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Abstract. Let K be a convex body in Rd in which a ball rolls freely and

which slides freely in a ball at the same time. Let K(n) be the intersection
of n i.i.d. random half-spaces containing K chosen according to a certain

prescribed probability distribution. We prove an asymptotic upper bound on

the variance of the mean width of K(n) as n → ∞. We achieve this result
by first proving an asymptotic upper bound on the variance of the weighted

volume of random polytopes generated by n i.i.d. random points selected

according to certain probability distributions, then, using polarity, we transfer
this to the circumscribed model. Our work combines arguments from Reitzner

[17] and Böröczky, Fodor, Hug [6].

1. Introduction and results

In this paper we study both random polytopes contained in a convex body and
random polyhedral sets that contain a convex body. In the literature, the over-
whelming majority of results are about the former types of models. Our results are
asymptotic upper bounds on variances and laws of large numbers. The first order
asymptotic properties of random polytopes have been investigated extensively since
the ground breaking works of Rényi and Sulanke [18–20] in the 1960s, and their lit-
erature has grown enormous since then. Results on variances, higher moments and
limit theorems are, however, much more scarce in the literature. For an overview
of these extensive topics we refer to the surveys by Bárány [2], Hug [14], Reitzner
[16], Schneider [22,23], and Weil, Wieacker [25], and the references therein. In this
paper we only mention those results that most directly related to our investigations.

Our first main result (Theorem 1.2) is an asymptotic upper bound for the vari-
ance of the volume of random polytopes in a model where the i.i.d. random points
that generate the polytope are not necessarily uniform in distribution and the vol-
ume is measured according to a weight function. Also, the convex bodies we consider
satisfy only weak but still meaningful smoothness conditions that have already been
assumed in similar cases. This upper bound is an extension of a result of Reitzner
[17]. Our main motivation for such an extended bound is that we can transfer it,
via polarity, to a circumscribed model. Based on this extended asymptotic upper
bound on the weighted volume, our second main result (Theorem 1.7) is an asymp-
totic upper bound for the variance of the mean width of random polyhedral sets
that are circumscribed about the convex body in a model considered recently, for
example, by Böröczky, Schneider [8], Böröczky, Fodor, Hug [6] and Fodor, Hug,
Ziebarth [12].
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We work in d-dimensional Euclidean space Rd, in which points (vectors) are
denoted by lowercase letters and sets of points by capitals. We use the symbol
⟨·, ·⟩ for the usual Euclidean scalar product, and ∥ · ∥ for the induced norm. Let
Bd = {x ∈ Rd : ∥x∥ ≤ 1} denote the unit ball of Rd centred at the origin o, and let
Sd−1 = {x ∈ Rd : ∥x∥ = 1} be the unit sphere, which is the boundary ∂Bd of Bd.
We denote by V (X) the volume (Lebesgue measure) of a measurable set X ⊂ Rd,
and by σ(Y ) the spherical Lebesgue measure of a measurable set Y ⊂ Sd−1. We
use the notations κd = V (Bd) and ωd = σ(Sd−1). Throughout the paper K
denotes a convex body (compact convex set with non-empty interior) in Rd. We
say that K is Ck

+ for k ≥ 2 if its boundary is a regular hypersurface in Rd that
is k times continuously differentiable and has positive Gauss-Kronecker curvature,
which is denoted by κ(x) for x ∈ ∂K. If ∂K is not C2, then it is still possible to
define a notion of generalised second order derivative such that ∂K is differentiable
in this generalised sense at almost all boundary points with respect to the (d −
1)-dimensional Hausdorff measure Hd−1 on ∂K, cf. Alexandrov’s theorem. For
more information and precise definition of generalised second order differentiability,
see [21, Sections 1.5, 2.5, 2.6]. In those points where ∂K is differentiable twice
in the generalised sense, a generalised Gauss-Kronecker curvature can naturally
be defined, which coincides with the usual Gauss-Kronecker curvature if, in the
particular point, ∂K is differentiable twice in the usual sense. Therefore, we use
the symbol κ(x) for the generalised Gauss-Kronecker curvature as well.

Let the functions f and g be defined on a space I. If there exists a constant
γ > 0 such that |f | < γg on I, then we denote this fact with the symbol f ≪ g, or
the common Landau symbol f = O(g).

In the first part of the paper we study the following probability model. Let
ϱ̃ : K → R be a bounded non-negative measurable function on K which is positive
on the boundary ∂K of K and continuous in a neighbourhood of ∂K (relative to
K). Let ϱ = (

∫
K
ϱ̃(x)) dx)−1ϱ̃, where integration is with respect to the Lebesgue

measure in Rd. Then ϱ determines a probability measure on K as follows. For any
measurable set A ⊂ K,

Pϱ,K(A) :=

∫
A

ϱ(x) dx. (1)

Let p1, . . . , pn be i.i.d. random points from K distributed according Pϱ. The
convex hull K(n) = [p1, . . . , pn] is a random polytope in K. Expectation and vari-
ance with respect to Pϱ,K will be denoted by Eϱ,K and Varϱ,K , respectively. If K
is clear from the context, we may also use the simpler notations Pϱ, Eϱ and Varϱ.
In the special case when ϱ ≡ 1, one obtains the uniform model (in that case we
use the even simpler notations Kn for the random polytope, E for the expectation
and Var for variance). The majority of results in the literature concern the uniform
model.

