Finite monidal intervals II - A 10-element monoidal interval

Miklós Dormán

Abstract

This paper is a small contribution to the solution of Szendrei's problem on three-element sets. A monoid on the set $\{0,1,2\}$ is presented for which the corresponding monoidal interval has 10 elements.

1. Introduction

Let A be a finite set with at least three elements. It is well known that the set of all clones on A whose set of unary operations coincides with a transformation monoid M on A forms an interval in the lattice of all clones on A (see Á. Szendrei [10, Chapter 3]). An interval of this form is called a monoidal interval. The monoidal intervals partition the clone lattice into finitely many blocks. Since the clone lattice has continuum many elements if $|A| \geqslant 3$, one might expect that 'for most M ' the monoidal interval $\operatorname{Int}(M)$ contains uncountably many clones. We remark that this is the case on 3 -element sets: there are at least 499 transformation monoids (in $99 \bowtie$-classes) among the all 699 transformation monoids (in $160 \bowtie$-classes) for which the corresponding monoidal intervals have cardinality $2^{\aleph_{0}}$ (cf. Dormán-Makay-Maróti-Vajda [2]). Nevertheless, it turns out that for many interesting transformation monoids the corresponding monoidal intervals are finite.

Á. Szendrei in [10] posed the problem of classifying transformation monoids according to the cardinalities of the corresponding monoidal intervals. A complete classification of transformation monoids according to the sizes of the corresponding monoidal intervals seems a very hard problem at present. However, for certain classes of monoids we can solve this problem.

In this paper we will consider a certain transformation monoid (M_{88}) on the set $\{0,1,2\}$ with 10 -element monoidal interval.

2. Preliminaries

For a finite set A we will denote the full transformation semigroup, and the set of unary constant operations on A by T_{A}, and Γ_{A}, respectively. For an arbitrary element a of A we will use the notation γ_{a} for the unary constant

[^0]operation on A with value a, and a tuple whose all components are a will be denoted by \hat{a}. If \mathbf{a} is an ℓ-tuple $(\ell \in \mathbb{N})$ then $\mathbf{a}_{[i]}$ will refer to its i-th component $(1 \leqslant i \leqslant \ell)$.

For the set of positive integers we will use the notation \mathbb{N}, and we will refer to them as natural numbers.

Let A be a set and ℓ be a natural number. The set of all finitary operations on A will be denoted by \mathcal{O}_{A}. We call the operation f essentially k-ary $(k \in$ $\mathbb{N}, k \geqslant 2$) if it depends on exactly k of its variables. If f depends on at most one of its variables, we call f essentially unary. A set \mathcal{C} of finitary operations on a set A is said to be a clone if it contains all the projections and is closed under superposition of operations. It is obvious that \mathcal{O}_{A} and the set \mathcal{P}_{A} of all projections on A are clones.

For a k-ary relation ϱ on A, a ϱ-matrix over A is a matrix whose columns belong to ϱ. An n-ary operation f on A preserves the m-ary relation ϱ on A if for every ϱ-matrix $X=\left(x_{i, j}\right) \in A^{n \times m}$ we have that

$$
f(X) \stackrel{\text { def. }}{=}\left(\begin{array}{c}
f\left(x_{1,1}, \ldots, x_{1, n}\right) \\
\vdots \\
f\left(x_{m, 1}, \ldots, x_{m, n}\right)
\end{array}\right) \in \varrho
$$

If R is a set of finitary relations on A then $\operatorname{Pol}(R)$ will denote the set of all operations $f \in \mathcal{O}_{A}$ such that f preserves each relation in R.

It is well-known that a set \mathcal{C} of finitary operations on A forms a clone if and only if $C=\operatorname{Pol}(R)$ holds for some set R of finitary relations on A.

Since the intersection of an arbitrary family of clones on A is also a clone, the set of all clones on A constitutes a complete lattice with respect to the set-theoretic inclusion. Furthermore, we can define the clone generated by a subset F of \mathcal{O}_{A} as the intersection of all clones that contain F. This clone will be denoted by $\langle F\rangle$. For a natural number ℓ, the set of all ℓ-ary operations of a clone \mathcal{C} will be denoted by $\mathcal{C}^{(\ell)}$.

Let M be a transformation monoid on A, and let $\operatorname{Int}(M)$ denote the collection of all clones \mathcal{C} on A such that the set of unary operations of \mathcal{C} is M. The clone $\langle M\rangle$ of essentially unary operations generated by M is a member of $\operatorname{Int}(M)$, in fact, it is the least member of $\operatorname{Int}(M)$, so $\operatorname{Int}(M)$ is non-empty. Furthermore, it is clear that every clone \mathcal{C} in $\operatorname{Int}(M)$ is contained in the set

$$
\begin{aligned}
& \operatorname{Sta}(M)=\left\{f\left(x_{1}, \ldots, x_{\ell}\right) \in \mathcal{O}_{A} \mid \ell \in \mathbb{N},\right. \text { and } \\
& \left.\qquad \quad f\left(\mu_{1}, \ldots, \mu_{\ell}\right) \in M \text { for all } \mu_{1}, \ldots, \mu_{\ell} \in M\right\}
\end{aligned}
$$

