Finite monidal intervals II – A 10-element monoidal interval

Miklós Dormán

ABSTRACT. This paper is a small contribution to the solution of Szendrei's problem on three-element sets. A monoid on the set $\{0, 1, 2\}$ is presented for which the corresponding monoidal interval has 10 elements.

1. Introduction

Let A be a finite set with at least three elements. It is well known that the set of all clones on A whose set of unary operations coincides with a transformation monoid M on A forms an interval in the lattice of all clones on A (see Á. Szendrei [10, Chapter 3]). An interval of this form is called a monoidal interval. The monoidal intervals partition the clone lattice into finitely many blocks. Since the clone lattice has continuum many elements if $|A| \ge 3$, one might expect that 'for most M' the monoidal interval Int(M) contains uncountably many clones. We remark that this is the case on 3-element sets: there are at least 499 transformation monoids (in 99 \bowtie -classes) among the all 699 transformation monoids (in 160 \bowtie -classes) for which the corresponding monoidal intervals have cardinality 2^{\aleph_0} (cf. Dormán–Makay–Maróti–Vajda [2]). Nevertheless, it turns out that for many interesting transformation monoids the corresponding monoidal intervals are finite.

Å. Szendrei in [10] posed the problem of classifying transformation monoids according to the cardinalities of the corresponding monoidal intervals. A complete classification of transformation monoids according to the sizes of the corresponding monoidal intervals seems a very hard problem at present. However, for certain classes of monoids we can solve this problem.

In this paper we will consider a certain transformation monoid (M_{88}) on the set $\{0, 1, 2\}$ with 10-element monoidal interval.

2. Preliminaries

For a finite set A we will denote the full transformation semigroup, and the set of unary constant operations on A by T_A , and Γ_A , respectively. For an arbitrary element a of A we will use the notation γ_a for the unary constant

²⁰¹⁰ Mathematics Subject Classification: Primary: 08A40; Secondary: 20M20.

Key words and phrases: monoidal interval.

This research was supported by grant TUDFO/47138-1/2019-ITM of the Ministry for Innovation and Technology, Hungary.

operation on A with value a, and a tuple whose all components are a will be denoted by \hat{a} . If \mathbf{a} is an ℓ -tuple ($\ell \in \mathbb{N}$) then $\mathbf{a}_{[i]}$ will refer to its *i*-th component $(1 \leq i \leq \ell)$.

For the set of positive integers we will use the notation \mathbb{N} , and we will refer to them as natural numbers.

Let A be a set and ℓ be a natural number. The set of all finitary operations on A will be denoted by \mathcal{O}_A . We call the operation f essentially k-ary $(k \in \mathbb{N}, k \ge 2)$ if it depends on exactly k of its variables. If f depends on at most one of its variables, we call f essentially unary. A set C of finitary operations on a set A is said to be a *clone* if it contains all the projections and is closed under superposition of operations. It is obvious that \mathcal{O}_A and the set \mathcal{P}_A of all projections on A are clones.

For a k-ary relation ρ on A, a ρ -matrix over A is a matrix whose columns belong to ρ . An *n*-ary operation f on A preserves the *m*-ary relation ρ on A if for every ρ -matrix $X = (x_{i,j}) \in A^{n \times m}$ we have that

$$f(X) \stackrel{\text{def.}}{=} \begin{pmatrix} f(x_{1,1}, \dots, x_{1,n}) \\ \vdots \\ f(x_{m,1}, \dots, x_{m,n}) \end{pmatrix} \in \varrho.$$

If R is a set of finitary relations on A then Pol(R) will denote the set of all operations $f \in \mathcal{O}_A$ such that f preserves each relation in R.

It is well-known that a set C of finitary operations on A forms a clone if and only if C = Pol(R) holds for some set R of finitary relations on A.

Since the intersection of an arbitrary family of clones on A is also a clone, the set of all clones on A constitutes a complete lattice with respect to the set-theoretic inclusion. Furthermore, we can define the *clone generated by a* subset F of \mathcal{O}_A as the intersection of all clones that contain F. This clone will be denoted by $\langle F \rangle$. For a natural number ℓ , the set of all ℓ -ary operations of a clone \mathcal{C} will be denoted by $\mathcal{C}^{(\ell)}$.