Let λ : K → R be a bounded, non-negative measurable function on K which
is positive on ∂K and continuous in a neighbourhood of ∂K. For a (Lebesgue)
measurable set A ⊂ K, we define the λ-weighted volume of A as

Vλ(A) =

∫
A

λ(x) dx. (2)

If λ ≡ 1, then Vλ(A) = V (A), which is the volume of A.
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Of the various functionals on K(n), in this paper, we concentrate on the weighted
volume Vλ(K \ K(n)) and the number of vertices f0(K(n)). For results on other
interesting functionals, we refer to the survey papers listed above.

The following asymptotic formula was proved in [6].

Theorem 1.1 ([6]). For a convex body K ⊂ Rd, a probability density function ϱ
on K, and an integrable function λ : K → R such that, on a neighbourhood of ∂K
relative to K, λ and ϱ are continuous and ϱ is positive, we have

lim
n→∞

n
2

d+1Eϱ

∫
K\K(n)

λ(x) dx = cd

∫
∂K

ϱ(x)
−2
d+1λ(x)κ(x)

1
d+1Hd−1(dx). (3)

The exact value of the constant cd was determined by Wieacker [26]. The special
case of (3) when ϱ ≡ 1 and λ ≡ 1 was proved for sufficiently smooth bodies in a series
of papers by the following authors. Rényi and Sulanke [18] proved the case when
d = 2 and K is C3

+. Wieacker [26] proved it for K = Bd and general d, Bárány
[1] extended it to the case when K is C3

+. Schütt [24] removed the smoothness
condition on K. Finally, in Böröczky, Fodor, Hug [6], the probability density ϱ and
weight function λ were added.

Recently, variance estimates, laws of large numbers and central limit theorems
have been proved in different models in a sequence of articles. In particular, in
the case ϱ ≡ 1 and λ ≡ 1, Küfer [15] proved that Var(V (Bd

n)) ≪ n−(d+3)/(d+1).
Reitzner [17], using the Efron-Stein jackknife inequality [10], extended this upper
bound Var(V (Kn)) ≪ n−(d+3)/(d+1) for C2

+ bodies for general d. He also proved
the strong law of large numbers for the volume in the form

lim
n→∞

n
d+3
d+1V (K \Kn) = cd

∫
∂K

κ(x)
1

d+1Hd−1(dx),

where convergence is with probability 1. This asymptotic upper bound and the
strong law of large numbers were extended to all intrinsic volumes of Kn by Bárány,
Fodor, Vı́gh [3] in the case when K is C2

+.
Our first main result, Theorem 1.2, is an extension of Reitzner’s [17] asymptotic

upper bound on the variance of the volume for non-constant ϱ and λ under milder
smoothness conditions than C2

+.
We say that a ball of radius r > 0 rolls freely in K if for any x ∈ ∂K there exists

a v ∈ Rd such that x ∈ rBd + v ⊂ K. On the other hand, K slides freely in a ball
of radius R > 0 if for each x ∈ RSd−1 there exists p ∈ Rd with x ∈ K + p ⊂ RBd.
Requiring that K has a rolling ball or slides freely in ball are mild conditions on the
smoothness of the boundary. If K has a rolling ball and slides freely in a ball at the
same time, then ∂K is a C1 submanifold of Rd and it is strictly convex. However,
∂K need not be C2. From now on, we always assume that K has a rolling ball and
slides freely in ball, and o ∈ intK.

We note that the choice of these particular smoothness conditions is due, on the
one hand, to the fact that the main idea of Reitzner’s [17] proof can be adapted to
fit this case, on the other hand, these conditions are preserved under polarity (see
Section 4 for details), which make it applicable in the transfer to the circumscribed
model.

Let σ(K, ·) : ∂K → Sd−1 denote the spherical image map that assigns to a
boundary point x ∈ ∂K, the outer unit normal σ(K,x) ∈ Sd−1. Furthermore, let
τ(K, ·) : Sd−1 → ∂K be the reverse spherical image map that assigns to a unit
vector u ∈ Sd−1 the boundary point τ(K,u) ∈ ∂K with the property that u is an
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outer normal to ∂K at τ(K,u). Under the assumption that K has a rolling ball
and slides freely in a ball, both σ(K, ·) and τ(K, ·) are well-defined and inverses to
each other.

Our first main result is the following upper bound on the variance of Vλ(K(n)).

Theorem 1.2. For a convex body K ⊂ Rd that has a rolling ball and which slides
freely in a ball, and a probability density function ϱ on K, and a non-negative
integrable function λ : K → R such that, on a neighbourhood of ∂K relative to K,
λ and ϱ are continuous and positive, we have

Varϱ(Vλ(K(n))) ≪ n− d+3
d+1 ,

where the implied constant depends only on K, ϱ, λ and the dimension d.

Theorem 1.2 is a generalisation of Theorem 1 of Reitzner [17, p. 2138]. The
need for this level of generality in ϱ and λ will be explained by its applicability in
the circumscribed model in Theorem 1.7.

We note that even if ϱ ≡ 1 and λ ≡ 1, only in the planar case (d = 2) is an
asymptotic upper bound known for Var(V (Kn)) for general convex bodies (discs)
without smoothness condition on ∂K, see Bárány and Steiger [5]. Upper bounds
were also proved for Var(V (Kn)) by Bárány and Reitzner for polytopes in [4] in the
uniform model. For further results on variances (upper and lower bounds, asymp-
totic formulas), deviation estimates and limit laws of other quantities associated
with Kn we refer to the the surveys mentioned above.

From Theorem 1.2, one can derive the law of large numbers for Vλ(K \K(n)) by
standard methods.

Theorem 1.3. Under the same assumptions as in Theorem 1.2, it holds that

lim
n→∞

Vλ(K \K(n))n
2

d+1 = cd

∫
∂K

ϱ(x)−
2

d+1λ(x)κ(x)
1

d+1 dx

with probability 1.

