (cont’d)

We need some observations:

(1) δ > 0.

(2) f + obeys the capacity constrain,

(3) f + obeys the flow preservation low,

(4) v(f +) = v(f ) + δ > v(f ).

All observations are easy.
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Break
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The scheme

Ford-Fulkerson algorithm

(I) Initialization: Pick an initial flow.// For example f ≡ 0.

(S) Search: Find an f -augmentating path. If we find one, then go
to (A); if there is no f -augmentating path, then go to (Stop).

(A) Augmentation: Based on the Lemma we ”augment” f :
f ← f +. Go back to (S).

(Stop) Stop: Stop. Our flow can’t be improved by augmenting paths.
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Questions

(1) How to search for an augmenting path?

(2) The run of the algorithm is a repetition of a search. Is it
possible that we run into an infinite cycle.

(3) What is the relation of optimal flows and those that can’t be
improved by augmenting path?
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(1)

Definition: Partial augmenting path

A P path in
−→
G is a partial augmenting path iff it satisfies the

constrains (A1) and (A3).

P0 : s is a partial augmenting path of length 0.

The main idea is that we start with the above example, we extend
our partial augmenting paths (we have found so far) until we find a
(complete) augmenting path or our search ”run out of steam”.
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The Ford-Fulkerson search for augmenting path

Ford-Fulkerson search for augmenting path

Initialization of the search: S := {s}.
// S is the set of vertices that are reached by partial augmenting path.
Extension of partial augmenting path:
// Extension of S .
Let

Bforward = {x ∈ V − S : ∃y ∈ S −→yx ∈ E and f (−→yx) < c(−→yx)}

and

Bbackward = {x ∈ V − S : ∃y ∈ S −→xy ∈ E and f (−→xy) > 0}.

Find an element x of Bforward ∪ Bbackward.
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The search (con’t)

Algorithm (cont’d)

(i) Extension: If x 6= t then S ← S ∪ {x}, and go back to
Extension of partial augmenting path.

(ii) Success: If x = t backtrack how we got to t. We find and
st path, and that path is an augmenting path. We output the
augmenting path and STOP.

(iii) Unsuccessful search: Bforward ∪ Bbackward = ∅. // t 6∈ S ,
we didn’t find an augmenting path.
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Backtracking

• It is worth to maintain a tree F on the vertex set S .

• At the beginning S = {s}, and our tree F is trivial.

• At each extension of S by a vertex e there is a vertex e− in S
such that the connecting edge is ”responsible” for the extension.
We extend our F by adding e and the edge e−e. Hence F extends
by outgrowth process, it will be a tree.

• This tree contains a unique sx path for each x ∈ S . That unique
path will be a partial augmenting path.
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What’s an unsuccessful search?

In the case of unsuccessful search we will terminate the algorithm
with a vertex set S . We know that T = S = V − S contains t.

We also know that for all edges −→xy , x ∈ S , y ∈ T we have
f (−→xy) = c(−→xy), and for all edges −→xy , x ∈ T , y ∈ S we have
f (−→xy) = 0.
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Cuts

Definition: Cut

Let
−→
G be a directed graph. V = {S ,T} is a cut of

−→
G iff

V (
−→
G ) = S∪̇T . S and T are the two parts of the cut. V is an

st-cut iff s ∈ S and t ∈ T .

Definition: Edge set of a cut

E (V) denotes the edge set of V:

E (V) = {−→xy ∈ E (
−→
G ) : |{x , y} ∩ S | = 1}

In the case of an st-cut the source/sink roles partition E (V) into
two categories.

Eforward(V) =
−→
E (V) = {e = −→xy : x ∈ S , y ∈ T},

Ebackward(V) =
←−
E (V) = {e = −→xy : x ∈ T , y ∈ S}.
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Example

s

t

Figure: A cut
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The value of a flow: Alternatives

Lemma

Let f be an arbitrary flow.

(i) v(f ) =
∑

e:e∈Eout(s) f (e)−
∑

e:e∈Ein(s) f (e)

(ii) For arbitrary cut V = {S ,T}

v(f ) =
∑

e:e∈
−→
E (V)

f (e)−
∑

e:e∈
←−
E (V)

f (e).