Let M be a transformation monoid on A, and let Int(M) denote the collection of all clones C on A such that the set of unary operations of C is M. The clone $\langle M \rangle$ of essentially unary operations generated by M is a member of Int(M), in fact, it is the least member of Int(M), so Int(M) is non-empty. Furthermore, it is clear that every clone C in Int(M) is contained in the set

$$\operatorname{Sta}(M) = \left\{ f(x_1, \dots, x_\ell) \in \mathcal{O}_A \mid \ell \in \mathbb{N}, \text{ and} \\ f(\mu_1, \dots, \mu_\ell) \in M \text{ for all } \mu_1, \dots, \mu_\ell \in M \right\},\$$

which is called the *stabilizer* of the monoid M. It is easy to verify that $\operatorname{Sta}(M)$ is a clone on A, in fact, $\operatorname{Sta}(M) = \operatorname{Pol}(\varrho_M)$, where

$$\rho_M = \{(\mu(0), \dots, \mu(n-1)) : \mu \in M\}.$$

Therefore $\operatorname{Sta}(M)$ is the largest member of $\operatorname{Int}(M)$. So, a clone \mathcal{C} on A belongs to $\operatorname{Int}(M)$ if and only if $\langle M \rangle \subseteq \mathcal{C} \subseteq \operatorname{Sta}(M)$. Thus $\operatorname{Int}(M)$ is the interval

By MD

 $[\langle M \rangle, \operatorname{Sta}(M)]$ in the lattice \mathcal{O}_A of all clones on A. Such an interval is called a monoidal interval.

If $F \subseteq \text{Sta}(M)$ then the clone generated by F over M is $\langle F \cup M \rangle$, which will be denoted by $\langle F \rangle_M$. It is obvious that $\langle F \rangle_M$ belongs to Int(M).

3. The monoidal interval corresponding to M_{88}

Set $M = M_{88}$. The transformation monoid M consists of the following transformations: γ_a $(a \in A)$, id_A , $\varepsilon_0 = \tau_{002}$, $\varepsilon_1 = \tau_{112}$, and $\pi = \tau_{102}$. We remark that $M = M_{64} \cup \{\pi\}$. Set $A_k = A \setminus \{k\}$ $(k \in A)$.

There are 18 essentially binary operations in Sta(M):

$$\hat{g} \colon A^2 \to A, \begin{cases} g(\mathbf{a}), & \text{if } \mathbf{a} \in B^2, \\ 2, & \text{otherwise,} \end{cases}$$

where g is an arbitrary binary on B,

$$0_{\wedge''} \colon A^2 \to A, \ (x,y) \mapsto \begin{cases} 2, & \text{if } x = y = 2, \\ 0, & \text{otherwise,} \end{cases}$$

and $\pi \circ 0_{\wedge''}$.

The aim of this paper is to prove the following statement.

Theorem 1. The monoidal interval $Int(M_{88})$ consists of exactly ten clones.

We first study the the operations in the stabilizer of M_{88} .

Proposition 2. Let $\tau \in M$ be an arbitrary unary operation and $a \in A_2$. Then

- (a) if $\tau(2) = a$ then $\tau = \gamma_a$,
- (b) if $\tau(a) \neq \pi(\tau(a))$ then $\tau(2) = 2$.
- **Proposition 3.** (a) $\rho = A_2^2 \cup \{2\}^2 \in \text{Con}(A; M)$, hence, ρ is a congruence of (A; Sta(M));
- (b) for every operation $f \in \text{Sta}(M)$, the operation f/α is a monotone operation with respect to the lattice order $\mathbf{0} \leq \mathbf{2}$, where $\mathbf{0} = A_2$ and $\mathbf{2} = \{2\}$.
- (c) if $f \in \text{Sta}(M)$ is not a constant operation then $f(A_2^n) \subseteq A_2$, furthermore, if $f(\hat{0}) = 0$ then $f(A_1^n) \subseteq A_1$,
- (d) if $f \in \text{Sta}(M)$ is not a constant operation and $f(\hat{0}) = 0$ then $f|_{A_1}$ is a monotone operation with respect to the lattice order $0 \leq 2$.

Lemma 4. Let N be a transformation monoid on a finite set A and let $\epsilon \in N$ be an idempotent transformation. Then for every operation $f \in \operatorname{Sta}(N)$ we have that $(\varepsilon \circ f)|_{\varepsilon(A)} \in \operatorname{Sta}(N_{\varepsilon})$, where $N_{\varepsilon} = \{(\varepsilon \circ \tau)|_{\varepsilon(A)} : \tau \in N\}$ is a transformation monoid on $\varepsilon(A)$.

