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Abstract. An interval of cardinality (2|A| − 1) of the lattice of all transformation
monoids on a finite set A is studied in the paper. We will show that finite monoidal

intervals correspond to the transformation monoids in this interval.

1. Introduction

Let A be a finite set with at least three elements. It is well known that the

set of all clones on A whose set of unary operations coincides with a trans-

formation monoid M on A forms an interval in the lattice of all clones on A

(see Á. Szendrei [8, Chapter 3]). An interval of this form is called a monoidal

interval. The monoidal intervals partition the clone lattice into finitely many

blocks. Since the clone lattice has continuum many elements if |A| > 3, one

might expect that ‘for mostM ’ the monoidal interval Int(M) contains uncount-

ably many clones. We remark that this is the case on 3-element sets: there are

at least 499 transformation monoids (in 99 ./-classes) among the all 699 trans-

formation monoids (in 160 ./-classes) for which the corresponding monoidal

intervals have cardinality 2ℵ0 (cf. Dormán–Makay–Maróti–Vajda [2]). Nev-

ertheless, it turns out that for many interesting transformation monoids the

corresponding monoidal intervals are finite.

Á. Szendrei in [8] posed the problem of classifying transformation monoids

according to the cardinalities of the corresponding monoidal intervals. A com-

plete classification of transformation monoids according to the sizes of the

corresponding monoidal intervals seems a very hard problem at present. How-

ever, for certain classes of monoids we can solve this problem.

On a 3-element set there are 156 monoids (in 42 ./-classes) for which the

corresponding monoidal intervals wrere unknown, according to [2].

In this paper we will consider a certain class of transformation monoids that

constitute an interval in the lattice of all submonoids of the full transformation

semigroup with cardinality of 2|A| − 1.
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2. Preliminaries

For a finite set A we will denote the full transformation semigroup, and the

set of unary constant operations on A by TA, and ΓA, respectively. For an

arbitrary element a of A we will use the notation γa for the unary constant

operation on A with value a, and a tuple whose all components are a will be

denoted by â. If a is an `-tuple (` ∈ N) then a[i] will refer to its i-th component

(1 6 i 6 `).
For the set of positive integers we will use the notation N, and we will refer

to them as natural numbers.

Let A be a set and ` be a natural number. The set of all finitary operations

on A will be denoted by OA. We call the operation f essentially k-ary (k ∈
N, k > 2) if it depends on exactly k of its variables. If f depends on at most

one of its variables, we call f essentially unary. A set C of finitary operations

on a set A is said to be a clone if it contains all the projections and is closed

under superposition of operations. It is obvious that OA and the set PA of all

projections on A are clones.

For a k-ary relation % on A, a %-matrix over A is a matrix whose columns

belong to %. An n-ary operation f on A preserves the m-ary relation % on A

if for every %-matrix X = (xi,j) ∈ An×m we have that

f(X)
def.
=

 f(x1,1, . . . , x1,n)
...

f(xm,1, . . . , xm,n)

 ∈ %.
If R is a set of finitary relations on A then Pol(R) will denote the set of all

operations f ∈ OA such that f preserves each relation in R.

It is well-known that a set C of finitary operations on A forms a clone if and

only if C = Pol(R) holds for some set R of finitary relations on A.

Since the intersection of an arbitrary family of clones on A is also a clone,

the set of all clones on A constitutes a complete lattice with respect to the

set-theoretic inclusion. Furthermore, we can define the clone generated by a

subset F of OA as the intersection of all clones that contain F . This clone will

be denoted by 〈F 〉. For a natural number `, the set of all `-ary operations of

a clone C will be denoted by C(`).

Let M be a transformation monoid on A, and let Int(M) denote the col-

lection of all clones C on A such that the set of unary operations of C is M .

The clone 〈M〉 of essentially unary operations generated by M is a member

of Int(M), in fact, it is the least member of Int(M), so Int(M) is non-empty.

Furthermore, it is clear that every clone C in Int(M) is contained in the set

Sta(M) =
{
f(x1, . . . , x`) ∈ OA | ` ∈ N, and

f(µ1, . . . , µ`) ∈M for all µ1, . . . , µ` ∈M
}
,
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which is called the stabilizer of the monoid M . It is easy to verify that Sta(M)

is a clone on A, in fact, Sta(M) = Pol(%M ), where

%M = {(µ(0), . . . , µ(n− 1)) : µ ∈M} .

Therefore Sta(M) is the largest member of Int(M). So, a clone C on A belongs

to Int(M) if and only if 〈M〉 ⊆ C ⊆ Sta(M). Thus Int(M) is the interval

[〈M〉,Sta(M)] in the lattice OA of all clones on A. Such an interval is called

a monoidal interval.

Define the relation ./ on the set of all submonoids of TA in the following

way: the transformation monoids M and M ′ on A are ./-related if there

is a permutation π ∈ SA such that M ′ = π ◦ M ◦ π−1. The ./-relation is

an equivalence relation, moreover, if M ./ M ′ then the monoidal intervals

Int(M) and Int(M ′) are isomorphic (as lattices), in particular, they have the

same cardinalities.

If F ⊆ Sta(M) then the clone generated by F over M is 〈F ∪M〉, which

will be denoted by 〈F 〉M . It is obvious that 〈F 〉M belongs to Int(M).

The monoid M will be called collapsing if the monoidal interval correspond-

ing to it contains only one element, that is, there is no essentially at least binary

operation in the stabilizer of M (cf. Grabowski [4]).

We close this section by a well-known result that will be a useful tool in the

sequel. Let L = {a, b} be a 2-element set and (L;∧,∨) be a lattice with lattice

order a 6 b.

Theorem 1 (Complete Disjunctive Normal Form). Let f be an `-ary operation

(` ∈ N) on L.

(a) Then

f(x) = ∨
d∈Hf

∧dx,

where Hf = f−1(b), ∧dx = d[1]x[1] ∧ · · · ∧ d[`]x[`],

d[i]x[i] =

{
x[i], if d[i] = b,

π(x[i]), if d[i] = a,
(1 6 i 6 `),

and π = (a b).

(b) If f is monotone with respect to the lattice order 6 then

f(x) = ∨
d∈Kf

∧dx,

where Kf = min f−1(b) and ∧dx = ∧i∈{j:d[j]=b} x[i].

3. The transformation monoids and the main result

Let n > 2 be a natural number, A = {0, 1, . . . , n − 1}, I = {n − 1}, and

O = A \ I. For k ∈ O define transformations σk and τk on A in the following
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way:

σk : A→ A, σk(x) =

{
k, if x ∈ O,
n− 1, otherwise,

τk : A→ A, τk(x) =

{
n− 1, if x ∈ O,
k, otherwise.

It is straightforward to check that τk◦τk = σk is an idempotent transformation

for every k in O. For subsets S and T of O let

MS,T = ΓA ∪ {idA} ∪ {σk : k ∈ S} ∪ {τk : k ∈ T} .

Then

M∅,∅ = ΓA ∪ {idA}

and

MO,O = M∅,∅ ∪ {σk : k ∈ O} ∪ {τk : k ∈ O} .

are transformation monoids. In the article we will study those monoidal in-

tervals that correspond to the transformation monoids in the interval In =

[M∅,∅,MO,O].

If n = 2 then A = {0, 1} and the interval I2 consists of two transformation

monoids:

M∅,∅ = ΓA ∪ {idA} and MO,O = TA.

The corresponding monoidal intervals are finite, more precisely,

Int(M∅,∅) = {〈M∅,∅〉, 〈∧〉M∅,∅ , 〈∨〉M∅,∅ , 〈∧,∨〉M∅,∅},
Int(MO,O) = {〈MO,O〉, 〈+〉MO,O ,OA},

where ∧ and ∨ are the lattice operations with respect to the lattice order 0 6 1

on A = {0, 1}, furthermore, + is the addition modulo 2. (cf., Post [7]).

In the rest of the paper, we will always assume that n > 3. First, we

describe the transformation monoids in the interval In.