which is called the stabilizer of the monoid M. It is easy to verify that $\operatorname{Sta}(M)$ is a clone on A, in fact, $\operatorname{Sta}(M)=\operatorname{Pol}\left(\varrho_{M}\right)$, where

$$
\varrho_{M}=\{(\mu(0), \ldots, \mu(n-1)): \mu \in M\}
$$

Therefore $\operatorname{Sta}(M)$ is the largest member of $\operatorname{Int}(M)$. So, a clone \mathcal{C} on A belongs to $\operatorname{Int}(M)$ if and only if $\langle M\rangle \subseteq \mathcal{C} \subseteq \operatorname{Sta}(M)$. Thus $\operatorname{Int}(M)$ is the interval
$[\langle M\rangle, \operatorname{Sta}(M)]$ in the lattice \mathcal{O}_{A} of all clones on A. Such an interval is called a monoidal interval.

If $F \subseteq \operatorname{Sta}(M)$ then the clone generated by F over M is $\langle F \cup M\rangle$, which will be denoted by $\langle F\rangle_{M}$. It is obvious that $\langle F\rangle_{M}$ belongs to $\operatorname{Int}(M)$.

3. The monoidal interval corresponding to M_{88}

Set $M=M_{88}$. The transformation monoid M consists of the following transformations: $\gamma_{a}(a \in A), \operatorname{id}_{A}, \varepsilon_{0}=\tau_{002}, \varepsilon_{1}=\tau_{112}$, and $\pi=\tau_{102}$. We remark that $M=M_{64} \cup\{\pi\}$. Set $A_{k}=A \backslash\{k\}(k \in A)$.

There are 18 essentially binary operations in $\operatorname{Sta}(M)$:

$$
\hat{g}: A^{2} \rightarrow A, \begin{cases}g(\mathbf{a}), & \text { if } \mathbf{a} \in B^{2}, \\ 2, & \text { otherwise },\end{cases}
$$

where g is an arbitrary binary on B,

$$
0_{\wedge^{\prime \prime}}: A^{2} \rightarrow A,(x, y) \mapsto \begin{cases}2, & \text { if } x=y=2 \\ 0, & \text { otherwise }\end{cases}
$$

and $\pi \circ 0_{\wedge^{\prime \prime}}$.
The aim of this paper is to prove the following statement.
Theorem 1. The monoidal interval $\operatorname{Int}\left(M_{88}\right)$ consists of exactly ten clones.
We first study the the operations in the stabilizer of M_{88}.
Proposition 2. Let $\tau \in M$ be an arbitrary unary operation and $a \in A_{2}$. Then
(a) if $\tau(2)=a$ then $\tau=\gamma_{a}$,
(b) if $\tau(a) \neq \pi(\tau(a))$ then $\tau(2)=2$.

Proposition 3. (a) $\varrho=A_{2}^{2} \cup\{2\}^{2} \in \operatorname{Con}(A ; M)$, hence, ϱ is a congruence of $(A ; \operatorname{Sta}(M))$;
(b) for every operation $f \in \operatorname{Sta}(M)$, the operation f / α is a monotone operation with respect to the lattice order $\mathbf{0} \leqslant \mathbf{2}$, where $\mathbf{0}=A_{2}$ and $\mathbf{2}=\{2\}$.
(c) if $f \in \operatorname{Sta}(M)$ is not a constant operation then $f\left(A_{2}^{n}\right) \subseteq A_{2}$, furthermore, if $f(\hat{0})=0$ then $f\left(A_{1}^{n}\right) \subseteq A_{1}$,
(d) if $f \in \operatorname{Sta}(M)$ is not a constant operation and $f(\hat{0})=0$ then $\left.f\right|_{A_{1}}$ is a monotone operation with respect to the lattice order $0 \leqslant 2$.

Lemma 4. Let N be a transformation monoid on a finite set A and let $\epsilon \in$ N be an idempotent transformation. Then for every operation $f \in \operatorname{Sta}(N)$ we have that $\left.(\varepsilon \circ f)\right|_{\varepsilon(A)} \in \operatorname{Sta}\left(N_{\varepsilon}\right)$, where $N_{\varepsilon}=\left\{\left.(\varepsilon \circ \tau)\right|_{\varepsilon(A)}: \tau \in N\right\}$ is a transformation monoid on $\varepsilon(A)$.