We can express the value of a flow v(f ) using any cut.
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Proof of the Lemma

It is enough to prove (ii).

For each vertex v in T we write an equality. In the case of
v ∈ T − {t} we write the flow preserving law:∑

e:e∈Ein(v)

f (e)−
∑

e:e∈Eout(v)

f (e) = 0.

In the case of v = t we take the definition of v(f ):∑
e:e∈Ein(v)

f (e)−
∑

e:e∈Eout(v)

f (e) = v(f ).

Now we sum these equalities.
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Proof of the Lemma (cont’d)

The right hand side will be v(f ).

To see the right hand side of the sum we identify the variable xe
and the edge e. The edges of the network can be classified into
four types.

The edges inside S don’t show up in the equalities.

Each edge inside T is in two equalities. The two occurrences
cancel out during the summation.

Each edge of e ∈
−→
E (V) is an ingoing edge for one vertex of T . Its

contribution to the sum is +f (e).

Each edge of e ∈
←−
E (V) is an outgoing edge for one vertex of T .

Its contribution to the sum is −f (e).
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Its contribution to the sum is −f (e).
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A Corollary of the Lemma

Corollary

f is an arbitrary flow, V is an arbitrary st-cut.

v(f ) ≤
∑

e:e∈
−→
E (V)

c(e) =: c(V),

Definition

c(V) is called the capacity of the cut.
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Second corollary of the Lemma: (3)

Corollary

If the search of Ford and Fulkerson is unsuccessful then the flow f
is optimal. Hence there is no f -augmenting path.

At the end of the unsuccessful search we obtain an st-cut Vexhaust.
For this cut on each forward edge the flow is the same as the
capacity, and on each backward edge the flow is 0.

The bound of the first Corollary is sharp: v(factual) = c(Vexhaust).

But for an arbitrary flow we have v(f ) ≤ c(Vexhaust).

This implies that factual is an optimal flow.
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Break
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(2)

We know that if our search is unsuccessful (specially it stops) then
the output is correct.

During the sequence of augmentations the value of the flow is
strictly increasing and bounded. So it is convergent.

Is cycling (infinite loop of augmentation) possible?
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1st answer

• In real life the capacity function is c : E (
−→
G )→ Q++, and the

initial flow is f0 : E (
−→
G )→ Q+.

• The capacities and the initial flows along the edges give us finite
rational numbers. We can assume a common denominator.

• After scaling we can assume that c : E (
−→
G )→ N, and the initial

flow is f0 : E (
−→
G )→ N.

• Easy observation that when executing the Ford-Fulkerson
algorithm we encounter only natural numbers. Specially the
amount of the augmentation will be at least 1 after finding an
augmenting path.

• Cycling is impossible
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Summary of the 1st answer

Theorem

Let H be a network with rational capacities c : E (
−→
G )→ Q++.

Start the Ford-Fulkerson algorithm with a rational initial flow

f0 : E (
−→
G )→ Q+. Then the algorithm terminates after finitely

many augmentation and finds an optimal flow.

The Theorem is not quantitative. It doesn’t give a good upper
bound on the number of augmentations.
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Flow Integrality Theorem

Corollary: Flow Integrality Theorem

Let (
−→
G , s, t, c) be with an integral capacity function

c : E (
−→
G )→ N+. Then there exists an optimal flow

fopt : E (
−→
G )→ N.
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Flow integrality theorem: Example

We don’t claim that any optimal flow is an integral flow. That is
not true.

s tc azonosan 1

s t1 1

0

0

0

s t1

1
1

1

1

s t1 1

1p
2

1p
2 1p

2

s t

c azonosan 1

s t

s t

1
1

1

1

0 0

1 1

1p
2

1p
2

1p
2

1p
2

1-1-

Peter Hajnal Flows, Ford-Fulkerson algorithm, University of Szeged, 2023



The flow problem Ford-Fulkerson algorithm Cycling The fundamental theorem of flows

Flow integrality theorem: Example

We don’t claim that any optimal flow is an integral flow. That is
not true.