Proposition 2. Let S and T be subsets of O. Then

MS,T = M∅,∅ ∪ {σk : k ∈ S} ∪ {τk : k ∈ T}

is a transformation monoid if and only if either T = ∅ or S = T. Furthermore,

the interval In contains 2n − 1 transformation monoids and it is isomorphic

to the lattice ordered set ({0, 1}×P (O)) \ {(1, ∅)};v), where (a,H) v (a′, H ′)

if and only if a 6 a′ and H ⊆ H ′ (a, a′ ∈ {0, 1}, H,H ′ ⊆ O).

Proof. The first statement of the proposition follows from the following equal-

ities:

σk′ ◦ σk = σk′ , τk′ ◦ τk = σk′ ,

σk′ ◦ τk = τk′ , τk′ ◦ σk = τk′ ,

where k and k′ are arbitrary elements in O.
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To prove the second statement, we remark that the mapping

In → ({0, 1} × P (O)) \ {(1, ∅)},

M∅,∅ ∪ {σk : k ∈ S} ∪ {τk : k ∈ T} 7→

{
(0,S), if T = ∅,
(1,S), if S = T 6= ∅

is an order preserving bijection for which its inverse is also order preserving. �

The aim of the paper is to proof the following statement.

Theorem 3. Let n > 3 be a positive integer. Then for each transformation

monoid M in the interval In the monoidal interval Int(M) is finite.

Detailed information about the monoidal intervals can be found in Theo-

rems 13, 17, 24, and 25.

If S = T = ∅ then the transformation monoid M∅,∅ = ΓA ∪ {idA} is

collapsing (cf., P. P. Pálfy [6]). Therefore, in the sequel, we will assume that

|S| > 1. Without loss of generality, we may also assume that

S = {0, . . . , p− 1},

where 1 6 p 6 n− 1 is an integer.

Let M = MS,T, where S,T ⊆ O and either T = ∅ or S = T 6= ∅. Let α be

the equivalence relation O2 ∪ I2 on A. Then α is a congruence of (A; Sta(M)),

since α is a congruence of (A;M). The factor transformation monoid M̄ =

M/α on Ā = A/α is

M̄ =

{
CĀ ∪ {idĀ}, if T = ∅,
TĀ, otherwise,

and

Int(M̄) =

{
{〈M̄〉, 〈∧̄〉M̄ , 〈∨̄〉M̄ , 〈∧̄, ∨̄〉M̄}, if T = ∅,
{〈M̄〉, 〈+̄〉M̄ ,OĀ}, otherwise,

where ∧̄ and ∨̄ are the lattice operations with respect to the lattice order

O 6 I.

4. The fine structure of operations in Sta(M)

Let M = MS,T, where S,T ⊆ O and either T = ∅ or S = T. Let f be

an `-ary operation in Sta(M) (` ∈ N). For an `-tuple a ∈ A` with property

f(a) ∈ O let Wa =
{
i : a[i] ∈ O

}
. For an arbitrary `-tuple e ∈ A` let e↓a be

the `-tuple whose i-th component (1 6 i 6 `) is

(e↓a)[i] =

{
e[i], if i ∈Wa,

n− 1, otherwise.

Define the operation fa in the following way:

fa : A` → A, e 7→ f(e↓a).
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Then fa ∈ Sta(M) and fa(O`) = f(a/α) ⊆ O, hence, the operation (fa)|O is in

Sta(MO), where MO = {µ|O : µ ∈M, µ(O) ⊆ O} is a transformation monoid

on O and

Sta(MO) =

{
〈∧,∨〉MO , if n = 3,

〈MO〉, if n > 4,
(1)

(cf., E. L. Post [7] for n = 3 and P. P. Pálfy [6] for n > 4).

Proposition 4. Let f be an `-ary operation in Sta(M) (` ∈ N). Then for

arbitrary `-tuples b, c ∈ A` if f(b), f(c) ∈ O then (fb)|O = (fc)|O.

Corollary 5. Let f and g be `-ary operations in Sta(M) (` ∈ N). If

f−1(n− 1) = g−1(n− 1)

and there is an `-tuple b such that (fb)|O = (gb)|O then f = g.

Proof. Suppose that f and g satisfy the requirements of the statement. Let a

be an `-tuple in A`. By the assumption

f(a) = n− 1⇐⇒ g(a) = n− 1,

hence, we may assume that f(a), g(a) ∈ O. Let a′ be the following `-tuple:

a′[i] =

{
a[i], if i ∈Wa,

0, otherwise.

Then a′ ∈ O` and, by Proposition 4,

f(a) = fa(a′) = fb(a′) = gb(a′) = ga(a′) = g(a),

which completes the proof. �

In the proof of Proposition 4 we will use several simple statements that will

be summarized in the next two lemmas.

Let f be an `-ary operation in Sta(M) (` ∈ N). For an `-tuple a and j ∈ A
define transformations ω

(a,j)
1 , . . . , ω

(a,j)
` ∈M as follows:

ω
(a,j)
i =

{
idA, if a[i] = j

ca[i]
, otherwise,

and set ω(a,j) = f(ω
(a,j)
1 , . . . , ω

(a,j)
` ). Then ω(a,j) ∈M .

Lemma 6. Let f be an `-ary operation in Sta(M) \ 〈M〉.
(a) If either f(0̂) = 0 and f is not surjective or f(0̂) ∈ O \ {0} then f(O`) =

{f(0̂)} and the range of f is {f(0̂), n− 1}.
(b) If f(0̂) = n − 1 and either f is not surjective or T = ∅ then f is the

constant operation with value n− 1.
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Proof. (a) Suppose that either f(0̂) = 0 and f is not surjective or f(0̂) ∈
O \ {0}. We will prove that for every integer k (0 6 k < n − 1) equality

f({0, . . . , k}`) = {f(0̂)} holds. We proceed by induction on k. For k = 0 the

statement is true. Suppose that f({0, . . . , j}`) = {f(0̂)} holds for 0 6 j < k.

Let b be an arbitrary `-tuple in {0, . . . , k}`. Then

(ω
(b,k)
1 (0), . . . , ω

(b,k)
` (0)) ∈ {0, . . . , k − 1}`.

Hence, by the induction hypothesis, ω(b,k)(0) = f(ω
(b,k)
1 (0), . . . , ω

(b,k)
` (0)) =

f(0̂). If f(0̂) = 0 then because of the non-surjectivity of f , ω(b,k) can not be

idA. Therefore, ω(b,k) ∈ {γf(0̂), σf(0̂)}, which implies that f(b) = ω(b,k)(k) =

f(0̂).

To prove that the range of f is {f(0̂), n− 1}, choose an arbitrary `-tuple a

in A` \O`. Then ω(a,n−1)(0) = f(ω
(a,n−1)
1 (0), . . . , ω

(a,n−1)
` (0)) = f(0̂) implies

that ω(a,n−1) ∈ {γf(0̂), σf(0̂)}, hence f(a) = ω(a,n−1)(n − 1) ∈ {f(0̂), n − 1}.
We note that σf(0̂) must belong to M since otherwise f would be a constant

operation.

(b) Suppose that f(0̂) = n− 1. Then f̄(Ô) = I. Let a ∈ A` \O`. If T = ∅
then ω(a,n−1)(0) = · · · = ω(a,n−1)(n− 2) = n− 1 imply that ω(a,n−1) = γn−1,

hence, f(a) = ω(a,n−1)(n− 1) = n− 1, that is, f is a constant operation with

value n − 1. Suppose that f is not surjective and it is not constant. Then

there is an `-tuple a ∈ A` such that f(a) ∈ O. Then (fa)|O is essentially unary

operation, and so, there is a transformation µ ∈MO and an index i for which

fa(b) = µ(b[i]) holds for all `-tuples b ∈ O`. If µ = idO then f would be

surjective, hence, µ is a constant transformation, say µ = γb, and so, τb ∈M .

Therefore, T is not empty.

The statements are proved. �

Lemma 7. Let k be an arbitrary element in O.

(a) If a ∈ {0, n− 1}` then there is a transformation µ ∈M such that µ(0) =

f(0̂) and µ(n− 1) = f(a).

(b) If k ∈ S and a ∈ {k, n − 1}` then there is a transformation µ ∈ M such

that µ(0) = f(k̂) and µ(n− 1) = f(a).

(c) If k ∈ T and a,a′ ∈ {k, n − 1}` then there is a transformation µ ∈ M

such that µ(0) = f(a′) and µ(n− 1) = f(a).