Proof. Let f be an arbitrary *n*-ary operation in $\operatorname{Sta}(N)$ and set $f_{\varepsilon} = (\varepsilon \circ f)|_{\varepsilon(A)}$. Let τ_1, \ldots, τ_n be arbitrary transformations in N_{ε} . Then there are

transformations μ_1, \ldots, μ_n in N such that $\tau_k = (\varepsilon \circ \mu_k)|_{\varepsilon(A)}$ $(1 \leq k \leq n)$, furthermore,

$$f_{\varepsilon}(t_1, \dots, t_n) = f_{\varepsilon}((\varepsilon \circ \mu_1)|_{\varepsilon(A)}, \dots, (\varepsilon \circ \mu_n)|_{\varepsilon(A)})$$
$$= (\varepsilon \circ f)(\varepsilon \circ \mu_1, \dots, \varepsilon \circ \mu_n)|_{\varepsilon(A)}$$
$$= (\varepsilon \circ (f(\varepsilon \circ \mu_1, \dots, \varepsilon \circ \mu_n)))|_{\varepsilon(A)}$$
$$\in N_{\varepsilon},$$

which proves the statement of the lemma.

Proof of Proposition 3. (a) It is straightforward to check that ρ is a congruence of (A; M).

(b) Let f be an arbitrary operation in $\operatorname{Sta}(M)$, say n-ary. Then $f/\varrho \in \operatorname{Sta}(M/\varrho) = \operatorname{Sta}(\Gamma_{\{0,2\}} \cup {\operatorname{id}_{\{0,2\}}})$ is a monotone operation.

(c) Suppose that $f \in \text{Sta}(M)$ is an *n*-ary operation for which $f(A_2^n) \not\subseteq A_2$ holds. Then $(f/\varrho)(\mathbf{0}) = \mathbf{2}$, which implies that f/ϱ is a constant operation with value **2**. Hence, f is a constant operation with value 2.

(d) Let $f \in \text{Sta}(M)$ be a non-constant operation with $f(\hat{0}) = 0$. Let **a** be an arbitrary *n*-tuple in A_2^n . Then $X = (\hat{0}^T \ \hat{0}^T \ \mathbf{a}^T) \in A^{3 \times n}$ is a ρ_M -matrix, hence, $(0, 0, f(\mathbf{a}))^T = (f(\hat{0}), f(\hat{0}), f(\mathbf{a}))^T = f(X) \in \rho$ shows that $f(\mathbf{a}) \in A_1$. The monotonicity of $f|_{A_1}$ follows from Lemma 4 with $\varepsilon = \varepsilon_0$.

Proposition 5. Let $f \in \text{Sta}(M)$ be a non-constant operation with $f(\hat{0}) = 0$. Then $f(\hat{2}) = 2$ and f is determined by its values on the set $A_1^n \cup A_2^n$.

Proof. Let f and g be n-ary operations in $\operatorname{Sta}(M)$ such that $f(\mathbf{a}) = g(\mathbf{a})$ holds for every n-tuple $\mathbf{a} \in A_1^n \cup A_2^n$. Let \mathbf{b} be an arbitrary n-tuple in $A^n \setminus (A_1^n \cup A_2^n)$. Then $\mathbf{b} \ \varrho^n \ \varepsilon_0(\mathbf{b}) \in A_1^n$, and so,

$$g(\mathbf{b}) \ \varrho \ g(\varepsilon_0(\mathbf{b})) = f(\varepsilon_0(\mathbf{b})) \ \varrho \ f(\mathbf{b}),$$

which implies that

$$f(\mathbf{b}) \ \varrho \ g(\mathbf{b}). \tag{1}$$

If $f(\mathbf{b}) = 2$ then $g(\mathbf{b}) = 2$ by (1). If $f(\mathbf{b}) \in A_2$ then $g(\mathbf{b}) \in A_2$ by (1). Set $\mu = f(\mu_1, \dots, \mu_n)$, where

$$\mu_k = \begin{cases} \gamma_{\mathbf{b}_{[k]}}, & \text{if } \mathbf{b}_{[k]} \in A_2, \\ \varepsilon_0, & \text{otherwise.} \end{cases}$$