Proof. Let f be an arbitrary n-ary operation in $\operatorname{Sta}(N)$ and set $f_{\varepsilon}=(\varepsilon \circ$ $f)\left.\right|_{\varepsilon(A)}$. Let $\tau_{1}, \ldots, \tau_{n}$ be arbitrary transformations in N_{ε}. Then there are
transformations μ_{1}, \ldots, μ_{n} in N such that $\tau_{k}=\left.\left(\varepsilon \circ \mu_{k}\right)\right|_{\varepsilon(A)}(1 \leqslant k \leqslant n)$, furthermore,

$$
\begin{aligned}
f_{\varepsilon}\left(t_{1}, \ldots, t_{n}\right) & =f_{\varepsilon}\left(\left.\left(\varepsilon \circ \mu_{1}\right)\right|_{\varepsilon(A)}, \ldots,\left.\left(\varepsilon \circ \mu_{n}\right)\right|_{\varepsilon(A)}\right) \\
& =\left.(\varepsilon \circ f)\left(\varepsilon \circ \mu_{1}, \ldots, \varepsilon \circ \mu_{n}\right)\right|_{\varepsilon(A)} \\
& =\left.\left(\varepsilon \circ\left(f\left(\varepsilon \circ \mu_{1}, \ldots, \varepsilon \circ \mu_{n}\right)\right)\right)\right|_{\varepsilon(A)} \\
& \in N_{\varepsilon},
\end{aligned}
$$

which proves the statement of the lemma.
Proof of Proposition 3. (a) It is straightforward to check that ϱ is a congruence of $(A ; M)$.
(b) Let f be an arbitrary operation in $\operatorname{Sta}(M)$, say n-ary. Then $f / \varrho \in$ $\operatorname{Sta}(M / \varrho)=\operatorname{Sta}\left(\Gamma_{\{\mathbf{0}, \mathbf{2}\}} \cup\left\{\operatorname{id}_{\{\mathbf{0}, \mathbf{2}\}}\right\}\right)$ is a monotone operation.
(c) Suppose that $f \in \operatorname{Sta}(M)$ is an n-ary operation for which $f\left(A_{2}^{n}\right) \nsubseteq A_{2}$ holds. Then $(f / \varrho)(\mathbf{0})=\mathbf{2}$, which implies that f / ϱ is a constant operation with value 2. Hence, f is a constant operation with value 2 .
(d) Let $f \in \operatorname{Sta}(M)$ be a non-constant operation with $f(\hat{0})=0$. Let a be an arbitrary n-tuple in A_{2}^{n}. Then $X=\left(\hat{0}^{T} \hat{0}^{T} \mathbf{a}^{T}\right) \in A^{3 \times n}$ is a ϱ_{M}-matrix, hence, $(0,0, f(\mathbf{a}))^{T}=(f(\hat{0}), f(\hat{0}), f(\mathbf{a}))^{T}=f(X) \in \varrho$ shows that $f(\mathbf{a}) \in A_{1}$. The monotonicity of $\left.f\right|_{A_{1}}$ follows from Lemma 4 with $\varepsilon=\varepsilon_{0}$.

Proposition 5. Let $f \in \operatorname{Sta}(M)$ be a non-constant operation with $f(\hat{0})=0$. Then $f(\hat{2})=2$ and f is determined by its values on the set $A_{1}^{n} \cup A_{2}^{n}$.

Proof. Let f and g be n-ary operations in $\operatorname{Sta}(M)$ such that $f(\mathbf{a})=g(\mathbf{a})$ holds for every n-tuple $\mathbf{a} \in A_{1}^{n} \cup A_{2}^{n}$. Let \mathbf{b} be an arbitrary n-tuple in $A^{n} \backslash\left(A_{1}^{n} \cup A_{2}^{n}\right)$. Then $\mathbf{b} \varrho^{n} \varepsilon_{0}(\mathbf{b}) \in A_{1}^{n}$, and so,

$$
g(\mathbf{b}) \varrho g\left(\varepsilon_{0}(\mathbf{b})\right)=f\left(\varepsilon_{0}(\mathbf{b})\right) \varrho f(\mathbf{b})
$$

which implies that

$$
\begin{equation*}
f(\mathbf{b}) \varrho g(\mathbf{b}) \tag{1}
\end{equation*}
$$

If $f(\mathbf{b})=2$ then $g(\mathbf{b})=2$ by (1). If $f(\mathbf{b}) \in A_{2}$ then $g(\mathbf{b}) \in A_{2}$ by (1). Set $\mu=f\left(\mu_{1}, \ldots, \mu_{n}\right)$, where

$$
\mu_{k}= \begin{cases}\gamma_{\mathbf{b}_{[k]}}, & \text { if } \mathbf{b}_{[k]} \in A_{2} \\ \varepsilon_{0}, & \text { otherwise }\end{cases}
$$

Then $\mu \in M,\left(\mu_{1}(2), \ldots, \mu_{n}(2)\right)=\mathbf{b}$, and so, $\mu(2)=f(\mathbf{b})$ and

$$
\left(\mu_{1}(0), \ldots, \mu_{n}(0)\right)=\left(\mu_{1}(1), \ldots, \mu_{n}(1)\right) \in A_{2}^{n}
$$

Therefore,

$$
\begin{aligned}
g\left(\mu_{1}(0), \ldots, \mu_{n}(0)\right) & =f\left(\mu_{1}(0), \ldots, \mu_{n}(0)\right) \\
& =f\left(\mu_{1}(1), \ldots, \mu_{n}(1)\right) \\
& =g\left(\mu_{1}(1), \ldots, \mu_{n}(1)\right)
\end{aligned}
$$

hence, $g(\mathbf{b})=g\left(\mu_{1}(2), \ldots, \mu_{n}(2)\right)=f\left(\mu_{1}(2), \ldots, \mu_{n}(2)\right)=f(\mathbf{b})$.
This completes the proof of the statement.