Proof. (a) Let a be an arbitrary `-tuple in {0, n− 1}`. For every index i (1 6
i 6 `) define transformation µi in the following way:

µi =

{
γ0, if i ∈Wa,

idA, otherwise.

Then for the transformation µ = f(µ1, . . . , µ`) ∈M , we have that µ(0) = f(0̂)

and µ(n− 1) = f(a).
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(b) Suppose that k ∈ S. Let a be an arbitrary `-tuple in {k, n − 1}`. For

every index i (1 6 i 6 `) define transformation µi in the following way:

µi =

{
γk, if i ∈Wa,

σk, otherwise.

Then for the transformation µ = f(µ1, . . . , µ`) ∈M , we have that µ(0) = f(k̂)

and µ(n− 1) = f(a).

(c) Suppose that k ∈ T. Then S = T, hence, k ∈ S also holds. Let a and

a′ be arbitrary `-tuples in {k, n − 1}`. For every index i (1 6 i 6 `) define

transformation µi in the following way:

µi =


γk, if i ∈Wa ∩Wa′ ,

σk, if i ∈Wa \Wa′ ,

τk, if i ∈Wa′ \Wa,

γn−1, otherwise.

Then for the transformation µ = f(µ1, . . . , µ`) ∈M , we have that µ(0) = f(a′)

and µ(n− 1) = f(a). �

Now we are in a position to prove Proposition 4. The proof will fall naturally

into two parts.

Proof of Proposition 4. Suppose for a contradiction that there are `-tuples

b, c ∈ A` such that f(b), f(c) ∈ O and (fb)|O 6= (fc)|O. Then there is an

`-tuple d ∈ O` for which fb(d) 6= fc(d) holds.

We will distinguish two cases according to n = 3 or n > 4 hold.

Case 1: n = 3.

Case 1.1: T = ∅. We may assume that fb(d) = 0 and fc(d) = 1. Let d′

and d′′ be the following `-tuples:

d′[i] =


d[i], if i ∈Wb ∩Wc,

0, if i ∈Wb \Wc,

2, if i 6∈Wb,

d′′[i] =


d[i], if i ∈Wb ∩Wc,

1, if i ∈Wc \Wb,

2, if i 6∈Wc,

(1 6 i 6 `). Then d′ %` d↓b and d↓c %
` d′′, where

% = π1,2(%M ) = {(0, 0), (0, 1), (1, 1), (2, 2)}.

Hence f(d′) % f(d↓b) = 0 and 1 = f(d↓c) % f(d′′), which imply that f(d′) = 0

and f(d′′) = 1. For the `-tuple d†, where

(d†)[i] =


d[i], if i ∈Wb ∩Wc,

0, if i ∈Wb \Wc,

1, if i ∈Wc \Wb,

2, otherwise,
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we have that d† = (µ1(1), . . . , µ`(1)), moreover, d′ = (µ1(2), . . . , µ`(2)), where

µi =


γd[i]

, if i ∈Wb ∩Wc,

γ0, if i ∈Wb \Wc,

idA, if i ∈Wc \Wb,

γ2, otherwise,

(1 6 i 6 `).

Hence f(d†) = 0 since f(d′) = 0. Define transformations ν1, . . . , ν` ∈ M as

follows:

νi =


γd[i]

, if i ∈Wb ∩Wc,

idA, if i ∈Wb \Wc,

γ1, if i ∈Wc \Wb,

γ2, otherwise,

(1 6 i 6 `)

and set ν = f(ν1, . . . , ν`). Then ν ∈M , ν(0) = f(d†) = 0 and ν(2) = f(d′′) =

1, we get a contradiction.

Case 1.2: T 6= ∅. Then 0 ∈ T since 0 ∈ S = T. If the operation f is not

surjective then the statement of the proposition follows from Lemma 6, hence

we may suppose that f is surjective.

If f(0̂) = n− 1 then f(O`) = I, and so, S = T = O and M = MO,O. Define

transformations µ1, . . . , µ` ∈M as follows:

µi =


γd[i]

, if i ∈Wb ∩Wc,

σd[i]
, if i ∈Wb \Wc,

τd[i]
, if i ∈Wc \Wb,

γ2, otherwise,

(1 6 i 6 `)

and set µ = f(µ1, . . . , µ`). Then µ ∈M , µ(0) = fb(d) = 0 and µ(2) = fc(d) =

1, we get a contradiction.

Suppose that f(0̂) ∈ O. Then we may also assume that 0̂ ∈ {b, c} since

f0̂(d) = f(d) and fb(d) 6= fc(d). Set {0̂,x} = {b, c}. Let d′ be the following

`-tuple:

d′[i] =

{
d[i], if i ∈Wx or i 6∈Wx, d[i] = 0,

0, if i 6∈Wx, d[i] = 1.

Then for every index i (1 6 i 6 `) we have that

(d′[i],d[i], (d↓x)[i]) =


(d[i],d[i],d[i]), if i ∈Wx,

(0, 0, 2), if i 6∈Wx and d[i] = 0,

(0, 1, 2), if i 6∈Wx and d[i] = 1,

hence,

X =

 d′[1] . . . d′[`]
d[1] . . . d[`]

(d↓x)[1] . . . (d↓x)[`]


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is a %M -matrix. However, f(X) =

 f(d′)

f(d)

f(d↓x)

 does not belong to %M since

f(d) = f(d↓0̂) and f(d↓x) are distinct elements in O, which is a contradiction.

Case 2: n > 4. Then the operations (fb)|O and (fc)|O are essentially unary

operations, hence, there are indexes i0, j0 ∈ {1, . . . , `} and transformations

µ, ν ∈MO such that

fb(a) = µ(a[i0]),

fc(a) = ν(a[j0])

hold for every `-tuple a ∈ O`.

Case 2.1: µ = γy and ν = γz. Then y and z are distinct elements in O,

furthermore, we may assume that d = 0̂. Therefore, d↓b,d↓c ∈ {0, n − 1}`.
Define transformations ξ1, . . . , ξ`, ξ

′
1, . . . , ξ

′
` in the following way:

ξi =

{
γ0, if i ∈Wb,

idA, otherwise,
(1 6 i 6 `),

ξ′i =

{
γ0, if i ∈Wc,

idA, otherwise,
(1 6 i 6 `),

and set ξ = f(ξ1, . . . , ξ`), ξ
′ = f(ξ′1, . . . , ξ

′
`). Then ξ, ξ′ ∈ M , ξ(0) = ξ′(0) =

f(0̂) and ξ(n− 1) = f(d↓b) = y, ξ′(n− 1) = f(d↓c) = z. Hence, f(0̂) = n− 1.

Thus, τy and τz belong to M , and so, T is not empty. We get a contradiction

as follows. Let ϕ = f(ϕ1, . . . , ϕ`), where

ϕi =


idA, if i ∈Wb \Wc,

τ0, if i ∈Wc \Wb,

γ0, if i ∈Wb ∩Wc,

γn−1, otherwise,

(1 6 i 6 `).

Then ϕ ∈ M , ϕ(0) = f(d↓b) = y, and ϕ(n − 1) = f(d↓c) = z, which is a

contradiction.

Case 2.2: µ = cy and ν = idO with y ∈ O. Since 0̂↓b ∈ {0, n− 1}` for the

transformations

ξi =

{
γ0, if 0 ∈Wb,

idA, otherwise,
(1 6 i 6 `)

we have that (ξ1(0), . . . , ξ`(0)) = 0̂ and (ξ1(n− 1), . . . , ξ`(n− 1)) = 0̂↓b. Then

for the transformation ξ = f(ξ1, . . . , ξ`) ∈M we obtain that

ξ(n− 1) = f(0̂↓b) = y ∈ O,

which implies that f(0̂) = ξ(0) ∈ {y, n− 1}.
Suppose that f(0̂) = y ∈ O. Then f can be restricted to O, hence,

f |O ∈ 〈MO〉. Fix an element y′ ∈ O \ {y}. Let ϕ,ϕ1, . . . , ϕ` be the following
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transformations:

ϕi =


γy′ , if i = j0,

γ0, if i ∈Wc, i 6= j0,

idA, otherwise,

(1 6 i 6 `),

and ϕ = f(ϕ1, . . . , ϕ`). Then for the `-tuple e = (0, . . . , 0,

j0-th comp.︷︸︸︷
y′ , 0, . . . , 0)

we get that

ϕ(n− 1) = f(e↓c) = fc(e) = v(e[j0]) = y′,

from which f(e) = ϕ(0) ∈ {y′, n− 1} follows, thus, f(e) = y′ since f(e) ∈ O.