Then $\mu \in M$, $(\mu_1(2), ..., \mu_n(2)) = \mathbf{b}$, and so, $\mu(2) = f(\mathbf{b})$ and

$$(\mu_1(0),\ldots,\mu_n(0)) = (\mu_1(1),\ldots,\mu_n(1)) \in A_2^n.$$

Therefore,

$$g(\mu_1(0), \dots, \mu_n(0)) = f(\mu_1(0), \dots, \mu_n(0))$$

= $f(\mu_1(1), \dots, \mu_n(1))$
= $g(\mu_1(1), \dots, \mu_n(1)),$

4

hence,
$$g(\mathbf{b}) = g(\mu_1(2), \dots, \mu_n(2)) = f(\mu_1(2), \dots, \mu_n(2)) = f(\mathbf{b}).$$

This completes the proof of the statement.

Let $f \in \text{Sta}(M)$ be a non-constant *n*-ary operation. We may assume that $f(\hat{0}) = 0$, since otherwise we may take $\pi \circ f$ for which $(\pi \circ f)(\hat{0}) = 0$ and $\langle \pi \circ f \rangle_M = \langle f \rangle_M$ hold. Let $g_f \colon A_2^n \to A_2$ and $h_f \colon A_1^n \to A_1$ be the operations $f|_{A_2}$ and $f|_{A_1}$, respectively. Then h_f is a monotone operation with respect to the partial order $0 \leq 2$ by Proposition 3 (b).

Suppose that g_f depends on its *i*-th variable. Then there are elements $a_1, \ldots, a_n, a'_i \in A_2$ such that $g_f(\mathbf{a}) \neq g_f(\mathbf{a}')$, where $\mathbf{a} = (a_1, \ldots, a_n)$ and $\mathbf{a}' = (a_1, \ldots, a_{i-1}, a'_i, a_{i+1}, \ldots, a_n)$. Moreover, $f(\mathbf{a}) = g_f(\mathbf{a}) \neq g_f(\mathbf{a}') = f(\mathbf{a}')$. Since $(a_j, a_j, a_j)^T \in \varrho_M$ $(1 \leq j \leq n, j \neq i)$ and $(a_i, a'_i, 2)^T \in \varrho_M$, we get that

$$(f(\mathbf{a}), f(\mathbf{a}'), f(a_1, \dots, a_{i-1}, 2, a_{i+1}, \dots, a_n)) \in \varrho_M,$$

and so $f(a_1, \ldots, a_{i-1}, 2, a_{i+1}, \ldots, a_n) = 2$. Then for arbitrary elements $\mathbf{b} \in A^n$ with $\mathbf{b}_{[i]} = 2$ and $\mathbf{b}_{[j]} \in \{0, 1\}^n$ $(j \neq i)$, the matrix

$$\begin{pmatrix} a_1 & \dots & a_{i-1} & 2 & a_{i+1} & \dots & a_n \\ \mathbf{b}_{[1]} & \dots & \mathbf{b}_{[i-1]} & 2 & \mathbf{b}_{[i+1]} & \dots & \mathbf{b}_{[n]} \\ 2 & \dots & 2 & 2 & 2 & \dots & 2 \end{pmatrix}$$

is a ρ_M -matrix, which yields that $f(\mathbf{b}) = 2$. Let **d** be an *n*-tuple in A^n such that $\mathbf{d}_{[i]} = 2$. For an element $x \in A$ let

$$x^{\diamond} = \begin{cases} 1, & \text{if } x = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then

By MD

$$\begin{pmatrix} \mathbf{d}_{[1]}^{\diamond} & \dots & \mathbf{d}_{[i-1]}^{\diamond} & 2 & \mathbf{d}_{[i+1]}^{\diamond} & \dots & \mathbf{d}_{[n]}^{\diamond} \\ \mathbf{d}_{[1]}^{\diamond} & \dots & \mathbf{d}_{[i-1]}^{\diamond} & 2 & \mathbf{d}_{[i+1]}^{\diamond} & \dots & \mathbf{d}_{[n]}^{\diamond} \\ \mathbf{d}_{[1]} & \dots & \mathbf{d}_{[i-1]} & 2 & \mathbf{d}_{[i+1]} & \dots & \mathbf{d}_{[n]} \end{pmatrix}$$

is a ρ_M -matrix and $f(\mathbf{d}_{[1]}^\diamond, \dots, \mathbf{d}_{[i-1]}^\diamond, 2, \mathbf{d}_{[i+1]}^\diamond, \dots, \mathbf{d}_{[n]}^\diamond) = 2$ by the previous argument, hence, $f(\mathbf{d}) = 2$.