The proof of Theorem 1.3 is very similar to that of Theorem 2 in Reitzner [17, pp.
2150–2151].

The following asymptotic formula was also obtained in [6] by virtue of an Efron-
type argument (see [9]) that connects the expectation of the number of vertices
Eϱ(f0(K(n))) with Eϱ(Vλ(K \K(n))).

Theorem 1.4. [6] For a convex body K ⊂ Rd, and for a probability density function
ϱ on K which is continuous and positive on a neighbourhood of ∂K relative to K,
it holds that

lim
n→∞

n− d−1
d+1Eϱ(f0(K(n))) = cd

∫
∂K

ϱ(x)
d−1
d+1 κ(x)

1
d+1 Hd−1(dx).

Reitzner [17] proved that if K is C2
+, then

Var(f0(Kn)) ≪ n
d−1
d+1 .

With a minor modification of the proof of Theorem 1.2, we obtain the following
extension of Reitzner’s upper bound.
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Theorem 1.5. For a convex body K ⊂ Rd that has a rolling ball and which slides
freely in a ball, and a probability density function ϱ on K such that, on a neigh-
bourhood of ∂K relative to K, ϱ is continuous and positive, we have

Varϱ (f0(K(n))) ≪ n
d−1
d+1 ,

where the implied constant depends only on K, ϱ and the dimension d.

The proof of theorem 1.5 is essentially the same as that of Theorem 1.2 with
minor adjustments that we briefly discuss in Section 3. We note that Reitzner [17]
also proved the strong law of large numbers for the number of vertices in the case
when d ≥ 4.

Next comes the main application of Theorems 1.2 and 1.5 where we apply them
in the following circumscribed model, which was recently studied, for example, in
Böröczky, Schneider [8], Böröczky, Fodor, Hug [6] and Fodor, Hug, Ziebarth [12].

The width of a convex body in the direction u ∈ Sd−1 is the distance between
its two parallel supporting hyperplanes orthogonal to u. The mean width W (K) of
K is the average of its width over all directions, see precise definition in Section 4.

Let K1 = K + Bd the radius 1 parallel domain of K. By A(d, d− 1) we denote
the space of hyperplanes in Rd with its usual topology, and by HK the subspace of
A(d, d−1) with the property that for any H ∈ HK , H ∩K1 ̸= ∅ and H ∩ intK = ∅.
For H ∈ HK , let H− denote the closed half-space bounded by H that contains K.
Let the motion invariant Borel measure µd on A(d, d− 1) be normalised in such a
way that µd({H ∈ A(d, d − 1) : H ∩M ̸= ∅}) is the mean width W (M) of M , for
every convex body M ⊂ Rd. Let 2µK be the restriction of µd to HK . Thus µK is a
probability measure on HK . Let H1, . . . ,Hn be independent random hyperplanes
in Rd, each distributed according to µK . The intersection K(n) =

⋂n
i=1 H

−
i is a

(possibly unbounded) random polyhedron containing K. Since K(n) is unbounded
with positive probability, we consider K(n) ∩ K1 instead (which is no longer a
polyhedron). As already noted in [6], the choice ofK1 does not affect the asymptotic
behaviour of W (K(n) ∩K1) only some normalisation constants. In fact, one could
replace K1 by any other convex body M with intK ⊂ M , or we can consider
W (K(n)) under the condition that K(n) ⊂ K1. In fact, we will use the latter in our
argument in Section 4.

It was proved in [6] that the following holds for W (K(n) ∩K1).

Theorem 1.6. [6] If K is a convex body in Rd, then

lim
n→∞

n
2

d+1EµK
(W (K(n) ∩K1)−W (K)) = 2cdω

− d−1
d+1

d

∫
∂K

κ(x)
d

d+1 Hd−1(dx).

Our main statement regarding this circumscribed model is the following theorem.

Theorem 1.7. For a convex body K ⊂ Rd that has a rolling ball and which slides
freely in a ball, it holds that

VarµK
(W (K(n) ∩K1)) ≪ n− d+3

d+1 ,

where the implied constant depends only on K and d.

In fact, we prove a more general statement in Theorem 4.1.
From Theorem 1.7, we can also obtain the strong law of large numbers for

WµK
(K(n) ∩K1) by standard methods.
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Theorem 1.8. For a convex body K ⊂ Rd that has a rolling ball and which slides
freely in a ball, it holds that

lim
n→∞

n
2

d+1 (W (K(n) ∩K1)−W (K)) = 2 cd ωd
− d−1

d+1

∫
∂K

κ(x)
d

d+1 Hd−1(dx)

with probability 1.

Using Theorem 1.5 we also prove the following upper bound for the number of
facets fd−1(K

(n)) of K(n).

Theorem 1.9. For a convex body K ⊂ Rd that has a rolling ball and which slides
freely in a ball, we have that

VarµK
(fd−1(K

(n))) ≪ n
d−1
d+1 ,

where the implied constant depends only on K and d.

Again, in Section 4 we prove a more general statement, see Theorem 4.5.

2. Proof of Theorem 1.2

Our proof is essentially based on the argument of Reitzner [17]. The main idea is
to use the Efron-Stein jacknife inequality [10] to bound the variance from above by
the second moment of the increment of the weighted volume of K(n) when adding
a new random point. Then, one obtains a geometric integral that involves cap
volumes, which can be estimated based on the geometric assumptions on K. This
is where the existence of the rolling ball and sliding ball are important.