As a consequence of this result, we obtain that f |O(a1, . . . , a`) = aj0 holds for

each `-tuple (a1, . . . , a`) ∈ O`. Thus, y = 0. Let a be the `-tuple such that

a[k] = n− 2 if k ∈Wb and a[k] = n− 1 if k 6∈Wb. Then

f(a) = f(a↓b) = f(n̂− 2↓b) = fb(n̂− 2) = 0.

Choose transformations ψ1, . . . , ψ` in the following way:

ψk =

{
γn−2, if k ∈Wb,

idA, otherwise,
(1 6 k 6 `),

and set ψ = f(ψ1, . . . , ψ`). Then ψ(n − 1) = f(a) and ψ(n − 2) = f(n̂− 2).

This leads to a contradiction, since f(n̂− 2) = n − 2 and f(a) = 0. Hence,

f(0̂) = n − 1. Let k be an arbitrary element in O, and let χ1, . . . , χ` be the

following transformations in M :

χi =

{
γk, if i ∈Wc,

idA, otherwise,
(1 6 i 6 `),

and set χ = f(χ1, . . . , χ`). Then χ ∈ M and χ(n − 1) = fc(k̂) = k ∈ O,

χ(0) = n − 1, hence, χ = τk. Therefore, T = O. Let z ∈ O \ {y}. Then

fb(ẑ) = y and fc(ẑ) = z and ẑ↓b, ẑ↓c ∈ {z, n− 1}`. By Lemma 7 (c), there is

a transformation ω ∈M such that ω(0) = f(ẑ↓b) = fb(ẑ) = y and ω(n− 1) =

f(ẑ↓c) = fc(ẑ) = z, we get a contradiction.

Case 2.3: Finally, suppose that µ = ν = idO. Then i0 ∈ Wb, j0 ∈ Wc

and i0 6= j0. Since 0̂ and 0̂↓b belong to {0, n − 1}`, by Lemma 7 (a), there is

a transformation ξ ∈ M such that ξ(0) = f(0̂) and ξ(n − 1) = f(0̂↓b) = 0.

Thus, we have that f(0̂) ∈ {0, n − 1}. Suppose that f(0̂) = 0. Then either

f0̂(d) 6= fb(d) or f0̂(d) 6= fc(d). We may assume that the latter inequality

holds, that is, f0̂(d) 6= fc(d). Under the above assumption, Wc $ A = W0̂.

If i0 6∈ Wc then let a be the `-tuple with components a[k] = 0 if k ∈ Wc

and a[k] = n − 1 if k ∈ A \ Wc. Then f(a) = f(0̂↓c) = fc(0̂) = 0. Let
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ϕ = f(ϕ1, . . . , ϕ`), where

ϕk =

{
γ0, if k ∈Wc,

idA, otherwise,
(1 6 k 6 `).

Then ϕ ∈M ,

ϕ(z) = f(ϕ1(z), . . . , ϕ`(z)) = f0̂(ϕ1(z), . . . , ϕ`(z)) = ϕi0(z) = z (z ∈ O)

and ϕ(n− 1) = f(ϕ1(n− 1), . . . , ϕ`(n− 1)) = f(a) = 0, which is impossible.

If i0 ∈ Wc then let a be the `-tuple with components a[i0] = 1, a[k] = 0 if

k ∈Wc \ {i0}, and a[k] = n− 1 if k ∈ A \Wc. Let ψ = f(ψ1, . . . , ψ`), where

ψk =


γ1, if k = i0,

γ0, if k ∈Wc \ {i0},
idA, otherwise,

(1 6 k 6 `).

Then ψ ∈M ,

ψ(z) = f(ψ1(z), . . . , ψ`(z)) = f0̂(ψ1(z), . . . , ψ`(z)) = ψi0(z) = 1 (z ∈ O)

and ψ(n−1) = f(ψ1(n−1), . . . , ψ`(n−1)) = f(a) = fc(a′) = 0, where a′[i0] = 1

and a′[k] = 0 (k 6= i0). But this is a contradiction.

Then f(0̂) = n− 1 holds, which implies that f(O) = I. For z ∈ O let z be

the `-tuple

(0, . . . ,

i0-th comp.︷︸︸︷
z , . . . , 0).

Let χ = f(χ1, . . . , χ`), where

χk =


γz, if k = i0,

γ0, if k ∈Wc \ {i0},
idA, otherwise,

(1 6 k 6 `).

Then χ ∈ M , χ(0) = f(z) = n − 1 and χ(n − 1) = f(z↓b) = z. Thus,

τz = χ ∈ M , hence S = T = O. Let a and b be distinct elements in O,

furthermore, let e′ and e′′ be the following `-tuples in O`:

(e′)[k] =


a, if k = i0,

0, if k ∈Wb \ {i0},
n− 1, otherwise,

(e′′)[k] =


b, if k = j0,

0, if k ∈Wc \ {j0},
n− 1, otherwise.
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Define the transformations ω, ω1, . . . , ω` in the following way:

ωk =



γ0, if e′[k] = e′′[k] = 0,

σ0, if e′[k] = 0 and e′′[k] = n− 1,

τ0, if e′[k] = n− 1 and e′′[k] = 0,

γn−1, if e′[k] = e′′[k] = n− 1,

γa, if e′[k] = e′′[k] = a,

σa, if e′[k] = a and e′′[k] = n− 1,

γb, if e′[k] = e′′[k] = b,

τa, if e′[k] = n− 1 and e′′[k] = b,

(1 6 k 6 `).

and set ω = f(ω1, . . . , ω`). Then ω ∈ M , ω(0) = f(e′↓b) = a and ω(n − 1) =

f(e′′↓c) = b, which is a contradiction.

This finishes the proof of Proposition 4. �

5. Non-surjective operations in the stabilizer

For an arbitrary transformation monoid M , let Stans(M) be the collection

of all operations in Sta(M) that are either essentially unary or non-surjective.

It is straightforward to check that Stans(M) is a clone, in particular,

Stans(M) = SlA ∩ Sta(M) = 〈{f ∈ Sta(M) : f is not surjective}〉M ,

where SlA is the S lupecki clone on A. Furthermore, if C ∈ Int(M) is a clone

such that C \ 〈M〉 contains only non-surjective operations then C ⊆ Stans(M).

A clone in Int(M) is said to be non-surjective if C \ 〈M〉 contains only

non-surjective operations.

The above can be summarized in the following way.

Proposition 8. Let M be a transformation monoid on a finite set A. Then

the set of all non-surjective clones in Int(M) forms an interval with least and

largest elements 〈M〉 and Stans(M), respectively.

The interval of non-surjective clones in Int(M) will be denoted by Intns(M).

By Proposition 8, Intns(M) = [〈M〉,Stans(M)].

For an operation h ∈ Sta(M̄), say h is `-ary, define the operation h� as

follows:

h� : A` → A, (a1, . . . , a`) 7→

{
n− 1, if g(ā1, . . . , ā`) = I,
0, otherwise.

If C ⊆ Sta(M̄) then C� will denote the set {h� : h ∈ C}.

Proposition 9. Let f ∈ Sta(M) be a non-surjective operation and h ∈ Sta(M̄)

be an arbitrary operation.

(a) The operation h� belongs to Sta(M).

(b) If the range of f is {0, n− 1} then f = (f̄)�.
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(c) The operation f depends on its i-th variable iff f̄ does.