The previous argument yields the following statement.

Proposition 6. Let $f \in \text{Sta}(M)$ be a non-constant n-ary operation with $f(\hat{0}) = 0$. If g_f depends on its i-th variable then $f(\mathbf{a}) = 2$ holds for every *n*-tuple $\mathbf{a} \in A^n$ with $\mathbf{a}_{[i]} = 2$.

5

M. Dormán

To describe the clones in Int(M) we will use the following binary operations:

$0_{\vee^{\prime\prime}}$	0	1	2	$\rightrightarrows_{\vee''}$	0	1	2
0	0	0	2	0	0	0	2
1	0	0	2'	1	1	1	2
2	2	2	2	2	2	2	2
$+_{\vee''}$	0	1	2	$\vee_{\vee''}$	0	1	2
$\frac{+_{\vee''}}{0}$	0	1	$\frac{2}{2}$	$\frac{\vee_{\vee''}}{0}$	0	1	$\frac{2}{2}$
$\frac{+_{\vee''}}{0}$	0 0 1	1 1 0	$\frac{2}{2},$	$\frac{\vee_{\vee''}}{0}$	0 0 1	1 1 1	$\frac{2}{2}$

Proposition 7. The stabilizer of M is $\langle \vee_{\vee''}, 0_{\vee''} \rangle_M$.

Proof. Let f be an n-ary operation in $\operatorname{Sta}(M) \setminus \langle M \rangle$ such that $f(\hat{0}) = 0$. We may assume that g_f depends exactly on its first k variables. Let

$$P_f = \{ \mathbf{a} \in A_2^n : g_f(\mathbf{a}) = f(\mathbf{a}) = 1 \},\$$

$$Q_f = \min \{ \mathbf{b} \in A_1^n : h_f(\mathbf{b}) = f(\mathbf{b}) = 2 \} = \{ \mathbf{b}_1, \dots, \mathbf{b}_q \}.$$

Then

$$g(\mathbf{x}) = \mathop{\vee}\limits_{\mathbf{a} \in P_f} \wedge \mathbf{a} \mathbf{x} \qquad (\mathbf{x} \in A_2^n),$$

and

$$h(\mathbf{x}) = \bigvee_{\mathbf{b} \in Q_f}' \wedge'' \mathbf{b} \mathbf{x} \qquad (\mathbf{x} \in A_1^n),$$

where

$$\wedge \mathbf{a}\mathbf{x} = \pi^{\mathbf{a}_{[1]}}(\mathbf{x}_{[1]}) \wedge \dots \wedge \pi^{\mathbf{a}_{[k]}}(\mathbf{x}_{[k]}),$$

$$\wedge'' \mathbf{b}\mathbf{x} = \wedge'' \left\{ \mathbf{x}_{[i]} : 1 \leqslant i \leqslant n \text{ and } \mathbf{b}_{[i]} = 2 \right\},$$

and $\pi^0 = \mathrm{id}_A$ and $\pi^1 = \pi$. By Proposition 6, the *n*-tuples $\{0\}^{i-1} \times \{1\} \times \{0\}^{n-i}$ $(1 \leq i \leq k)$ belong to the set Q_f . We will assume that $\mathbf{b}_i = \{0\}^{i-1} \times \{1\} \times \{0\}^{n-i}$ $(1 \leq i \leq k)$. Let

$$\widetilde{f}(\mathbf{x}) = \left(\bigvee_{\mathbf{x}\in P_f} (\wedge_{\vee''} \mathbf{a}\mathbf{x})\right) \rightrightarrows_{\vee''} \left(\underset{j=k+1}{\overset{q}{\Rightarrow}_{\vee''}} (\mathbf{0}_{\wedge''} \mathbf{b}_j \mathbf{x}) \right) \quad (\mathbf{x} \in A^n),$$

where $\wedge_{\vee''} \mathbf{a} \mathbf{x} = \pi^{\mathbf{a}_{[1]}}(\mathbf{x}_{[1]}) \vee_{\vee''} \dots \vee_{\vee''} \pi^{\mathbf{a}_{[n]}}(\mathbf{x}_{[n]})$. Then equalities $\tilde{f}|_{A_2} = g_f$ and $\tilde{f}|_{A_1} = h_f$ proves that $f = \tilde{f}$. Since $a \wedge_{\vee''} b = \pi(\pi(a) \vee_{\vee''} \pi(b))$ holds for arbitrary elements $a, b \in A$, we get that $\operatorname{Sta}(M)$ is generated by $\vee_{\vee''}$ and $0_{\wedge''}$ over M.