s tc azonosan 1

s t1 1

0

0

0

s t1

1
1

1

1

s t1 1

1p
2

1p
2 1p

2

s t

c azonosan 1

s t

s t

1
1

1

1

0 0

1 1

1p
2

1p
2

1p
2

1p
2

1-1-

Peter Hajnal Flows, Ford-Fulkerson algorithm, University of Szeged, 2023



The flow problem Ford-Fulkerson algorithm Cycling The fundamental theorem of flows

Flow integrality theorem: Example

We don’t claim that any optimal flow is an integral flow. That is
not true.

s tc azonosan 1

s t1 1

0

0

0

s t1

1
1

1

1

s t1 1

1p
2

1p
2 1p

2

s t

c azonosan 1

s t

s t

1
1

1

1

0 0

1 1

1p
2

1p
2

1p
2

1p
2

1-1-

Peter Hajnal Flows, Ford-Fulkerson algorithm, University of Szeged, 2023



The flow problem Ford-Fulkerson algorithm Cycling The fundamental theorem of flows

2nd answer

• Assuming exact real arithmetic the above proof doesn’t work.

• Actually there are examples when the sequence of augmentations
is infinite.

• Even the limit of the values of the computed flow is strictly less
than the optimal value.

Peter Hajnal Flows, Ford-Fulkerson algorithm, University of Szeged, 2023



The flow problem Ford-Fulkerson algorithm Cycling The fundamental theorem of flows

2nd answer

• Assuming exact real arithmetic the above proof doesn’t work.

• Actually there are examples when the sequence of augmentations
is infinite.

• Even the limit of the values of the computed flow is strictly less
than the optimal value.

Peter Hajnal Flows, Ford-Fulkerson algorithm, University of Szeged, 2023



The flow problem Ford-Fulkerson algorithm Cycling The fundamental theorem of flows

2nd answer

• Assuming exact real arithmetic the above proof doesn’t work.

• Actually there are examples when the sequence of augmentations
is infinite.

• Even the limit of the values of the computed flow is strictly less
than the optimal value.

Peter Hajnal Flows, Ford-Fulkerson algorithm, University of Szeged, 2023



The flow problem Ford-Fulkerson algorithm Cycling The fundamental theorem of flows

2nd answer

• Assuming exact real arithmetic the above proof doesn’t work.

• Actually there are examples when the sequence of augmentations
is infinite.

• Even the limit of the values of the computed flow is strictly less
than the optimal value.

Peter Hajnal Flows, Ford-Fulkerson algorithm, University of Szeged, 2023



The flow problem Ford-Fulkerson algorithm Cycling The fundamental theorem of flows

The fundamental theorem of flows

The fundamental theorem of flows

Let f be a flow in the network H(
−→
G , s, t, c). Then the following

properties are equivalent:

(i) f is optimal, i.e. f is a maximum value flow,

(ii) for f we have an st-cut V = {S ,T} such that v(f ) = c(V),

(iii) There is no f -augmenting path.
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The proof of the fundamental theorem

(i)⇒ (iii): We proved that the existence of an augmenting path
implies that f is not optimal.

(ii)⇒ (i): For a cut V from (ii) we know that c(V) is an upper
bound of the value of an arbitrary flow. Hence f is optimal.

(iii)⇒ (ii): Run the Ford-Fulkerson algorithm. The search must
be unsuccessful. At the end of the algorithm we have an st-cut:
Vexhaust. Furthermore v(f ) = c(Vexhaust).
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Reminder

We know that for any cut the capacity of the cut is an upper bound
on the value of an arbitrary flow. The strongest claim is as follows:

max
f is a flow

v(f ) ≤ min
V is an st cut

c(V ).

From the above analysis we have that

v(fopt) = c(Vexhaust).
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The summary: MFMC Theorem

Max-flow-min-cut Theorem, MFMC Theorem

max
f is a flow

v(f ) = min
V is an st-cut

c(V).

There is a natural extension of the Ford-Fulkerson algorithm:
When we output the final (optimal) flow, then we add the
computed cut, Vexhaust.

The added information is very useful. Even a non-mathematician
will be convinced that the flow is optimal. The correctness of the
output is transparent without seeing the the code, without
understanding the theory behind.
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This is the end!

Thank you for your attention!
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