Let $f \in \operatorname{Sta}(M)$ be a non-constant n-ary operation. We may assume that $f(\hat{0})=0$, since otherwise we may take $\pi \circ f$ for which $(\pi \circ f)(\hat{0})=0$ and $\langle\pi \circ f\rangle_{M}=\langle f\rangle_{M}$ hold. Let $g_{f}: A_{2}^{n} \rightarrow A_{2}$ and $h_{f}: A_{1}^{n} \rightarrow A_{1}$ be the operations $\left.f\right|_{A_{2}}$ and $\left.f\right|_{A_{1}}$, respectively. Then h_{f} is a monotone operation with respect to the partial order $0 \leqslant 2$ by Proposition 3 (b).

Suppose that g_{f} depends on its i-th variable. Then there are elements $a_{1}, \ldots, a_{n}, a_{i}^{\prime} \in A_{2}$ such that $g_{f}(\mathbf{a}) \neq g_{f}\left(\mathbf{a}^{\prime}\right)$, where $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{a}^{\prime}=\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}, a_{i+1}, \ldots, a_{n}\right)$. Moreover, $f(\mathbf{a})=g_{f}(\mathbf{a}) \neq g_{f}\left(\mathbf{a}^{\prime}\right)=f\left(\mathbf{a}^{\prime}\right)$. Since $\left(a_{j}, a_{j}, a_{j}\right)^{T} \in \varrho_{M}(1 \leqslant j \leqslant n, j \neq i)$ and $\left(a_{i}, a_{i}^{\prime}, 2\right)^{T} \in \varrho_{M}$, we get that

$$
\left(f(\mathbf{a}), f\left(\mathbf{a}^{\prime}\right), f\left(a_{1}, \ldots, a_{i-1}, 2, a_{i+1}, \ldots, a_{n}\right)\right) \in \varrho_{M}
$$

and so $f\left(a_{1}, \ldots, a_{i-1}, 2, a_{i+1}, \ldots, a_{n}\right)=2$. Then for arbitrary elements $\mathbf{b} \in A^{n}$ with $\mathbf{b}_{[i]}=2$ and $\mathbf{b}_{[j]} \in\{0,1\}^{n}(j \neq i)$, the matrix

$$
\left(\begin{array}{ccccccc}
a_{1} & \ldots & a_{i-1} & 2 & a_{i+1} & \ldots & a_{n} \\
\mathbf{b}_{[1]} & \ldots & \mathbf{b}_{[i-1]} & 2 & \mathbf{b}_{[i+1]} & \ldots & \mathbf{b}_{[n]} \\
2 & \ldots & 2 & 2 & 2 & \ldots & 2
\end{array}\right)
$$

is a ϱ_{M}-matrix, which yields that $f(\mathbf{b})=2$. Let \mathbf{d} be an n-tuple in A^{n} such that $\mathbf{d}_{[i]}=2$. For an element $x \in A$ let

$$
x^{\diamond}= \begin{cases}1, & \text { if } x=1 \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\left(\begin{array}{cccccc}
\mathbf{d}_{[1]}^{\diamond} & \ldots & \mathbf{d}_{[i-1]}^{\diamond} & 2 & \mathbf{d}_{[i+1]}^{\diamond} & \ldots \\
\mathbf{d}_{[n]}^{\diamond} \\
\mathbf{d}_{[1]}^{\diamond} & \ldots & \mathbf{d}_{[i-1]}^{\diamond} & 2 & \mathbf{d}_{[i+1]}^{\diamond} & \ldots \\
\mathbf{d}_{[1]}^{\diamond} & \ldots & \mathbf{d}_{[i-1]}^{\diamond} & 2 & \mathbf{d}_{[i+1]} & \ldots \\
\mathbf{d}_{[n]}
\end{array}\right)
$$

is a ϱ_{M}-matrix and $f\left(\mathbf{d}_{[1]}^{\diamond}, \ldots, \mathbf{d}_{[i-1]}^{\diamond}, 2, \mathbf{d}_{[i+1]}^{\diamond}, \ldots, \mathbf{d}_{[n]}^{\diamond}\right)=2$ by the previous argument, hence, $f(\mathbf{d})=2$.

The previous argument yields the following statement.
Proposition 6. Let $f \in \operatorname{Sta}(M)$ be a non-constant n-ary operation with $f(\hat{0})=0$. If g_{f} depends on its i-th variable then $f(\mathbf{a})=2$ holds for every n-tuple $\mathbf{a} \in A^{n}$ with $\mathbf{a}_{[i]}=2$.