Proof. (a) Let h ∈ Sta(M̄), say `-ary. Let µ1, . . . , µ` be arbitrary transforma-

tions in M , and set µ = h�(µ1, . . . , µ`). Since for every element i ∈ {1, . . . , `}
we have that either {µi(0), . . . , µi(n − 2)} ⊆ O or {µi(0), . . . , µi(n − 2)} = I,
hence, the `-tuples (µ1(b)/α, . . . , µ`(b)/α) (b ∈ O) coincide and µ(n − 1) ∈
{0, n − 1}. Thus, µ ∈ {γ0, γn−1, σ0, τ0}. If µ ∈ {γ0, γn−1, σ0} then µ ∈ M .

Suppose that µ = τ0 and τ0 6∈M . Then T = ∅ and

n− 1 = τ0(0) = µ(0) = h�(µ1(0), . . . , µ`(0)),

0 = τ0(n− 1) = µ(n− 1) = h�(µ1(n− 1), . . . , µ`(n− 1)),

which imply that h is not monotone: µ1(0)/α 6 µ1(n − 1)/α, . . . , µ`(0)/α 6
µ`(n − 1)/α and h(µ1(0)/α, . . . , µ`(0)/α) 
 h(µ1(n − 1)/α, . . . , µ`(n − 1)/α).

We got a contradiction, which proves that µ ∈M . Hence, h� ∈ Sta(M).

(b) Let f ∈ Sta(M) be an operation with range {0, n − 1}, say f is `-ary.

Then for arbitrary `-tuple a ∈ A` we have that

f(a) = n− 1 ⇐⇒ f̄(ā) = I ⇐⇒ f̄�(a) = n− 1,

therefore, f = f̄�.

(c) Suppose that f depends on its i-th variable. Then there is an `-tuple

(a1, . . . , a`) ∈ A` such that ν = f(a1, . . . , ai−1, idA, ai+1, . . . , a`) ∈ M is not

constant, and so, ν ∈ {σk, τk}. Thus,

ν̄ = f(a1, . . . , ai−1, idA, ai+1, . . . , a`)

= f̄(a1, . . . , ai−1, idĀ, ai+1, . . . , a`)

is not a constant transformation on Ā, which implies that f̄ depends on its

i-th variable. �

For an `-tuple b ∈ {O, I}` define the `-tuples b� as follows:

(b�)[i] =

{
n− 1, if b[i] = I,
0, otherwise.

Now we can describe the interval Intns(M).

Proposition 10. Let n > 3 be a natural number and let M = MS,T be a

transformation monoid in the interval [M∅,∅,MO,O]. Then

Intns(M) =

{
{〈M〉, 〈∧̄�〉M , 〈∨̄�〉M , 〈∧̄�, ∨̄�〉M} , if T = ∅,
{〈M〉, 〈+̄�〉M , 〈(OĀ)�〉M} , if S = T 6= ∅.

Proof. Let f be an `-ary (` > 2) non-surjective operation in Sta(M) \ 〈M〉.
Then the range of f is {k, n − 1} for an element k ∈ O by Lemma 6 (a).

Hence, there is an `-tuple (a1, . . . , a`) ∈ A` and there is an index i ∈ {1, . . . , `}
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such that µ = f(a1, . . . , ai−1, idA, ai+1, . . . , a`) ∈ M is not constant, and so,

µ ∈ {σk, τk}. Since τ2
k = σk, σk ∈M . Then σk ◦ (σ0 ◦ f) = f , hence,

〈f〉M = 〈σ0 ◦ f〉M . (2)

Let Φ and Ψ be the following mappings:

Φ: Intns(M)→ Int(M̄), C 7→ C̄,
Ψ: Int(M̄)→ Intns(M), H 7→ 〈H�〉M ,

where C̄ = {ḡ : g ∈ C} and H� = {h� : h ∈ H}. Let C and H be clones in

Intns(M) and Int(M̄), respectively. Then

〈C̄�〉M = 〈{f ∈ C : the range of f is {0, n− 1}}〉M = C,

where, in the second equality, we used (2). Furthermore,

〈H�〉M = 〈H�〉M̄ = H,

where, in the second equality, we used Proposition 9 (b). Therefore, Φ and

Ψ are mutually inverse bijections. It is obvious that Φ and Ψ are monotone

mappings with respect to (set theoretic) inclusion. Hence, Φ is an isomorphism

between the intervals Intns(M) and Int(M̄). Then

Intns(M) ∼= Int(M̄) =

{
{〈M̄〉, 〈∧̄〉M̄ , 〈∨̄〉M̄ , 〈∧̄, ∨̄〉M̄}, if T = ∅,
{〈M̄〉, 〈+̄〉M̄ ,OĀ}, if S = T 6= ∅,

and so,

Intns(M) =

{
{〈M〉, 〈∧̄�〉M , 〈∨̄�〉M , 〈∧̄�, ∨̄�〉M} , if T = ∅,
{〈M〉, 〈+̄�〉M , 〈(OĀ)�〉M} , if S = T 6= ∅.

This finishes the proof of the proposition. �

6. When the base set A has more than three elements

In this section we will make the assumption that n = |A| > 4. Then |O| > 3,

and so, by (1), the monoid

MO = {µ|O : µ ∈M and µ(O) ⊆ O} = ΓO ∪ {idO}

is collapsing.

Our main tool in the investigation of operations in Sta(M) is the following

simple observation, besides Proposition 4.

Proposition 11. Let f be an `-ary operation in Sta(M). If f(O`) ⊆ O and

f |O depends on its i-th variable then f(a) = n−1 holds for every `-tuple a ∈ A`

with a[i] = n− 1.
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Proof. Suppose that f(O`) ⊆ O and f |O depends on its i-th variable. We may

assume that i = 1. Since f |O ∈ Sta(MO) is an essentially unary operation, we

have that f(b) = b[1] holds for every `-tuple b ∈ O`. Let a be an arbitrary

element in A` with a[1] = n − 1, furthermore, let µ1, . . . , µ` ∈ M be the

following transformations:

µk =

{
γa[k]

, if a[k] ∈ O,
idA, otherwise,

(1 6 k 6 `)

and set µ = f(µ1, . . . , µ`) ∈ M . Then µ(k) = k (k ∈ O) imply that f(a) =

µ(n− 1) = n− 1. �

Let a be an arbitrary element in A` and let µ1, . . . , µ` be the following

transformations in M :

µk =

{
γa[k]

, if a[k] ∈ O,
idA, otherwise,

(1 6 k 6 `).

Then the transformation f(µ1, . . . , µ`) ∈ M will be denoted by µ(a). Then

µ(a)(n− 1) = f(a) and (µ1(k), . . . , µ`(k)) ∈ O (k ∈ O).

Proposition 12. Let n > 4 be a natural number. If S 6= O then Sta(MS,T) \
〈MS,T〉 does not contain surjective operations. Hence,

Int(MS,T) = Intns(MS,T).

The interval Intns(MS,T) of non-surjective clones can be seen in Figure 1.

〈∧̄�, ∨̄�〉M

〈∨̄�〉M〈∧̄�〉M

〈M〉

Figure 1. The interval Intns(M) of non-surjective clones

Proof. Let M = MS,T, where S is a nonempty subset of O that does not

contain n−2. Suppose that there is an `-ary surjective operation f in Sta(M).

If f(0̂) = n − 1 then f(O`) = I. Let a ∈ A` such that f(a) = n − 2. Then

µ(a) ∈ M and µ(a)(0) = n − 1. Therefore, τn−2 = µ(a) ∈ M , hence, n − 2 ∈
T = S holds, contradicting to our assumptions.

Then f(O`) ⊆ O, and so, f |O is an essentially unary operation, hence, there

is an index i0 in {1, . . . , `} such that f |O(b) = b[i0] (b ∈ O`), since otherwise
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f would be non-surjective. Then f(a) = n−1 holds if a ∈ A` and a[i0] = n−1

by Proposition 11.

