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The basic idea

• This design technique can be applied for search problem

• We are given a set S . We want to find a specific element of it,
or verify that S doesn’t contain that element.

• Instead of locating the goal element, we ”fast” exclude as
”many” elements from the search space as possible (we must
guarantee that the thrown away elements don’t contain the goal
element).

• The best way to understand this scheme is to see examples.
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The scheme by picture
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Binary search

Binary search

Given the ordered sequence of n real numbers: x1 < x2 < . . . < xn.
Also given a number g . Decide whether g is among our xi ’s. If
yes, then provide the index i for that xi = g .

We assume that n = 2k − 1. Specially in the ordered sequence
there is a median/middle element: x2k−1 .
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The algorithm

Binary search algorithm

Given the ordered sequence of n real numbers: x1 < x2 < . . . < xn,
where n = 2k − 1, and a number, g : the ”goal”.

(0) If n = k = 1, after comparing our only number and g we can
answer the problem. Otherwise

(1) Compare g and x2k−1 : g ? x2k−1 .

(2=) In the case g = x2k−1 we are very lucky. STOP.

(2<) In the case g < x2k−1 we can throw away
x2k−1 , x2k−1+1, x2k−1+2, . . . , xn from the search.

(2>) In the case g < x2k−1 we can throw away
x1, . . . , x2k−1−2, x2k−1−1, x2k−1 from the search.

// If we are here, then we reduced the search space to size of
2k−1 − 1.

(3) k ← k − 1. Return to (0).
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Summary

The above algorithm uses k comparisons if g is not among our
numbers. If g is one of the xi -s it might stop earlier.

Theorem

The binary search algorithm solves the problem using

O(log n)

comparison.
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A popular form of binary search

• We have s, a secret number from the set {1, 2, 3, . . . , 99, 100}.

• By asking Boolean questions about s (yes/no answer) figure out
the value of s.

• How many questions are needed to achieve this goal?
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Break
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The basic problem

Definition: The median problem

Given n numbers: x1, x2, . . . , xn. Find the index m: xm is the
median of our numbers.
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A generalization

Definition: Generalized median problem

Given n numbers: x1, x2, . . . , xn, and a rank number
r ∈ {1, 2, . . . , n − 1, n}. Classify the set of indices into three
classes, S∪̇{m}∪̇B = {1, 2, . . . , n − 1, n}, the following way:

(1) for each s ∈ S we have xs ≤ xm,

(2) for each b ∈ B we have xm ≤ xb,

(3) |S | = r − 1.
// Hence |B| = n − r .

Note that the median problem is the case when r = b(n + 1)/2c,
furthermore we are not interested in the sets S and B.

Again we have a simplifying assumption: n has the form
10k + 5 = (2k + 1) · 5
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The algorithm

Generalized median finding algorithm

Given n numbers, and a rank r . // Think about the n input numbers as
they are arranged in a matrix of size 5× (2k + 1).

(Column medians) For each columns (number quintets) determine the
median and their S , B sets. (mi is the median of the ith column,
furthermore Si , Bi are the corresponding sets.)

(Median of medians) For the n/5 = 2k + 1 medians find the median: µ, and
the corresponding sets: S̃ , B̃. // Note the following set contains only
numbers that are not bigger than µ:

Ŝ =
⋃
{{mi} ∪ Si : mi ∈ S̃} ∪ Si : mi = µ.

// The following set contains only numbers that are not smaller than µ:

B̂ =
⋃
{{mi} ∪ Bi : mi ∈ B̃} ∪ {Bi : mi = µ}.
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The algorithm (cont’d)

Generalized median finding algorithm (cont’d)

(Finding the rank of µ) Compare µ to all other elements.
Determine the corresponding Sµ, Bµ sets.

ρ = |Sµ|+ 1.

// We have Ŝ ⊂ Sµ, and B̂ ⊂ Bµ.

(The cut of the salami) If ρ = r , then we are extremely lucky.

If ρ < r , then throw away the numbers of Ŝ . r ← r − |Ŝ |.
If ρ > r , then throw away the numbers of B̂.

(Iteration) If the cardinality of the leftover numbers is smaller or
equal to five then solve the problem by brute force.

Otherwise do the same for the leftover numbers, and r .
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// We have Ŝ ⊂ Sµ, and B̂ ⊂ Bµ.

(The cut of the salami) If ρ = r , then we are extremely lucky.

If ρ < r , then throw away the numbers of Ŝ . r ← r − |Ŝ |.
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A claim

Claim

Let n = (2k + 1) · 5 as in the algorithm. Then

|Ŝ | = |B̂| = 3k + 2 = 3n/10 + 1/2.

Corollary

Let n = (2k + 1) · 5 as in the algorithm. Then in the first iteration
we reduced the input size to

n − 3k + 2 = n − (3n/10 + 1/2) = 7n/10− 1/2.
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The analysis of the algorithm: Introduction

Let M(n) be the maximal number of comparisons needed for our
algorithm to solve the problem on n numbers.

M(x) = M(dxe).

Observation

M(x) is a monotone increasing function.
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The analysis of the algorithm

Theorem

M(n) ≤ M((n + 9)/5) + M(7n/10) + O(n)

The third term counts the comparisons needed for (Column
medians) and for (Finding the rank of µ).

Theorem

M(n) ≤ M(0.21 · n) + M(0.7 · n) + O(n),

assuming n > 200

Corollary

M(n) = O(n),
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That is the end!

Thank you for your attention!
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