To describe the clones in $\operatorname{Int}(M)$ we will use the following binary operations:
$\left.\begin{array}{c|cccc|ccc}0 \vee^{\prime \prime} & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 2 \\ 1 & 0 & 0 & 2 \\ 2 & 2 & 2 & 2\end{array} \quad \begin{array}{ccc}\rightrightarrows \vee^{\prime \prime} & 0 & 1\end{array}\right) 2$.

Proposition 7. The stabilizer of M is $\left\langle\vee_{\vee^{\prime \prime}}, 0_{\vee^{\prime \prime}}\right\rangle_{M}$.
Proof. Let f be an n-ary operation in $\operatorname{Sta}(M) \backslash\langle M\rangle$ such that $f(\hat{0})=0$. We may assume that g_{f} depends exactly on its first k variables. Let

$$
\begin{aligned}
P_{f} & =\left\{\mathbf{a} \in A_{2}^{n}: g_{f}(\mathbf{a})=f(\mathbf{a})=1\right\} \\
Q_{f} & =\min \left\{\mathbf{b} \in A_{1}^{n}: h_{f}(\mathbf{b})=f(\mathbf{b})=2\right\}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{q}\right\}
\end{aligned}
$$

Then

$$
g(\mathbf{x})=\bigvee_{\mathbf{a} \in P_{f}}^{\vee} \wedge \mathbf{a x} \quad\left(\mathbf{x} \in A_{2}^{n}\right)
$$

and

$$
h(\mathbf{x})=\underset{\mathbf{b} \in Q_{f}}{\vee^{\prime \prime}} \wedge^{\prime \prime} \mathbf{b x} \quad\left(\mathbf{x} \in A_{1}^{n}\right)
$$

where

$$
\begin{aligned}
\wedge \mathbf{a x} & =\pi^{\mathbf{a}_{[1]}}\left(\mathbf{x}_{[1]}\right) \wedge \cdots \wedge \pi^{\mathbf{a}_{[k]}}\left(\mathbf{x}_{[k]}\right) \\
\wedge^{\prime \prime} \mathbf{b x} & =\wedge^{\prime \prime}\left\{\mathbf{x}_{[i]}: 1 \leqslant i \leqslant n \text { and } \mathbf{b}_{[i]}=2\right\},
\end{aligned}
$$

and $\pi^{0}=\operatorname{id}_{A}$ and $\pi^{1}=\pi$. By Proposition 6, the n-tuples $\{0\}^{i-1} \times\{1\} \times$ $\{0\}^{n-i}(1 \leqslant i \leqslant k)$ belong to the set Q_{f}. We will assume that $\mathbf{b}_{i}=\{0\}^{i-1} \times$ $\{1\} \times\{0\}^{n-i}(1 \leqslant i \leqslant k)$. Let
where $\wedge_{\vee^{\prime \prime}} \mathbf{a x}=\pi^{\mathbf{a}_{[1]}}\left(\mathbf{x}_{[1]}\right) \vee_{\vee^{\prime \prime}} \ldots \vee_{\vee^{\prime \prime}} \pi^{\mathbf{a}_{[n]}}\left(\mathbf{x}_{[n]}\right)$. Then equalities $\left.\tilde{f}\right|_{A_{2}}=g_{f}$ and $\left.\tilde{f}\right|_{A_{1}}=h_{f}$ proves that $f=\tilde{f}$. Since $a \wedge_{\vee^{\prime \prime}} b=\pi\left(\pi(a) \vee_{\vee^{\prime \prime}} \pi(b)\right)$ holds for arbitrary elements $a, b \in A$, we get that $\operatorname{Sta}(M)$ is generated by $\vee_{V^{\prime \prime}}$ and $0_{\wedge^{\prime \prime}}$ over M.

Let f be a non-surjective operation in $\operatorname{Sta}(M) \backslash\langle M\rangle$ with $f(\hat{0})=0$. Then the range of f is A_{1} and g_{f} is the constant operation with value 0 , furthermore, the clone generated by h_{f} over $M_{A_{1}}=\left\{\left.\left(\varepsilon_{0} \circ \mu\right)\right|_{A_{1}}: \mu \in M\right\}=M_{\varepsilon_{0}}$ is one of the following clones on A_{1} :

$$
\mathcal{I}^{\prime \prime}=\left\langle M_{A_{1}}\right\rangle, \quad \mathcal{E}^{\prime \prime}=\left\langle\wedge^{\prime \prime}\right\rangle_{M_{A_{1}}}, \quad \mathcal{V}^{\prime \prime}=\left\langle\vee^{\prime \prime}\right\rangle_{M_{A_{1}}}, \quad \mathcal{M}^{\prime \prime}=\left\langle\wedge^{\prime \prime}, \vee^{\prime \prime}\right\rangle_{M_{A_{1}}}
$$