For u ∈ Sd−1 and t ≥ 0, let H(t, u) ∈ A(d, d − 1) be the hyperplane H(t, u) =
{x ∈ Rd : ⟨x, u⟩ = t}. Let H+(t, u) and H−(t, u) be the closed half-spaces bounded
by H(t, u), in particular, H+(t, u) = {x ∈ Rd : ⟨x, u⟩ ≥ t} and H−(t, u) = {x ∈
Rd : ⟨x, u⟩ ≤ t}.

The intersection of K with a closed half-space is called a cap. In particular, let
C(t, u) = K ∩H+(t, u), and let V (t, u) = V (C(t, u)). The (unique) boundary point
τ(K,u) is called the vertex, and h = h(K,u)− t the height of the cap C(t, u). We
will also use the notation C(h, u) (V (h, u) = V (C(h, u))) when we describe the cap
C(t, u) using its height h.

Assume that the radius of the rolling ball is r and K slides freely in a ball of
radius R. Then for all h ≤ r and u ∈ Sd−1 it holds that

γ1h
d+1
2 =

2κd−1r
d−1
2 h

d+1
2

d+ 1
≤ V (C(h, u)) ≤ γ2h

d+1
2 (4)

for some positive constant γ2 that depends on R.
Let ε > 0 and denote by ∂K + εBd the radius ε parallel domain of ∂K. Let

K(ε) = K ∩ (∂K + εBd). Let ε be sufficiently small that both λ and ϱ are positive
and continuous on K(ε). For such ε, let

ϱm(ε) = min
x∈K(ε)

ϱ(x), ϱM (ε) = max
x∈K(ε)

ϱ(x),

and

λm(ε) = min
x∈K(ε)

λ(x), λM (ε) = max
x∈K(ε)

λ(x)

Then for any measurable set A ⊂ K(ε),

ϱm(ε)V (A) ≤ Pϱ(A) ≤ ϱM (ε)V (A),
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λm(ε)V (A) ≤ Vλ(A) ≤ λM (ε)V (A). (5)

In order to prove the upper bound in Theorem 1.2, we use the Efron-Stein jack-
knife inequality [10], which, when applied to Vλ(K(n)), yields that

VarϱVλ(K(n)) ≤ (n+ 1)EϱV
2
λ (K(n+1) \K(n)). (6)

Let c1 = 18R/r, and let ε0 > 0 be sufficiently small that the following conditions
are all satisfied:

(i) c1ε0 < r/2.
(ii) Both λ and ϱ are positive and continuous on K(c1ε0).

(iii) ϱ0γ1ε
d+1
2

0 < 1, where ϱ0 = ϱm(c1ε0).

Let δ(·, ·) denote the Hausdorff distance of compact sets in Rd. Let D denote
the event δ(K(n),K) < ε0 and let Dc be its complement. Assume that Dc happens.
Then K(n) has a facet whose affine hull cuts off a cap of height more than ε0 from
K that contains none of the other n− d random points. Then, taking into account
the bounds in (5), it follows (see also the argument in [17, pp. [2146–2147]) that

Pϱ(D
c) ≤ O(nd(1− c0)

n)

for some suitable constant c0 depending on ε0. Therefore,

VarϱVλ(K(n)) ≤ (n+ 1)

∫
K

. . .

∫
K

1(D)V 2
λ (K(n+1) \K(n)) dp1 . . . dpn+1

+O(nd+1(1− c0)
n).

If pn+1 ∈ K(n), then the set K(n+1) \K(n) is empty so Vλ(K(n+1) \K(n)) = 0.
If pn+1 /∈ K(n), then K(n+1) \K(n) is the union of simplices (with pairwise disjoint
interiors) that are the convex hull of pn+1 and a facet of K(n) that is visible from
pn+1.

Let x1, . . . , xn, xn+1 be arbitrary points in K. Let I = {i1, . . . , id} ⊂ {1, . . . , n}.
We use the notation FI = [xi1 , . . . , xid ] for the convex hull of xi1 , . . . , xid , and HI

for the affine hull of xi1 , . . . , xid . Then FI is almost always a (d − 1)-dimensional
simplex and HI is a hyperplane. If HI is a supporting hyperplane of the polytope
[x1, . . . , xn], then we denote the half-space of HI containing [x1, . . . , xn] by H−

I ,

and the other half-space by H+
I .

Let F = F(xn+1) denote the set of facets of [x1, . . . , xn] that are visible from
xn+1, that is,

F = {FI : FI is a facet of [x1, . . . , xn], xn+1 ∈ H+
I , I = {i1, . . . , id} ⊂ {1, . . . , n}}.

(7)
If xn+1 ∈ [x1, . . . , xn], then F(xn+1) = ∅. We obtain from (6) that

(n+ 1)

∫
K

. . .

∫
K

1(D)V 2
λ (K(n+1) \K(n)) dp1 . . . dpn+1

≪ n

∫
K

. . .

∫
K

1(D)

(∑
F∈F

Vλ([F, xn+1])

)2 n+1∏
i=1

ϱ(xi) dx1 . . . dxn+1, (8)

where
∫
K
. . . dxi, i = 1, . . . , n+ 1 denotes integration with respect to the Lebesgue

measure on K.
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Let F+
I = K ∩H+

I be the cap corresponding to FI , and V +
I = V (F+

I ). Taking
into account the second set of inequalities in (5), we obtain

(8) ≪ n

∫
K

. . .

∫
K

(∑
I

1(D)1 (FI ∈ F)Vλ(F
+
I )

)2 n+1∏
i=1

ϱ(xi) dx1 . . . dxn+1

≪ n

∫
K

. . .