Let f be a non-surjective operation in $\operatorname{Sta}(M) \setminus \langle M \rangle$ with $f(\hat{0}) = 0$. Then the range of f is A_1 and g_f is the constant operation with value 0, furthermore, the clone generated by h_f over $M_{A_1} = \{(\varepsilon_0 \circ \mu)|_{A_1} : \mu \in M\} = M_{\varepsilon_0}$ is one of the following clones on A_1 :

$$\mathcal{I}'' = \langle M_{A_1} \rangle, \quad \mathcal{E}'' = \langle \wedge'' \rangle_{M_{A_1}}, \quad \mathcal{V}'' = \langle \vee'' \rangle_{M_{A_1}}, \quad \mathcal{M}'' = \langle \wedge'', \vee'' \rangle_{M_{A_1}}.$$

By MD

Thus, $\langle f \rangle_M \in \{ \langle M \rangle, \langle 0_{\wedge''} \rangle_M, \langle 0_{\vee''} \rangle_M, \langle 0_{\wedge''}, 0_{\vee''} \rangle_M \}$, in fact,

 $\operatorname{Int}_{\operatorname{ns}}(M) = \{ \langle M \rangle, \langle 0_{\wedge''} \rangle_M, \langle 0_{\vee''} \rangle_M, \langle 0_{\wedge''}, 0_{\vee''} \rangle_M \}.$

Let f be a surjective n-ary operation in $\operatorname{Sta}(M) \setminus \langle M \rangle$ with $f(\hat{0}) = 0$. Then f is idempotent and g_f is not a constant operation, hence, $\langle g_f \rangle_{M_{A_2}} \in$ $\{\mathcal{N}, \mathcal{L}, \mathcal{BF}\}, \text{ where }$

$$\mathcal{N} = \langle M_{A_2} \rangle, \quad \mathcal{L} = \langle + \rangle_{M_{A_2}}, \quad \mathcal{BF} = \mathcal{O}_{A_2}.$$

We may assume that g_f depends on its first variable. The operation h_f is a monotone operation that belongs to $\langle \wedge'', \vee'' \rangle_{M_{A_1}}$. By Proposition 6,

$$h_f(\mathbf{x}) = \bigvee_{\mathbf{b}\in H_h}'' \mathbf{b} \cdot \mathbf{x} = \mathbf{x}_{[1]} \vee'' \bigvee_{\mathbf{b}\in H_{h_f}\setminus\{(2,0,\dots,0)\}}' \wedge'' \mathbf{b} \cdot \mathbf{x} \ (\mathbf{x}\in A^n),$$

where $H_{h_f} = \min \{ \mathbf{b} \in A_1^n : h_f(\mathbf{b}) = f(\mathbf{b}) = 2 \}$, hence,

$$h_f(x, y, \dots, y) = x \vee'' y$$
 and $f(x, y, \dots, y) = x \rightrightarrows_{\vee''} y$.

If $\wedge'' \in \langle g \rangle_{M_{A_2}}$ then $0_{\wedge''} \in \langle f \rangle_M$. Suppose that $\langle g \rangle_{M_{A_2}} = \mathcal{L}$. Then $+ \in \langle g \rangle_{M_{A_2}}$, and so, $+_{\vee''}$ is a member of $\langle f \rangle_M$.

Let \mathcal{C} be a clone in Int(M). Set

$$\mathcal{C}_{A_2} = \left\{ f|_{A_2} : f \in \mathcal{C}, \ f(A_2^{\operatorname{arity}(f)}) \subseteq A_2 \right\},$$

$$\mathcal{C}_{A_1} = \left\{ (\varepsilon_0 \circ f)|_{A_1} : f \in \mathcal{C} \right\}.$$

Then \mathcal{C}_{A_2} and \mathcal{C}_{A_1} are clones, moreover, $\mathcal{C}_{A_2} \in \operatorname{Sta}(M_{A_2})$ and $\mathcal{C}_{A_1} \in \operatorname{Sta}(M_{A_1})$, where $M_{A_2} = \{m|_{A_2} : m \in M, m(A_2) \subseteq A_2\} = T_{A_2}$ and $M_{A_1} = M_{\varepsilon_0} = C_{A_1} \cup$ $\{ id_{A_1} \}.$

Proposition 8. If $C_{A_1} = \langle M_{A_1} \rangle$ then $C = \langle M \rangle$.