Thus, $\langle f\rangle_{M} \in\left\{\langle M\rangle,\left\langle 0_{\wedge^{\prime \prime}}\right\rangle_{M},\left\langle 0_{\vee^{\prime \prime}}\right\rangle_{M},\left\langle 0_{\wedge^{\prime \prime}}, 0_{\vee^{\prime \prime}}\right\rangle_{M}\right\}$, in fact,

$$
\operatorname{Int}_{\mathrm{ns}}(M)=\left\{\langle M\rangle,\left\langle 0_{\wedge^{\prime \prime}}\right\rangle_{M},\left\langle 0_{\vee^{\prime \prime}}\right\rangle_{M},\left\langle 0_{\wedge^{\prime \prime}}, 0_{\vee^{\prime \prime}}\right\rangle_{M}\right\}
$$

Let f be a surjective n-ary operation in $\operatorname{Sta}(M) \backslash\langle M\rangle$ with $f(\hat{0})=0$. Then f is idempotent and g_{f} is not a constant operation, hence, $\left\langle g_{f}\right\rangle_{M_{A_{2}}} \in$ $\{\mathcal{N}, \mathcal{L}, \mathcal{B} \mathcal{F}\}$, where

$$
\mathcal{N}=\left\langle M_{A_{2}}\right\rangle, \quad \mathcal{L}=\langle+\rangle_{M_{A_{2}}}, \quad \mathcal{B} \mathcal{F}=\mathcal{O}_{A_{2}}
$$

We may assume that g_{f} depends on its first variable. The operation h_{f} is a monotone operation that belongs to $\left\langle\wedge^{\prime \prime}, \vee^{\prime \prime}\right\rangle_{M_{A_{1}}}$. By Proposition 6,

$$
h_{f}(\mathbf{x})=\underset{\mathbf{b} \in H_{h}}{\vee^{\prime \prime}} \wedge^{\prime \prime} \mathbf{b} \cdot \mathbf{x}=\mathbf{x}_{[1]} \vee^{\prime \prime} \underset{\mathbf{b} \in H_{h_{f}} \backslash\{(2,0, \ldots, 0)\}}{\vee^{\prime \prime}} \wedge^{\prime \prime} \mathbf{b} \cdot \mathbf{x}\left(\mathbf{x} \in A^{n}\right)
$$

where $H_{h_{f}}=\min \left\{\mathbf{b} \in A_{1}^{n}: h_{f}(\mathbf{b})=f(\mathbf{b})=2\right\}$, hence,

$$
h_{f}(x, y, \ldots, y)=x \vee^{\prime \prime} y \quad \text { and } \quad f(x, y, \ldots, y)=x \rightrightarrows \vee^{\prime \prime} y
$$

If $\wedge^{\prime \prime} \in\langle g\rangle_{M_{A_{2}}}$ then $0_{\wedge^{\prime \prime}} \in\langle f\rangle_{M}$.
Suppose that $\langle g\rangle_{M_{A_{2}}}=\mathcal{L}$. Then $+\in\langle g\rangle_{M_{A_{2}}}$, and so, $+_{v^{\prime \prime}}$ is a member of $\langle f\rangle_{M}$.

Let \mathcal{C} be a clone in $\operatorname{Int}(M)$. Set

$$
\begin{aligned}
& \mathcal{C}_{A_{2}}=\left\{\left.f\right|_{A_{2}}: f \in \mathcal{C}, f\left(A_{2}^{\operatorname{arity}(f)}\right) \subseteq A_{2}\right\}, \\
& \mathcal{C}_{A_{1}}=\left\{\left.\left(\varepsilon_{0} \circ f\right)\right|_{A_{1}}: f \in \mathcal{C}\right\}
\end{aligned}
$$

Then $\mathcal{C}_{A_{2}}$ and $\mathcal{C}_{A_{1}}$ are clones, moreover, $\mathcal{C}_{A_{2}} \in \operatorname{Sta}\left(M_{A_{2}}\right)$ and $\mathcal{C}_{A_{1}} \in \operatorname{Sta}\left(M_{A_{1}}\right)$, where $M_{A_{2}}=\left\{\left.m\right|_{A_{2}}: m \in M, m\left(A_{2}\right) \subseteq A_{2}\right\}=T_{A_{2}}$ and $M_{A_{1}}=M_{\varepsilon_{0}}=C_{A_{1}} \cup$ $\left\{\operatorname{id}_{A_{1}}\right\}$.
Proposition 8. If $\mathcal{C}_{A_{1}}=\left\langle M_{A_{1}}\right\rangle$ then $\mathcal{C}=\langle M\rangle$.
Proof. Let $f \in \operatorname{Sta}(M)$ be an n-ary operation that depends on its variables. If $n \geqslant 2$ then by a theorem of A. Salomaa (see Lemma 4.1. in HobbyMcKenzie [5]) there are distinct indexes i and $j(1 \leqslant i<j \leqslant n)$ and elements $a_{k}(1 \leqslant k \leqslant n, k \neq i, j)$ such that the binary operation

$$
f^{\prime}: A^{2} \rightarrow A,(x, y) \mapsto f\left(a_{1}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{j-1}, y, a_{j+1}, \ldots, a_{n}\right)
$$

depends on both of its variables. Then f^{\prime} belongs to $\langle f\rangle_{M}$ and $\left.\left(\varepsilon_{0} \circ f^{\prime}\right)\right|_{A_{1}}$ depends on its variables.