∫
K

(∑
I

1(D)1 (FI ∈ F)V +
I

)2 n+1∏
i=1

ϱ(xi) dx1 . . . dxn+1. (9)

Expanding the square in the integral yields that

(9) = n
∑
I

∑
J

∫
K

. . .

∫
K

1(D)1 (FI ∈ F)V +
I 1 (FJ ∈ F)V +

J

×
n+1∏
i=1

ϱ(xi) dx1 . . . dxn+1, (10)

where the double summation extends to all subsets I = {i1, . . . , id} and J =
{j1, . . . , jd} of {1, . . . , n}. Let the number of common elements of I and J be
|I ∩ J | = k, and let F1 = [x1, . . . , xd] and F2 = [xd−k+1, . . . , x2d−k]. Let V +

1 =
V (F+

1 ) and V +
2 = V (F+

2 ). By the independence of the random points

(10) = n

d∑
k=0

(
n

d

)(
d

k

)(
n− d

d− k

)∫
K

. . .

∫
K

1(D)1 (F1 ∈ F)V +
1

× 1 (F2 ∈ F)V +
2

n+1∏
i=1

ϱ(xi) dx1 . . . dxn+1. (11)

Let diam (·) denote the diameter of a set. Let A denote the event that diam (F+
2 ) <

diam (F+
1 ). Then

(11) ≪ n2d−k+1
d∑

k=0

∫
K

. . .

∫
K

1(D)1 (F1 ∈ F)V +
1

× 1 (F2 ∈ F)1(A)V +
2

n+1∏
i=1

ϱ(xi) dx1 . . . dxn+1. (12)

Replacing 1 (F2 ∈ F) by 1
(
F+
1 ∩ F+

2 ̸= ∅
)
, we obtain

(12) ≪ n2d−k+1
d∑

k=0

∫
K

. . .

∫
K

1(D)1 (F1 ∈ F)V +
1

× 1
(
F+
1 ∩ F+

2 ̸= ∅
)
1(A)V +

2

n+1∏
i=1

ϱ(xi) dx1 . . . dxn+1. (13)

The facet F1 can be seen from xn+1 if and only if the random points x2d−k+1, . . . , xn

are in H−
1 and xn+1 is in H+

1 . Therefore if we fix the points x1, . . . , x2d−k, then
integration with respect to x2d−k+1, . . . , xn yields

(13) ≪ n2d−k+1
d∑

k=0

∫
K

. . .

∫
K

1(D)(1− Pϱ(F
+
1 ))n−2d+kPϱ(F

+
1 )V +

1
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× 1
(
F+
1 ∩ F+

2 ̸= ∅
)
1(A)V +

2

2d−k∏
i=1

ϱ(xi) dx1 . . . dx2d−k. (14)

Now, for a fixed 0 ≤ k ≤ d− 1 and x1, . . . , xd we evaluate the following integral∫
K

. . .

∫
K

1(D)1
(
F+
1 ∩ F+

2 ̸= ∅
)
1(A)V +

2

2d−k∏
i=d+1

ϱ(xi) dxd+1 . . . dx2d−k. (15)

In order to do this, we need the following statement. Let yi be the vertex and
hi the height of the cap F+

i , i = 1, 2. We show that if h1 < ε0, then

F+
2 = C(y2, h2) ⊂ C(y1, c1h1). (16)

We note that a careful analysis of the argument in Reitzner [17] shows that,
under the assumptions on K, this statement holds in each case when ∂K is twice
differentiable in the generalised sense at both y1 and y2, from which it follows that
it is true for almost all pairs y1, y2 with the prescribed conditions on F+

1 and F+
2 .

However, here we give a short and direct proof that verifies (16) for all possible
combinations of y1 and y2.

Let H be the supporting hyperplane of K at y1. Let B be the radius R ball (in
which K slides freely) that supports K at y1, that is, y1 ∈ ∂B, K ⊂ B, and let B′

be the radius r rolling ball containing y1.
Then the intersectionH1∩B is a (d−1)-dimensional ball of radius

√
2Rh1 − h2

1 <√
2Rh1. From F+

1 ⊂ H+
1 ∩ B it follows that diam (F+

1 ) < 2
√
2Rh1. Since

diam (F+
2 ) < diam (F+

1 ) and F+
1 ∩ F+

2 ̸= ∅, the orthogonal projection of F+
2 to

H is contained in the (d − 1)-dimensional ball B′′ of radius 3
√
2Rh1 centred at o.

Let h′ be chosen such that
√
rh′ = 3

√
2Rh1, that is, h

′ = 18(R/r)h1 = c1h1 < r/2
by the choice of ε0. The hyperplane H ′ parallel to H at height c1h1 intersects the
rolling ball B′ in a (d−1)-dimensional ball of radius at least

√
rc1h1 = 3

√
2Rh1, so

the orthogonal projection of H ′∩B′ to H contains B′′, therefore, F+
2 ⊂ C(y1, c1h1).

Using (16), (4) and (5), we obtain that for fixed x1, . . . , xd,

(15) ≪
∫
K

. . .

∫
K

1
(
xd+1, . . . , x2d−k ∈ C(y1, c1h1)

)
× V (C(y1, c1h1))

2d−k∏
i=d+1

ϱ(xi) dxd+1 . . . dx2d−k

≪ Pϱ(C(y1, c1h1))
d−kV (C(y1, c1h1))

≤ (ϱM (c1ε0))
d−k(V (C(y1, c1h1)))

d−k+1

≪ (V +
1 )d−k+1,

which yields that

(14) ≪ n2d−k+1
d∑

k=0

∫
K

. . .