Let b ∈ A` such that b[i] = n− 2. Then for the transformation µ(b) we get

that µ(b)(0) = · · · = µ(b)(n−2) = n−2, and so, n−2 6∈ S implies that f(b) =

n− 2. Let a be an arbitrary element in A` such that a[i0] ∈ A \ {n− 1, n− 2}.
Let ϕ1, . . . , ϕ` and ψ1, . . . , ψ` be the following transformations in M :

ϕk =

{
idA, if a[k] = n− 1,

γa[k]
, otherwise,

ψk =

{
idA, if k = i0,

γa[k]
, otherwise,

(1 6 k 6 `). Set ϕ = f(ϕ1, . . . , ϕ`) and ψ = f(ψ1, . . . , ψ`). Then for every

j (1 6 j 6 n − 2) we have that (ϕ1(j), . . . , ϕ`(j)) ∈ O`, which implies that

ϕ(j) = ϕi0(j) = a[i0]. Hence,

f(a) = ϕ(n− 1) ∈ {a[i0], n− 1}. (3)

Furthermore, ψ(n− 1) = n− 1 and ψ(n− 2) = n− 2 since ψi0(n− 1) = n− 1

and ψi0(n − 2) = n − 2, respectively, which implies that ψ ∈ {idA, γn−2}.
Therefore,

f(a) ∈ {a[i0], n− 2} (4)

since a = (ψ1(a[i0]), . . . , ψ`(a[i0])). From (3) and (4) we get that f(a) = a[i0],

hence, f is in 〈M〉. This contradicts to our assumption.

This completes the proof of Proposition 12. �

Define the following binary operations:

t : A2 → A, xt y =

{
n− 1, if n− 1 ∈ {x, y},
x, otherwise,

u : A2 → A, xu y =

{
n− 1, if x = y = n− 1,

0, otherwise.

Then u ∈ Sta(MS,T) for every nonempty subset S of O, moreover t ∈
Sta(MS,T) if and only if S = O. (We remark that u = ∧̄�.)

Theorem 13. Let n > 4 be a natural number. If S = O, then Int(MS,T) is

the lattice that can be seen in Figure 2 if T = ∅ and in Figure 3 if T = O.

Proof of Theorem 13. Let f ∈ Sta(M) \ 〈M〉 be an `-ary surjective operation

(` ∈ N, ` > 2) that depends on all of its variables. Let a be an arbitrary but

fixed `-tuple in A` such that f(a) ∈ O. Then (fa)|O is an essentially unary

operation by (1). Proposition 4 and the surjectivity of f imply that (fa)|O
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〈u,t〉MO,∅

Stans(M) = 〈u, ∨̄�〉MO,∅ 〈t〉MO,∅

〈u〉MO,∅ 〈∨̄�〉MO,∅

〈MO,∅〉

Figure 2. The monoidal interval Int(MO,∅)

Sta(MO,O)

〈t, +̄�〉MO,O Stans(M) = 〈O�
Ā
〉MO,O

〈t〉MO,O 〈+̄�〉MO,O

〈MO,O〉

Figure 3. The monoidal interval Int(MO,O)

is not a constant operation. We may assume that (fa)|O depends on its first

variable. Hence, 1 ∈Wa and

fa(b) = (fa)|O(b) = b[1] (b ∈ O`).

Let c ∈ A` be an `-tuple such that f(c) ∈ O. Then 1 ∈Wc and for the `-tuple

c′ ∈ O` with

(c′)[i] =

{
c[i], if i ∈Wc,

0, otherwise,
(1 6 i 6 `)

we have that

f(c) = fc(c′) = fa(c′) = (c′)[1] = c[1], (5)
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where in the second equality we used Proposition 4. As a consequence of (5),

the operation f̄ determines f in the following way, for every `-tuple x ∈ A`:

f(x) =

{
n− 1, if f̄(x̄) = I,
x[1], if f̄(x̄) = O.

It follows that

f(x) = n− 1 if x[1] = n− 1 (x ∈ A`). (6)

By Theorem 1 (a),

f̄(x) = ∨̄
b∈Hf̄

∧̄bx (x ∈ Ā`),

where Hf̄ = f̄−1(I). Moreover, by (6),

f̄(x) = x[1] ∨̄

(
∨̄

b∈H′
f̄

(b[2]x[2] ∧̄ . . . ∧̄b[`]x[`])

)
(x ∈ Ā`),

where H ′
f̄

=
{
b ∈ Hf̄ : b[1] = O

}
. Then

f(x) = x[1] t

(
t

b∈H′
f̄

(b�[2]x[2] u · · · u b�[`]x[`])

)
(x ∈ A`),

where ... �

7. When the base set A has three elements

In this section we will make the assumption that n = |A| = 3. Then

|O| = 2, and so, the stabilizer of MO consists of the monotone operations on

O and the monoidal interval Int(MO) has four elements: 〈MO〉, 〈∧〉MO , 〈∨〉MO ,

and 〈∧,∨〉MO .

The interval I3 consists of seven monoids (see Figure 4, where ‘?’ indicates

monoids for which the corresponding monoidal intervals have been unknown

so far, the numbering of the monoids is according to the article [2]):

M24 = M∅,∅,

M38 = M{0},∅, M ′38 = M{1},∅,

M64 = MO,∅,

M65 = M{0},{0}, M ′65 = M{1},{1},

M109 = MO,O,

moreover, M38 ./ M ′38 and M65 ./ M ′65; the monoid M24 is collapsing and

Int(M38) is a 6-element interval (cf., Dormán [3]).
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M109

?

M65 ? M ′65?

M64
?

M38 6 M ′386

M24

1

Figure 4. The interval [M24,M109]

7.1. The transformation monoid M64. Set M = M64 = MO,∅. The sets

{0, 1} and {0, 2} will be denoted by O and D, respectively.

Proposition 14. Let f be an arbitrary `-ary operation (` ∈ N) in Sta(M).

(a) If f(0̂) = 0 then for every element b (b ∈ {1, 2}) f({0, b}n) ⊆ {0, b} and

the operation f |{0,b} is monotone with respect to the lattice order 0 6 b.
(b) If f(0̂) = 1 then f(A`) ⊆ {1, 2}.
(c) If f(0̂) = 2 then f(A`) = {2}.

Proof. (a) Suppose that f(0̂) = 0 then f̄(Ô) = O. Then f(O`) ⊆ O, hence, f

preserves the relation π1,2(%M ) \ {(2, 2)} = {(0, 0), (0, 1), (1, 1)}. Thus, f |O is

monotone with respect to the lattice order 0 6 1.

Let a be an arbitrary element in D`. Then (0̂ 0̂ a)T is a %M -matrix and

f

0̂

0̂

a

 =

 0

0

f(a)

, which imply that f(a) ∈ {0, 2}. Then f preserves the

relation π1,3(%M ) \ {(1, 1)} = {(0, 0), (0, 2), (2, 2)}. Thus, f |{0,2} is monotone

with respect to the lattice order 0 6 2.

(b) Suppose that f(0̂) = 1. Then f(O`) ⊆ O and f |O is monotone with

respect to 0 6 1, hence, f(O`) = {1}. Let a ∈ A` and for every index

i (1 6 i 6 `) set

µi =

{
γa[i]

, if a[i] ∈ O,
idA, otherwise.

Then µ = f(µ1, . . . , µ`) ∈ M and (µ1(0), . . . , µ`(0)), (µ1(1), . . . , µ`(1)) ∈ O`.

Therefore, µ(0) = µ(1) = 1, and so, f(a) = µ(2) ∈ {1, 2}.
(c) Suppose that f(0̂) = 2. Then f(O`) = {2}. Let a be an arbitrary `-tuple

in A`. Using the transformations µ, µ1, . . . , µ` that were defined in part (b),

we get that µ(0) = 2, hence, f(a) = µ(2) = 2 since µ = γ2. �
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The following statement is a consequence of Proposition 4.

Corollary 15. Let f ∈ Sta(M) be an `-ary non-constant operation for which

f(0̂) = 0 holds. Then f(2̂) = 2 and f is determined by its values on the set

O` ∪ D`.

Let f be an `-ary (` > 2) surjective operation in Sta(M) that depends on all

of its variables. Then f(0̂) = 0 by Proposition 14, furthermore, the operation

fb := f |{0,b} is monotone with respect to the partial order 0 6 b (b ∈ {1, 2}).
For b ∈ {1, 2} let Nb = {id{0,b}, γ0, γb} 6 T{0,b}. The lattice operations with

respect to the lattice order 0 6 2 on D will be denoted by f and g.

Proposition 16. If f1 depends on its i-th variable then f(a) = 2 holds for

every `-tuple a ∈ A` with the property a[i] = 2.