The statement of the proposition follows.
Proposition 9. Let f be a surjective operation in $\operatorname{Sta}(M) \backslash\left\langle 0_{\wedge^{\prime \prime}}, 0_{\vee^{\prime \prime}}\right\rangle_{M}$, and set $\mathcal{C}=\langle f\rangle_{M}$. Then $\rightrightarrows \vee^{\prime \prime} \in \mathcal{C}$, furthermore $\left\langle\rightrightarrows \vee^{\prime \prime}\right\rangle_{M}$ is the unique upper cover of $\left\langle 0_{\vee^{\prime \prime}}\right\rangle_{M}$ and $\left\langle 0_{\wedge^{\prime \prime}}, \rightrightarrows \vee^{\prime \prime}\right\rangle_{M}$ is the unique upper cover of $\left\langle 0_{\wedge^{\prime \prime}}, 0_{\vee^{\prime \prime}}\right\rangle_{M}$.

Proof. We may assume that f depends on all of its variables. By Proposition $2(\mathrm{c}), f\left(A_{2}^{n}\right) \subseteq A_{2}$ and $g_{f}=\left.f\right|_{A_{2}}$ is not a constant operation.

If g_{f} depends on at least two of its variables then, by Salomaa's theorem, there is a binary operation in $\left\langle g_{f}\right\rangle_{\Gamma_{A_{2}}}$ that depends on its variables, hence,
there is a binary surjective operation in $\langle f\rangle_{\Gamma_{A}}$ that depends on its variables. Therefore, in this case the statement follows.

Suppose that g_{f} is an essentially unary operation. We may assume that it depends on its first variable. Then the $(n-1)$-ary operation

$$
f[2,1]: A^{n-1} \rightarrow A,\left(x_{2}, \ldots, x_{n}\right) \mapsto f\left(2, x_{2}, \ldots, x_{n}\right)
$$

is a constant operation with value 2 by Proposition 6. As f depends on its variables, there is an n-tuple $\mathbf{a} \in A^{n}$ such that $\mathbf{a}_{[1]} \in A_{2}$ and $f(\mathbf{a})=2$. Define the binary operation w on A as follows:

$$
w(a, b)=f\left(a, \mu_{2}(b), \ldots, \mu_{n}(b)\right)(a, b \in A)
$$

where for every index $i(2 \leqslant i \leqslant n)$

$$
\mu_{i}= \begin{cases}\gamma_{\mathbf{a}_{[i]}}, & \text { if } \mathbf{a}_{[i]} \in A_{2} \\ \operatorname{id}_{A}, & \text { if } \mathbf{a}_{[i]}=2\end{cases}
$$

Then $w(2, b)=2(b \in A)$ and $w\left(\mathbf{a}_{[1]}, 2\right)=f(\mathbf{a})=2$, which imply that $w=$ $\rightrightarrows \vee^{\prime \prime}$ 。

This completes the proof.
Proposition 10. Let f be a surjective operation in $\operatorname{Sta}(M) \backslash\left\langle 0_{\wedge^{\prime \prime}}, \rightrightarrows \vee^{\prime \prime}\right\rangle_{M}$, and set $\mathcal{C}=\langle f\rangle_{M}$. Then $+_{v^{\prime \prime}} \in \mathcal{C}$, furthermore $\left\langle+v^{\prime \prime}\right\rangle_{M}$ is the unique upper cover of $\left\langle\rightrightarrows \vee^{\prime \prime}\right\rangle_{M}$ and $\left\langle 0_{\wedge^{\prime \prime}},+\vee^{\prime \prime}\right\rangle_{M}$ is the unique upper cover of $\left\langle 0_{\wedge^{\prime \prime}}, \rightrightarrows \vee^{\prime \prime}\right\rangle_{M}$.
Proof. Suppose that $\mathcal{C}_{A_{2}}=\left\langle M_{A_{2}}\right\rangle$. We may assume that $f(\hat{0})=0$. Then $g_{f}=\left.f\right|_{A_{2}}$ belongs to $\mathcal{C}_{A_{2}}$, and so, it is an essentially unary operation that is not constant since f is surjective. Reordering the variables of f if necessary, we may assume that $g_{f}(\mathbf{x})=\mathbf{x}_{[1]}$ holds for every n-tuple $\mathbf{x} \in A^{n}$.