Proof. Let $f \in \text{Sta}(M)$ be an *n*-ary operation that depends on its variables. If $n \ge 2$ then by a theorem of A. Salomaa (see Lemma 4.1. in Hobby-McKenzie [5]) there are distinct indexes i and j $(1 \le i < j \le n)$ and elements $a_k \ (1 \leq k \leq n, \ k \neq i, j)$ such that the binary operation

$$f': A^2 \to A, \ (x, y) \mapsto f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_{j-1}, y, a_{j+1}, \dots, a_n)$$

depends on both of its variables. Then f' belongs to $\langle f \rangle_M$ and $(\varepsilon_0 \circ f')|_{A_1}$ depends on its variables.

The statement of the proposition follows.

Proposition 9. Let f be a surjective operation in $Sta(M) \setminus \langle 0_{\wedge''}, 0_{\vee''} \rangle_M$, and set $\mathcal{C} = \langle f \rangle_M$. Then $\rightrightarrows_{\vee''} \in \mathcal{C}$, furthermore $\langle \rightrightarrows_{\vee''} \rangle_M$ is the unique upper cover of $\langle 0_{\vee''} \rangle_M$ and $\langle 0_{\wedge''}, \rightrightarrows_{\vee''} \rangle_M$ is the unique upper cover of $\langle 0_{\wedge''}, 0_{\vee''} \rangle_M$.

Proof. We may assume that f depends on all of its variables. By Proposition 2 (c), $f(A_2^n) \subseteq A_2$ and $g_f = f|_{A_2}$ is not a constant operation.

If g_f depends on at least two of its variables then, by Salomaa's theorem, there is a binary operation in $\langle g_f \rangle_{\Gamma_{A_2}}$ that depends on its variables, hence, there is a binary surjective operation in $\langle f \rangle_{\Gamma_A}$ that depends on its variables. Therefore, in this case the statement follows.

Suppose that g_f is an essentially unary operation. We may assume that it depends on its first variable. Then the (n-1)-ary operation

$$f[2,1]: A^{n-1} \to A, \ (x_2, \dots, x_n) \mapsto f(2, x_2, \dots, x_n)$$

is a constant operation with value 2 by Proposition 6. As f depends on its variables, there is an *n*-tuple $\mathbf{a} \in A^n$ such that $\mathbf{a}_{[1]} \in A_2$ and $f(\mathbf{a}) = 2$. Define the binary operation w on A as follows:

$$w(a,b) = f(a, \mu_2(b), \dots, \mu_n(b)) \ (a, b \in A),$$

where for every index $i \ (2 \leq i \leq n)$

$$\mu_i = \begin{cases} \gamma_{\mathbf{a}_{[i]}}, & \text{if } \mathbf{a}_{[i]} \in A_2, \\ \text{id}_A, & \text{if } \mathbf{a}_{[i]} = 2. \end{cases}$$

Then w(2,b) = 2 $(b \in A)$ and $w(\mathbf{a}_{[1]}, 2) = f(\mathbf{a}) = 2$, which imply that $w = \exists_{\vee} \forall w$.

This completes the proof.

Proposition 10. Let f be a surjective operation in $\operatorname{Sta}(M) \setminus \langle 0_{\wedge''}, \rightrightarrows_{\vee''} \rangle_M$, and set $\mathcal{C} = \langle f \rangle_M$. Then $+_{\vee''} \in \mathcal{C}$, furthermore $\langle +_{\vee''} \rangle_M$ is the unique upper cover of $\langle \rightrightarrows_{\vee''} \rangle_M$ and $\langle 0_{\wedge''}, +_{\vee''} \rangle_M$ is the unique upper cover of $\langle 0_{\wedge''}, \rightrightarrows_{\vee''} \rangle_M$.