∫
K

(1− Pϱ(F
+
1 ))n−2d+k(V +

1 )d−k+3

×
d∏

i=1

ϱ(xi) dx1 . . . dxd. (17)
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Note that in (17) the range of integration is extended to the whole of K. This does
not contribute to the order of magnitude of the variance, as we will see later. We

will show that the order of magnitude of (17) is less than n− d+3
d+1 .

We use the following special case of the affine Blaschke-Petkantschin formula
(see, for example, [23, Theorem 7.2.7 on p. 278]). Let ∆d−1 = ∆d−1(x1, . . . , xd)
be the (d − 1)-dimensional volume of the simplex whose vertices are the points
x1, . . . , xd.

Theorem 2.1. Let f : (Rd)d → R be a non-negative (Lebesgue) measurable func-
tion. Then∫

(Rd)d
f dx1 . . . dxd =

ωd

ω1
(d− 1)!

∫
A(d,d−1)

∫
Hd

f∆d−1 dx1 . . . dxddµd(H). (18)

The measure dµd = dudt assuming that du is the surface area element of the
unique rotation invariant probability measure (normalised spherical Lebesgue mea-
sure) on Sd−1 and dt is the volume element of the one-dimensional Lebesgue mea-
sure.

Let 0 ≤ k ≤ d be fixed. Using (18) we obtain∫
K

. . .

∫
K

(1− Pϱ(F
+
1 ))n−2d+k(V +

1 )d−k+3 dx1 . . . dxd

≪
∫
A(d,d−1)

∫
H∩K

. . .

∫
H∩K

(1− Pϱ(F
+
1 ))n−2d+k(V +

1 )d−k+3

×∆d−1 dx1 . . . dxd dµd(H)

=

∫
Sd−1

∫ h(K,u)

0

(1− Pϱ(C(t, u)))n−2d+kV (t, u)d−k+3

×

(∫
H(t,u)∩K

. . .

∫
H(t,u)∩K

∆d−1 dx1 . . . dxd

)
dtdu, (19)

Due to the existence of the rolling ball and the conditions on ϱ, there exists
a δ > 0 such that for any u ∈ Sd−1 and 0 ≤ t ≤ h(K,u) − ε0, it holds that
Pϱ(C(t, u)) > δ. Since the innermost d-fold integral in (19) is bounded above by a
constant, it follows that∫

Sd−1

∫ h(K,u)−ε0

0

(1− Pϱ(C(t, u)))n−2d+kV (t, u)d−k+3

×

(∫
H(t,u)∩K

. . .

∫
H(t,u)∩K

∆d−1 dx1 . . . dxd

)
dtdu

≪ (1− δ)n−2d+k

For a fixed u ∈ Sd−1, let B be the supporting ball (of radius R) of K at τ(K,u).
Then H ∩ B is a (d − 1)-dimensional ball with H ∩ K ⊂ H ∩ B. Its radius is

r(t) =
√
2R(h(K,u)− t)− (h(K,u)− t)2 ≪ h1/2, where h = h(K,u)− t.

The quantity ∫
H(t,u)∩K

. . .

∫
H(t,u)∩K

∆d−1 dx1 . . . dxd (20)
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is clearly monotone with respect to the integration domain, therefore we obtain
that ∫

Sd−1

∫ h(K,u)

h(K,u)−ε0

(1− Pϱ(C(t, u)))n−2d+kV (t, u)d−k+3

×

(∫
H(t,u)∩K

. . .

∫
H(t,u)∩K

∆d−1 dx1 . . . dxd

)
dtdu

≪
∫
Sd−1

∫ h(K,u)

h(K,u)−ε0

(1− Pϱ(C(t, u)))n−2d+kV (t, u)d−k+3

×

(∫
r(t)Bd−1

. . .

∫
r(t)Bd−1

∆d−1 dx1 . . . dxd

)
dtdu. (21)

Let us substitute h = h(K,u)− t in (21). By the choice of ε0, if h(K,u)− ε0 ≤
t ≤ h(K,u), then Pϱ(C(t, u)) = Pϱ(C(h, u)) > ϱ0γ1h

(d+1)/2, and ϱ0γ1ε
(d+1)/2
0 < 1.

Using that the degree of homogeneity of (20) is d2 − 1, we obtain

(21) ≪
∫
Sd−1

∫ ε0

0

(
1− ϱ0γ1h

d+1
2

)n−2d+k

h
d+1
2 (d−k+3)h

d2−1
2 dhdu

≪
∫ ε0

0

(
1− ϱ0γ1h

d+1
2

)n−2d+k

h
d+1
2 (d−k+3)h

d2−1
2 dh. (22)

We evaluate (22) using the following asymptotic formula (see [11, formula (5.6)]
and also [7, formula (11)]). For any β ≥ 0, ω > 0 and α > 0, it holds that∫ g(n)

0

hβ(1− ωhα)n dh ∼ 1

αω
β+1
α

Γ

(
β + 1

α

)
n− β+1

α

as n → ∞, assuming that(
(β + α+ 1) lnn

αωn

) 1
α

≤ g(n) ≤ ω− 1
α

for sufficiently large n. The symbol ∼ denotes the asymptotic equality of sequences.
By the choice of ε0, it holds that ε0 < (ϱ0γ1)

−2/(d+1). Let g(n) = ε0 and

α =
d+ 1

2
, β =

(
d+ 1

2

)
(d− k + 3) +

d2 − 1

2
, ω = ϱ0γ1.

Simple calculation yields that

β + 1

α
=

2d2 − dk + 4d− k + 4

d+ 1
=

d+ 3

d+ 1
+ 2d− k + 1.