Proof. Suppose that f1 depends on its i-th variable. We may assume, without

loss of generality, that i = 1. Then there are elements b2, . . . , b` ∈ O such

that the transformation ν : O → O, x 7→ f1(x, b2, . . . , b`) is not constant and

belongs to N1, hence, ν = idO. Set ξ = f(idA, γb2 , . . . , γb`). Then ξ ∈M and

ξ(b) = f(b, b2, . . . , b`) = f1(b, b2, . . . , b`) = ν(b) = b (b ∈ O),

which imply that ξ = idA, hence, f(2, b2, . . . , b`) = ξ(2) = 2. Moreover,

f(I × O`−1) = I holds since α = O2 ∪ I2 is a congruence of (A; Sta(M)). Let

a be an arbitrary element in A` with a[1] = 2. Then for the transformation

ϕ = f(ϕ1, . . . , ϕ`), where for k ∈ {1, . . . , `}

ϕk =

{
γa[k]

, if k = 1 or a[k] ∈ O,
idA, otherwise,

we get that ϕ(0) = ϕ(1) = 2 and ϕ(2) = f(a). Since ϕ ∈ M and T = ∅, it

follows that ϕ = γ2, hence, f(a) = 2. This completes the proof. �

To describe the clones in the interval Int(M) we will need the following

binary operations in Sta(M):

0f 0 1 2

0 0 0 0

1 0 0 0

2 0 0 2

0g 0 1 2

0 0 0 2

1 0 0 2

2 2 2 2

→g 0 1 2

0 0 0 2

1 1 1 2

2 2 2 2

∧g 0 1 2

0 0 0 2

1 0 1 2

2 2 2 2

∧g 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

.

Theorem 17. The monoidal interval that corresponds to the transformation

monoid M64 consists of twelve clones that can be seen in Figure 5.
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〈∧g〉M64
〈∨g〉M64

Stans(M) 〈→g〉M64

〈0f〉M64
〈0g〉M64

〈M64〉

Figure 5. The monoidal interval Int(M64)

Proof. Let f ∈ Sta(M) \ 〈M〉 be an `-ary surjective operation that depends

on all of its variables. By Corollary 15, f is determined by the restrictions

f1 = f |O and f2 = f |D. The surjectivity of f implies that f1 is not a constant

operation. We may assume that f1 depends on its first k variables (k ∈
N). By Proposition 16, for every `-tuple a ∈ A` with the property that 2 ∈
{a[1], . . . ,a[k]} we have that f(a) = 2. Let Hb = min f−1

b (b) (b ∈ {1, 2}). Then

H1 6= ∅,

{(0, . . . , 0, 2︸︷︷︸
i-th comp.

, 0, . . . , 0) : 1 6 i 6 k} ⊆ H2,

b
(1)
[j] = 0 (b(1) ∈ H1, k + 1 6 j 6 `), and

f1(x) = ∨
b(1)∈H1

∧b(1)x,

f2(x) = g
b(2)∈H2

fb(2)x = x[1]g . . .gx[k]g

(
g

b∈H′
2

fb(2)x

)
,

where

H ′2 = H2 \ {(0, . . . , 0, 2︸︷︷︸
i-th comp.

, 0, . . . , 0) : 1 6 i 6 k}.

Claim 18. If H ′2 = ∅ then

f1(x) = ∨
b(1)∈H1

∧b(1)x,

f2(x) = x[1]g . . .gx[k],
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and

〈f〉M =


〈→g〉M , if 〈f1〉MB

= 〈MO〉,
〈∧g〉M , if 〈f1〉MB

= 〈∧〉MO ,

〈∨g〉M , if 〈f1〉MB
= 〈∨〉MO ,

〈∧g,∨g〉M , if 〈f1〉MB
= 〈∧,∨〉MO .

The statement of Claim 18 follows from the fact that

f(x) = ∨g
b(1)∈H1

∧g(b(1))�x,

by Corollary 5.

Let f [ and f \ be the `-ary operations

f [ : A` → A, (x1, . . . , x`)→ f(x1, . . . , xk, 0, . . . , 0),

f \ : A` → A, (x1, . . . , x`)→ f(0, . . . , 0, xk+1, . . . , x`).

Since 〈∧g〉M ∩ 〈∨g〉M = 〈→g〉M , we get that f = f [→g f
\, and so,

〈f〉M = 〈f [, f \,→g〉M = 〈f [〉M ∨ 〈f \〉M . (7)

Claim 19. If H ′2 6= ∅ then

〈f \〉M =


〈0f〉M , if 〈gb∈H′

2
fb(2)x〉MD = 〈f〉MD ,

〈0g〉M , if 〈gb∈H′
2
fb(2)x〉MD = 〈g〉MD ,

〈0f, 0g〉M , if 〈gb∈H′
2
fb(2)x〉MD = 〈f,∨〉MD ,

where MD = {µ|D : µ ∈M, µ(D) ⊆ D} = {γ1, γ2, idD}.

Then, by Claim 18, Claim 19, and (7), the 1-generated surjective clones in

Int(M) are

〈→g〉M , 〈∧g〉M , 〈∨g〉M , 〈∧g,∨g〉M ,
〈→g〉M ∨ C, 〈∧g〉M ∨ C, 〈∨g〉M ∨ C, 〈∧g,∨g〉M ∨ C,

where C is an arbitrary non-surjective clone in Int(M). Therefore, the lattice

of clones in Int(M) coincides with the lattice in Figure 5. �

7.2. The transformation monoid M65. Set M = M65 = M{0},{0}.

The equivalence relation β = {0, 2}2∪{1}2 is a congruence of (A;M), hence,

of the algebra (A; Sta(M)), as well. Let ¯̄0 = 0/β, ¯̄1 = 1/β, ¯̄A = A/β, and
¯̄M = M/β = C( ¯̄A)∪ id ¯̄A. Then Sta( ¯̄M) coincides with the set of all monotone

operations with respect to the lattice order ¯̄0 6 ¯̄1 and Int( ¯̄M) consists of the

following four clones:

〈 ¯̄M〉, 〈 ¯̄∧〉 ¯̄M , 〈 ¯̄∨〉 ¯̄M , 〈 ¯̄∧, ¯̄∨〉 ¯̄M . (8)

Let f be an `-ary operation in Sta(M). Then

• ¯̄f is a monotone operation,

• if ¯̄f is not the constant operation with value ¯̄1 then ¯̄f(¯̄0, . . . , ¯̄0) = ¯̄0, which

means that if f is not the constant operation with value 1 then f(D`) ⊆ D.
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In the sequel we will assume that f 6∈ 〈M〉.
The clone 〈f〉M/β = 〈 ¯̄f〉 ¯̄M coincides with one of the clones in (8). Since,

there is no operation g ∈ Sta(M) such that ¯̄g = ¯̄∨, we have that 〈f〉M/β
coincides with either 〈 ¯̄M〉 or 〈 ¯̄∧〉 ¯̄M . Moreover, it is straightforward to check

that if ¯̄f = ¯̄∧ then f is the following operation:

∧g 0 1 2

0 0 0 2

1 0 1 2

2 2 2 2

.

Proposition 20. If f is not surjective and it is not a constant operation then

the range of is D.

Proof. Let f be a non-surjective operation that is not a constant operation.

By Lemma 6, the range of f is either D = {0, 2} or {1, 2}. It is obvious that

the latter case is impossible. �

Proposition 21. If f depends on at least two of its variables and it is surjec-

tive then

〈f〉M = 〈∧g〉M .

Proof. Assume f to be an `-ary surjective operation in Sta(M)\〈M〉. Suppose

that ¯̄f is an essentially unary operation. Then there is an index i ∈ {1, . . . , `}
such that equality ¯̄f(a) = a[i] holds for every `-tuple a ∈ ¯̄A since f is surjective.

Therefore, f(c) = 1 if and only if c[i] = 1 (c ∈ A`). Let d be an arbitrary

`-tuple in A` with the property that d[i] ∈ {0, 2}. Let µ = f(µ1, . . . , µ`), where

µk =

{
idA, if k = i,

γd[k]
, otherwise.