Proof. Suppose that $C_{A_2} = \langle M_{A_2} \rangle$. We may assume that $f(\hat{0}) = 0$. Then $g_f = f|_{A_2}$ belongs to C_{A_2} , and so, it is an essentially unary operation that is not constant since f is surjective. Reordering the variables of f if necessary, we may assume that $g_f(\mathbf{x}) = \mathbf{x}_{[1]}$ holds for every *n*-tuple $\mathbf{x} \in A^n$.

The clone generated by the operation $h_f = f|_{A_1}$ over M_{A_1} is either $\langle \vee'' \rangle_{M_{A_1}}$ or $\langle \wedge'', \vee'' \rangle_{M_{A_1}}$ since $\Rightarrow_{\vee''} \in C$, furthermore, in the latter case $0_{\wedge''} \in C$ also holds. Thus, there is an operation \tilde{f} in $\langle 0_{\wedge''}, \Rightarrow_{\vee''} \rangle_M$ such that $g_{\tilde{f}} = g_f$ and $h_{\tilde{f}} = h_f$, which proves that $f = \tilde{f}$. This contradicts to our assumption on f.

Then $\langle M_{A_2} \rangle \subsetneq C_{A_2}$, and so, $+ \in C_{A_2}$. Since $+_{\vee''} \in \operatorname{Sta}(M)$ is the unique operation whose restriction to A_2 is +, we get that $+_{\vee''} \in C$.

Proposition 11. Let f be a surjective operation in $\operatorname{Sta}(M) \setminus \langle 0_{\wedge''}, +_{\vee''} \rangle_M$. Then $\vee_{\vee''} \in \mathcal{C}$,

Proof. Set $C = \langle f \rangle_M$. We may assume that $f(\hat{0}) = 0$. Then $+ \notin C_{A_2}$, and so, $C_B = \langle \vee \rangle_{M_{A_2}}$. Since $\vee_{\vee''} \in \operatorname{Sta}(M)$ is the unique operation whose restriction to A_2 is \vee , we get that $\vee_{\vee''} \in C$.

Proof of Theorem 1. Combining Propositions 7–11, we get that Int(M) consists of the clones

$$\begin{array}{ll} \langle M \rangle, & \langle 0_{\vee''} \rangle_M, & \langle \rightrightarrows_{\vee''} \rangle_M, & \langle +_{\vee''} \rangle_M, & \langle \vee_{\vee''} \rangle_M, \\ \langle 0_{\wedge''} \rangle_M, & \langle 0_{\wedge''}, 0_{\vee''} \rangle_M, & \langle 0_{\wedge''}, \rightrightarrows_{\vee''} \rangle_M, & \langle 0_{\wedge''}, +_{\vee''} \rangle_M, & \langle 0_{\wedge''}, \vee_{\vee''} \rangle, \end{array}$$

and the monoidal interval can be seen in Figure 1 on page 9.

FIGURE 1. The interval Int(M)

References

- [1] Dormán, M.: Collapsing inverse monoids. Algebra Universalis 56, 241–261 (2007)
- [2] Dormán, M., Makay, G., Maróti, M., Vajda R.: Monoidal intervals on three- and four-element sets. Acta Sci. Math. (Szeged) 81, 399–424 (2015)
- [3] Dormán, M.: Transformation monoids with finite monoidal intervals. Algebra Universalis 77, 1–27 (2017)
- [4] Grabowski, J.-U.: Binary operations suffice to test collapsing of monoidal intervals. Algebra Universalis 38, 92–95 (1997)
- [5] Hobby, D. and McKenzie, R.: The Structure of finite algebras. AMS Contemporary Mathematics 76 (1996)
- Krokhin, A.: Monoidal intervals in lattices of clones. Algebra Logika 34, 288–310 (1993) (Russian, english translation: Algebra Logic 34, 155–168 (1993))
- [7] Pálfy, P. P.: Unary polynomials in algebras I. Algebra Universalis 18, 262–273 (1984)
- [8] Post, E. L.: The two-valued iterative systems of mathematical logic. Ann. Math. Studies, no. 5, Princeton University Press, Princeton, N.J., (1941)
- [9] Salomaa, A.: On essential variables of functions, especially in the algebra of logic, Ann. Acad. Sci. Fenn. Ser. AI, No. 339, (1963)
- [10] Szendrei, Á.: Clones in universal algebra. Séminare de mathématiques supérieures, vol. 99. Les presses de l'Université de Montréal, Montréal (1986)

Miklós Dormán

Bolyai Institute, Aradi vértanúk tere 1, H-6720 Szeged, Hungary