Since 0 ≤ k ≤ d was arbitrary, this finishes the proof of the theorem.

3. Sketch of the proof of Theorem 1.5

Note that the probability measure Pϱ is absolutely continuous with respect to
the Lebesgue measure. Therefore, K(n) is a simplicial polytope with probability
one. Applying the Efron-Stein inequality [10] to the number of vertices f0(K(n)),
one obtains that

Varϱ (f0(K(n))) ≤ (n+ 1)Eϱ(f0(K(n+1))− f0(K(n)))
2.
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If pn+1 ∈ K(n), then f0(K(n+1)) − f0(K(n)) = 0. If pn+1 /∈ K(n), then, using the
notation (7),

|f0(K(n+1))− f0(K(n))| ≤ (d+ 1)|F(pn+1)|,
as K(n) is simplicial with probability 1. Thus,

Varϱ (f0(K(n))) ≪ nEϱ|F(pn+1)|2.

On the other hand,

Eϱ|F(pn+1)|2 ≤
∫
K

. . .

∫
K

(∑
I

1(D)1 (FI ∈ F)

)2 n+1∏
i=1

ϱ(xi) dx1 . . . dxn+1

+O(nd+1(1− cn0 ).

Repeating (essentially) the same argument as in Section 2, we obtain that

Eϱ|F(pn+1)|2 ≪ n− 2
d+1 ,

from which Theorem 1.5 follows.

4. The variance of the mean width of circumscribed polyhedral sets

We recall some of the notations and arguments from [6]. Let K ⊂ Rd be a convex
body with o ∈ intK. Let

K∗ = {z ∈ Rd : ⟨x, z⟩ ≤ 1 ∀x ∈ K}

be the polar body of K. It was proved by Hug [13] (see Proposition 1.40 on page
40, and Proposition 1.45 on page 42) that if K has a rolling ball and it slides freely
in a ball, then K∗ also has a rolling ball and slides freely in a ball (of different
radii). Thus, polarity preserves the smoothness conditions we impose.

Let K1 = K+Bd be parallel body of radius 1 of K. Recall that HK denotes set
of hyperplanes in Rd that intersect K1 but not intK. The circumscribed model is
based on random hyperplanes with the following (quite general) distribution (see
[6])

µq = 2

∫
Sd−1

∫ ∞

0

1(H(t, u) ∈ ·)q(t, u) dtdu,

where q : [0,∞)× Sd−1 → [0,∞) is a measurable function which has the following
properties: It is

(1) concentrated on DK = {(t, u) ∈ [0,∞)× Sd−1 : h(K,u) ≤ t ≤ h(K1, u)},
(2) positive and continuous in the neighbourhood of {(t, u) ∈ [0,∞) × Sd−1 :

t = h(K,u)} relative to DK ,
(3) a probability measure, i.e. µK(HK) = 1.

Probabilities, expectations and variances with respect to µq are denoted by Pµq
,

Eµq and Varµq , respectively.

LetH1, . . . ,Hn be i.i.d. random hyperplanes in Rd with distribution µq. For each

Hi, let H
−
i be the closed half-space that contains the origin. Let K(n) = ∩n

i=1H
−
i ,

a random polyhedron containing K. We note that K(n) may be unbounded with
positive probability, so we consider K(n)∩K1 instead, or the conditional event that
K(n) ⊂ K1, which has the same asymptotics as n → ∞.
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The polar body of K(n) is the convex hull of the points xi = t−1
i ui, where ti is

the distance between o and Hi, and ui ∈ Sd−1 is the (outer) unit normal vector of
Hi, namely

(K(n))∗ =
[
t−1
1 u1, . . . , t

−1
n un

]
.

We will use the radial function of K, which is defined as

ρ(K,x) = sup{λ ≥ 0 : λx ∈ K} x ∈ Rd \ {o}.

Furthermore, we need the following extension of q:

q̃(x) = q

(
1

∥x∥
,

x

∥x∥

)
, x ∈ K∗ \ {o}.

It was proved in [6] (see p. 516) that the probability density function of the
points t−1

1 u1, . . . , t
−1
n un in the polar model is

ϱ(x) =

{
ω−1
d q̃(x)∥x∥−(d+1), x ∈ K∗ \K∗

1 ,

0, x ∈ K∗
1 .

Note that ϱ(x) is a bounded probability density function on K∗ that is positive
and continuous in a neighbourhood of ∂K∗ with respect to K∗, so it satisfies the
conditions of Theorem 1.2. Following the notation conventions in [6], we denote
(K∗)(n) by the simpler symbolK∗

(n), that is, K
∗
(n) is a random polytope generated as

the convex hull of n i.i.d. random points from K∗ each distributed according to ϱ.
The important thing for us here is that K(n) and (K∗

(n))
∗ are equal in distributions,

see Proposition 5.1 in [6].
We prove the following theorem.

Theorem 4.1. Let K ⊂ Rd be a convex body with o ∈ intK which has a rolling ball
and which slides freely in a ball. Assume that the function q : [0,∞)×Sd−1 → [0,∞)
satisfies properties (1)-(3) as described above. Then

VarµK

(
W (K(n) ∩K1)

)
≪ n− d+3

d+1 ,

where the implied constant depends only on K, q and d.