Then µ ∈ M , µ(1) = 1 and f(d) ∈ {µ(0), µ(2)} implies that µ = idA, and

so, f(d) = d[i]. Thus, f is the `-ary i-th projection that contradicts to our

assumption. Then 〈 ¯̄∧〉M = 〈 ¯̄f〉 ¯̄M . From which, it follows that equality ¯̄f(x) =

x[i1]
¯̄∧ . . . ¯̄∧x[ik] holds for a suitable natural number k > 2 and indexes 1 6

i1 < · · · < ik 6 `. We may assume that ij = j (1 6 j 6 k). Then

f(a) = 1⇐⇒ ¯̄f(¯̄a) = ¯̄1

⇐⇒ ¯̄a[1] = · · · = ¯̄a[k] = ¯̄1

⇐⇒ a[1] = · · · = a[k] = 1.

Moreover, f(b) = 0 if b ∈ O` \ ({1}k × O`−k) since α is a congruence of

(A; Sta(M)).

Claim 22. If a ∈ {1}k ×A`−k then f(a) = 1.

Let ν1, . . . , ν` be the following transformations:

νi =

{
γa[i]

, if a[i] ∈ O,
idA, if a[i] = 2,
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and set ν = f(ν1, . . . , ν`) ∈ M . Then (ν1(0), . . . , ν`(0)), (ν1(1), . . . , ν`(1)) ∈
{1}k×O`−k implies that ν(0) = ν(1) = 1, hence, ν = γ1. Thus, f(a) = ν(2) =

1.

Claim 23. If a ∈ (Ok \ {1}k)×A`−k then f(a) = 0.

Since a α` (1, . . . , 1,a[k+1], . . . ,a[`]), we have that f(a) ∈ O by Claim 22.

Suppose that f(a) = 1. Let ξ1, . . . , ξ` be the following transformations in M :

ξi =

{
γa[i]

, if a[i] ∈ O,
τ0, if a[i] = 2,

and set ξ = f(ξ1, . . . , ξ`) ∈M . Then ξ(0) = ξ(1) = f(a) = 1 and

(ξ1(2), . . . , ξ`(2)) ∈ (Ok \ {1}k)×O`−k,

which yields a contradiction since ξ(2) = 0 implies that ξ 6∈M .

Suppose that we have an `-tuple a ∈ (Ak \Ok)×A`−k such that f(a) ∈ D.

Let a′ be the `-tuple with the following components (1 6 i 6 `):

a′[i] =

{
a[i], if a[i] ∈ O,
0, otherwise.

Then a′ ∈ O`, 0 occurs among its first k components and a′ β` a, which

imply that f(a) = 0. Let a′′ be the `-tuple with the following components

(1 6 i 6 `):

a′′[i] =

{
a[i], if a[i] ∈ {1, 2},
1, otherwise.

Then a′′ ∈ {1, 2}`, 2 occurs among its first k components and a′′ α` a, which

imply that f(a′′) = 0, since f(a′′) = 1 is not possible. Let ϕ1, . . . ϕ` be the

following transformations in M :

ϕi =

{
γ1, if a′′[i] = 1,

idA, if a[i] = 2,

and set ϕ = f(ϕ1, . . . , ϕ`). Then ϕ ∈ M , ϕ(2) = f(a) = 0 and ϕ(1) = f(1̂) =

1, which yields the contradiction ϕ 6∈M .

Therefore, f(x1, . . . , x`) = x1 ∧g . . .∧g xk ∈ 〈∧g〉M . Since k > 2, the

inclusion ∧g ∈ 〈f〉M also holds. This completes the proof of the proposition.

�

Theorem 24. The monoidal interval that corresponds to the transformation

monoid M65 consists of the following clones

〈M65〉 ⊆ 〈0+〉M65
⊆ 〈0f, 0g〉M65

⊆ 〈∧g〉M65
,

where
0+ 0 1 2

0 0 0 2

1 0 0 2

2 2 2 0

,

0f 0 1 2

0 0 0 0

1 0 0 0

2 0 0 2

,

0g 0 1 2

0 0 0 2

1 0 0 2

2 2 2 2

.
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Proof. Let f be an n-ary operation in Sta(M) \ 〈M〉. If f is not surjective

then f(An) ⊆ D and f is determined by f̄ . If f is surjective then 〈f〉M =

〈∧g〉M . �

7.3. The transformation monoid M109. Set M = M109 = MO,O.

Since T 6= ∅, the interval Intns(M) is the 3-element chain

〈M〉 ⊆ 〈0+〉M ⊆ 〈(OĀ)�〉M . (9)

Let f be a surjective `-ary operation (` > 2) in Sta(M). Choose and fix an

`-tuple a ∈ A` such that f(a) ∈ O. Then fa is defined, moreover, fa|O is a

monotone operation on O. Without loss of generality we may assume that fa
depends on its first k variables. Let d be an `-tuple with the property that 2

appears among its first k components, say d[i] = 2 for an index i ∈ {1, . . . , k}.
Suppose that f(d) ∈ O. Then the operation fd is defined and by Proposition 4

fd|O = fa|O.

But this is impossible because fd does not depend on its i-th variable if d[i] = 2.

Therefore, f(d1, . . . , d`) = 2 if 2 ∈ {d1, . . . , dk}, and so, f̄(d1, . . . , d`) = I if

I ∈ {d1, . . . , dk}. Then

f̄(x) = ∨̄
b∈Hf̄

∧̄bx = (x[1] ∨̄ . . . ∨̄x[k]) ∨̄ ∨̄
b∈H′

f̄

(b[k+1]x[k+1] ∧̄ . . . ∧̄b[`]x[`]),

where Hf̄ = f̄−1(I) and

H ′f̄ =
{

(b[k+1], . . . ,b[`]) : b ∈ Hf̄ and b[1] = · · · = b[k] = O
}
.

Let H = Hfa|O = min(fa|O)−1(1), then

(fa|O)(x) = ∨
b∈H
∧bx (x ∈ O`),

moreover, if b ∈ H then b[i] = 0 (k + 1 6 i 6 `). The operations f̄ and fa|O
completely determine the operation f , by Corollary 5, in the following way:

f(x) = ( ∨∨̄
b∈H
∧∨̄ bx)∨∨̄( 0∨̄

b∈H′
f̄

(0∧̄ bx)′) (x ∈ A`), (10)

where

0∧̄ 0 1 2

0 0 0 0

1 0 0 0

2 0 0 2

,

0∨̄ 0 1 2

0 0 0 2

1 0 0 2

2 2 2 2

,

∧∨̄ 0 1 2

0 0 0 2

1 0 1 2

2 2 2 2

,

∨∨̄ 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

.

Then by (10)

f(x) = f [(x[1], . . . ,x[k])∨∨̄ f \(x[k+1], . . . ,x[`]),

where

f [(x) = ∨∨̄
b∈H
∧∨̄ bx and f \(x) = 0∨̄

b∈H′
f̄

(0∧̄ bx)′.
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Furthermore,

f [(x) = f(x[1], . . . ,x[k], ak+1, . . . , a`),

f \(x) = f(0, . . . , 0,x[k+1], . . . ,x[`])

for elements ak+1, . . . , a` ∈ A with the property that

f \(0, . . . , 0, ak+1, . . . , a`) = 0.

Hence, 〈f〉M = 〈f [〉M and the 1-generated surjective clones in Int(M) are

〈→∨̄〉M , 〈∧∨̄〉M , 〈∨∨̄〉M , 〈∧∨̄,∨∨̄〉M . (11)

Theorem 25. The monoidal interval that corresponds to the transformation

monoid M109 consists of seven clones that can be seen in Figure 6.

〈∧∨̄,∨∨̄〉M109

〈∧∨̄〉M109
〈∨∨̄〉M109

〈→∨̄〉M109

Stans(M) = 〈(OĀ)�〉M109

〈0+〉M109

〈M109〉

Figure 6. The monoidal interval Int(M109)

Proof. Let f be an arbitrary operation in Sta(M). If f is a non-surjective

operation then 〈f〉M coincides with of the following clones:

〈M〉, 〈(0+)�〉M , 〈(OĀ)�〉M ,

by (9). Assume C to be a surjective clone in Int(M). Since C = ∨f∈C〈f〉M , C
is one of the clones in (11), hence, Int(M) is the lattice that can be seen in

Figure 6. �
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