The clone generated by the operation $h_{f}=\left.f\right|_{A_{1}}$ over $M_{A_{1}}$ is either $\left\langle V^{\prime \prime}\right\rangle_{M_{A_{1}}}$ or $\left\langle\wedge^{\prime \prime}, \vee^{\prime \prime}\right\rangle_{M_{A_{1}}}$ since $\rightrightarrows \vee^{\prime \prime} \in \mathcal{C}$, furthermore, in the latter case $0_{\wedge^{\prime \prime}} \in \mathcal{C}$ also holds. Thus, there is an operation \tilde{f} in $\left\langle 0_{\wedge^{\prime \prime}}, \rightrightarrows \vee^{\prime \prime}\right\rangle_{M}$ such that $g_{\tilde{f}}=g_{f}$ and $h_{\tilde{f}}=h_{f}$, which proves that $f=\tilde{f}$. This contradicts to our assumption on f.

Then $\left\langle M_{A_{2}}\right\rangle \subsetneq \mathcal{C}_{A_{2}}$, and so, $+\in \mathcal{C}_{A_{2}}$. Since $+_{v^{\prime \prime}} \in \operatorname{Sta}(M)$ is the unique operation whose restriction to A_{2} is + , we get that $+_{v^{\prime \prime}} \in \mathcal{C}$.

Proposition 11. Let f be a surjective operation in $\operatorname{Sta}(M) \backslash\left\langle 0_{\wedge^{\prime \prime}},+v^{\prime \prime}\right\rangle_{M}$. Then $\vee_{V^{\prime \prime}} \in \mathcal{C}$,

Proof. Set $\mathcal{C}=\langle f\rangle_{M}$. We may assume that $f(\hat{0})=0$. Then $+\notin \mathcal{C}_{A_{2}}$, and so, $\mathcal{C}_{B}=\langle V\rangle_{M_{A_{2}}}$. Since $\vee_{V^{\prime \prime}} \in \operatorname{Sta}(M)$ is the unique operation whose restriction to A_{2} is \vee, we get that $\vee_{V^{\prime \prime}} \in \mathcal{C}$.

Proof of Theorem 1. Combining Propositions 7-11, we get that $\operatorname{Int}(M)$ consists of the clones

$$
\begin{array}{lllll}
\langle M\rangle, & \left\langle 0_{\vee^{\prime \prime}}\right\rangle_{M}, & \left\langle\rightrightarrows \vee^{\prime \prime}\right\rangle_{M}, & \left\langle+\vee^{\prime \prime}\right\rangle_{M}, & \left\langle\vee_{\vee^{\prime \prime}}\right\rangle_{M}, \\
\left\langle 0_{\wedge^{\prime \prime}}\right\rangle_{M}, & \left\langle 0_{\wedge^{\prime \prime}}, 0_{\vee^{\prime \prime}}\right\rangle_{M}, & \left\langle 0_{\wedge^{\prime \prime}}, \rightrightarrows \vee^{\prime \prime}\right\rangle_{M}, & \left\langle 0_{\wedge^{\prime \prime}},+_{\vee^{\prime \prime}}\right\rangle_{M}, & \left\langle 0_{\wedge^{\prime \prime}}, \vee_{\vee^{\prime \prime}}\right\rangle,
\end{array}
$$

and the monoidal interval can be seen in Figure 1 on page 9.

Figure 1. The interval $\operatorname{Int}(M)$

References

[1] Dormán, M.: Collapsing inverse monoids. Algebra Universalis 56, 241-261 (2007)
[2] Dormán, M., Makay, G., Maróti, M., Vajda R.: Monoidal intervals on three- and four-element sets. Acta Sci. Math. (Szeged) 81, 399-424 (2015)
[3] Dormán, M.: Transformation monoids with finite monoidal intervals. Algebra Universalis 77, 1-27 (2017)
[4] Grabowski, J.-U.: Binary operations suffice to test collapsing of monoidal intervals. Algebra Universalis 38, 92-95 (1997)
[5] Hobby, D. and McKenzie, R.: The Structure of finite algebras. AMS Contemporary Mathematics 76 (1996)
[6] Krokhin, A.: Monoidal intervals in lattices of clones. Algebra Logika 34, 288-310 (1993) (Russian, english translation: Algebra Logic 34, 155-168 (1993))
[7] Pálfy, P. P.: Unary polynomials in algebras I. Algebra Universalis 18, 262-273 (1984)
[8] Post, E. L.: The two-valued iterative systems of mathematical logic. Ann. Math. Studies, no. 5, Princeton University Press, Princeton, N.J., (1941)
[9] Salomaa, A.: On essential variables of functions, especially in the algebra of logic, Ann. Acad. Sci. Fenn. Ser. AI, No. 339, (1963)
[10] Szendrei, Á.: Clones in universal algebra. Séminare de mathématiques supérieures, vol. 99. Les presses de l'Université de Montréal, Montréal (1986)

Miklós Dormán
Bolyai Institute, Aradi vértanúk tere 1, H-6720 Szeged, Hungary

[^0]: 2010 Mathematics Subject Classification: Primary: 08A40; Secondary: 20M20.
 Key words and phrases: monoidal interval.
 This research was supported by grant TUDFO/47138-1/2019-ITM of the Ministry for Innovation and Technology, Hungary.