Proof. It was proved in [8] that Pµq (K
(n) ̸⊂ K1) ≪ αn for a suitable α ∈ (0, 1)

depending on K and µq. Furthermore, it was proved in [6] that K(n) and (K∗
(n))

∗

are equal in distributions. Using these observations, we can calculate the variance
of the mean width with the help of the Efron-Stein inequality in the following way

Varµq

(
W (K(n) ∩K1)

)
≤ (n+ 1)Eµq

(
W (K(n) ∩K1)−W (K(n+1) ∩K1)

)2
≪ nEµq

(
W (K(n) ∩K1)−W (K(n+1) ∩K1)

)2
≪ n

(
Eµq

(
1(K(n) ⊂ K1)(W (K(n))−W (K(n+1)))2

)
+O(αn)

)
= n

(
Eϱ,K∗

(
1((K∗

(n))
∗ ⊂ K1)(W ((K∗

(n))
∗)−W ((K∗

(n+1))
∗))2

)
+O(αn)

)
,

It was proved in [6] that

1(K(n) ⊂ K1)(W (K(n) ∩K1)−W (K))
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= 1((K∗
(n))

∗ ⊂ K1)

∫
K∗\K∗

(n)

λ(x) dx

= 1((K∗
(n))

∗ ⊂ K1)(Vλ(K
∗)− Vλ(K

∗
(n))), (23)

where

λ(x) =

{
ω−1
d ∥x∥−(d+1), x ∈ K∗ \K∗

1 ,

0, x ∈ K∗
1 .

Note that λ(x) is a bounded, integrable function on K∗ and it is positive and
continuous on a neighbourhood of ∂K∗ with respect to K∗, thus, it satisfies the
conditions of Theorem 1.2. Therefore, it follows that

Varµq

(
W (K(n) ∩K1)

)
≪ n(Eϱ,K∗(1((K∗

(n))
∗ ⊂ K1)(Vλ(K

∗
(n+1))− Vλ(K

∗
(n)))

2) +O(αn))

= n

(
Eϱ,K∗

(
Vλ(K

∗
(n+1))− Vλ(K

∗
(n))
)2

+O(αn)

)
≪ n− d+3

d+1 ,

where the last inequality follows from Theorem 1.2 as K∗ also satisfies the imposed
smoothness conditions, that is, it has a rolling ball and it slides freely in a ball. □

The following asymptotic formula was also proved in [6].

Theorem 4.2. [6] Let K ⊂ Rd be a convex body with o ∈ intK and let q : [0,∞)×
Sd−1 → [0,∞) be a measurable function satisfying properties (1)-(3). Then

lim
n→∞

n
2

d+1EµK
(W (K(n) ∩K1)−W (K))

= 2cdω
− d−1

d+1

∫
∂K

q(h(K,σ(K,x)), σ(K,x))−
2

d+1κ
d

d+1 (x)Hd−1(dx).

Using the asymptotic upper bound of Theorem 1.2 and taking into account the
monotone decreasing property of W (K(n) ∩K1), essentially the same argument as
in [7] yields the following statement.

Theorem 4.3. Under the same hypotheses as in Theorem 4.2

lim
n→∞

(W (K(n) ∩K1)−W (K))n
2

d+1

= 2cdω
− d−1

d+1

∫
∂K

q(h(K,σ(K,x)), σ(K,x))−
2

d+1κ
d

d+1 (x)Hd−1(dx)

with probability 1.

Finally, we turn to the number of facets fd−1(K
(n)) of K(n). The following

asymptotic formula was proved in [6].

Theorem 4.4. [6] Let K ⊂ Rd be a convex body with o ∈ intK, and let q :
[0,∞)×Sd−1 → [0,∞) be a measurable function satisfying properties (1)-(3). Then

lim
n→∞

n− d−1
d+1Eµq (fd−1(K

(n)))

= cdω
− d−1

d+1

∫
∂K

q(h(K,σ(K,x)), σ(K,x))
d−1
d+1 κ

d
d+1 (x)Hd−1(dx).
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Since for any polyhedral set P ⊂ Rd with o ∈ intP , f0(P ) = fd−1(P
∗), and the

random polyhedral sets K(n) and (K∗
(n))

∗ are equal in distribution, we obtain by

the Efron-Stein inequality that

Varµq
(fd−1(K

(n))) ≤ (n+ 1)Eµq

(
fd−1(K

(n+1))− fd−1(K
(n))
)2

≪ nEµq

(
fd−1(K

(n+1))− fd−1(K
(n))
)2

= nEµq

(
1(K(n) ⊂ K1)

(
fd−1(K

(n+1))− fd−1(K
(n))
)2)

+ nEµq

(
1(K(n) ̸⊂ K1)

(
fd−1(K

(n+1))− fd−1(K
(n))
)2)

≪ n

(
Eµq

(
1(K(n) ⊂ K1)

(
fd−1(K

(n+1))− fd−1(K
(n))
)2)

+O(n2 · αn)

)
= nEϱ,K∗

(
1((K∗

(n))
∗ ⊂ K1)

(
fd−1((K

∗
(n+1))

∗)− fd−1((K
∗
(n))

∗)
)2)

+O(n3 · αn)

= nEϱ,K∗

(
1((K∗

(n))
∗ ⊂ K1)

(
f0(K

∗
(n+1))− f0(K

∗
(n))
)2)

+O(n3 · αn)

= nEϱ,K∗

(
f0(K

∗
(n+1))− f0(K

∗
(n))
)2

+O(n3 · αn)

≪ n
d−1
d+1

by Theorem 1.5 as K∗ also has a rolling ball and slides freely in a ball. Thus, we
have proved the following statement.

Theorem 4.5. Let K ⊂ Rd be a convex body with o ∈ intK, and let q : [0,∞) ×
Sd−1 → [0,∞) be a measurable function satisfying properties (1)-(3). Then

Varµq
(fd−1(K

(n))) ≪ n
d−1
d+1 ,

where the implied constant depends only on K, q and d.
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