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Abstract. This paper is a small contribution to the solution of Szendrei’s prob-
lem on three-element sets. A monoid on the set {0, 1, 2} is presented for which the

corresponding monoidal interval has 10 elements.

1. Introduction

Let A be a finite set with at least three elements. It is well known that the

set of all clones on A whose set of unary operations coincides with a trans-

formation monoid M on A forms an interval in the lattice of all clones on A

(see Á. Szendrei [10, Chapter 3]). An interval of this form is called a monoidal

interval. The monoidal intervals partition the clone lattice into finitely many

blocks. Since the clone lattice has continuum many elements if |A| > 3, one

might expect that ‘for mostM ’ the monoidal interval Int(M) contains uncount-

ably many clones. We remark that this is the case on 3-element sets: there are

at least 499 transformation monoids (in 99 ./-classes) among the all 699 trans-

formation monoids (in 160 ./-classes) for which the corresponding monoidal

intervals have cardinality 2ℵ0 (cf. Dormán–Makay–Maróti–Vajda [2]). Nev-

ertheless, it turns out that for many interesting transformation monoids the

corresponding monoidal intervals are finite.

Á. Szendrei in [10] posed the problem of classifying transformation monoids

according to the cardinalities of the corresponding monoidal intervals. A com-

plete classification of transformation monoids according to the sizes of the

corresponding monoidal intervals seems a very hard problem at present. How-

ever, for certain classes of monoids we can solve this problem.

In this paper we will consider a certain transformation monoid (M88) on

the set {0, 1, 2} with 10-element monoidal interval.

2. Preliminaries

For a finite set A we will denote the full transformation semigroup, and the

set of unary constant operations on A by TA, and ΓA, respectively. For an

arbitrary element a of A we will use the notation γa for the unary constant
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operation on A with value a, and a tuple whose all components are a will be

denoted by â. If a is an `-tuple (` ∈ N) then a[i] will refer to its i-th component

(1 6 i 6 `).
For the set of positive integers we will use the notation N, and we will refer

to them as natural numbers.

Let A be a set and ` be a natural number. The set of all finitary operations

on A will be denoted by OA. We call the operation f essentially k-ary (k ∈
N, k > 2) if it depends on exactly k of its variables. If f depends on at most

one of its variables, we call f essentially unary. A set C of finitary operations

on a set A is said to be a clone if it contains all the projections and is closed

under superposition of operations. It is obvious that OA and the set PA of all

projections on A are clones.

For a k-ary relation % on A, a %-matrix over A is a matrix whose columns

belong to %. An n-ary operation f on A preserves the m-ary relation % on A

if for every %-matrix X = (xi,j) ∈ An×m we have that

f(X)
def.
=

 f(x1,1, . . . , x1,n)
...

f(xm,1, . . . , xm,n)

 ∈ %.
If R is a set of finitary relations on A then Pol(R) will denote the set of all

operations f ∈ OA such that f preserves each relation in R.

It is well-known that a set C of finitary operations on A forms a clone if and

only if C = Pol(R) holds for some set R of finitary relations on A.

Since the intersection of an arbitrary family of clones on A is also a clone,

the set of all clones on A constitutes a complete lattice with respect to the

set-theoretic inclusion. Furthermore, we can define the clone generated by a

subset F of OA as the intersection of all clones that contain F . This clone will

be denoted by 〈F 〉. For a natural number `, the set of all `-ary operations of

a clone C will be denoted by C(`).

Let M be a transformation monoid on A, and let Int(M) denote the col-

lection of all clones C on A such that the set of unary operations of C is M .

The clone 〈M〉 of essentially unary operations generated by M is a member

of Int(M), in fact, it is the least member of Int(M), so Int(M) is non-empty.

Furthermore, it is clear that every clone C in Int(M) is contained in the set

Sta(M) =
{
f(x1, . . . , x`) ∈ OA | ` ∈ N, and

f(µ1, . . . , µ`) ∈M for all µ1, . . . , µ` ∈M
}
,

which is called the stabilizer of the monoid M . It is easy to verify that Sta(M)

is a clone on A, in fact, Sta(M) = Pol(%M ), where

%M = {(µ(0), . . . , µ(n− 1)) : µ ∈M} .

Therefore Sta(M) is the largest member of Int(M). So, a clone C on A belongs

to Int(M) if and only if 〈M〉 ⊆ C ⊆ Sta(M). Thus Int(M) is the interval
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[〈M〉,Sta(M)] in the lattice OA of all clones on A. Such an interval is called

a monoidal interval.

If F ⊆ Sta(M) then the clone generated by F over M is 〈F ∪M〉, which

will be denoted by 〈F 〉M . It is obvious that 〈F 〉M belongs to Int(M).

3. The monoidal interval corresponding to M88

Set M = M88. The transformation monoid M consists of the following

transformations: γa (a ∈ A), idA, ε0 = τ002, ε1 = τ112, and π = τ102. We

remark that M = M64 ∪ {π}. Set Ak = A \ {k} (k ∈ A).

There are 18 essentially binary operations in Sta(M):

ĝ : A2 → A,

{
g(a), if a ∈ B2,

2, otherwise,

where g is an arbitrary binary on B,

0∧′′ : A2 → A, (x, y) 7→

{
2, if x = y = 2,

0, otherwise,

and π ◦ 0∧′′ .

The aim of this paper is to prove the following statement.

Theorem 1. The monoidal interval Int(M88) consists of exactly ten clones.

We first study the the operations in the stabilizer of M88.

Proposition 2. Let τ ∈M be an arbitrary unary operation and a ∈ A2. Then

(a) if τ(2) = a then τ = γa,

(b) if τ(a) 6= π(τ(a)) then τ(2) = 2.

Proposition 3. (a) % = A2
2 ∪ {2}2 ∈ Con(A;M), hence, % is a congruence

of (A; Sta(M));

(b) for every operation f ∈ Sta(M), the operation f/α is a monotone opera-

tion with respect to the lattice order 0 6 2, where 0 = A2 and 2 = {2}.
(c) if f ∈ Sta(M) is not a constant operation then f(An

2 ) ⊆ A2, furthermore,

if f(0̂) = 0 then f(An
1 ) ⊆ A1,

(d) if f ∈ Sta(M) is not a constant operation and f(0̂) = 0 then f |A1
is a

monotone operation with respect to the lattice order 0 6 2.

Lemma 4. Let N be a transformation monoid on a finite set A and let ε ∈
N be an idempotent transformation. Then for every operation f ∈ Sta(N)

we have that (ε ◦ f)|ε(A) ∈ Sta(Nε), where Nε =
{

(ε ◦ τ)|ε(A) : τ ∈ N
}

is a

transformation monoid on ε(A).

Proof. Let f be an arbitrary n-ary operation in Sta(N) and set fε = (ε ◦
f)|ε(A). Let τ1, . . . , τn be arbitrary transformations in Nε. Then there are



4 M. Dormán Finite monoidal intervals II

transformations µ1, . . . , µn in N such that τk = (ε ◦ µk)|ε(A) (1 6 k 6 n),

furthermore,

fε(t1, . . . , tn) = fε((ε ◦ µ1)|ε(A), . . . , (ε ◦ µn)|ε(A))

= (ε ◦ f)(ε ◦ µ1, . . . , ε ◦ µn)|ε(A)

= (ε ◦ (f(ε ◦ µ1, . . . , ε ◦ µn)))|ε(A)

∈ Nε,

which proves the statement of the lemma. �

Proof of Proposition 3. (a) It is straightforward to check that % is a congruence

of (A;M).

(b) Let f be an arbitrary operation in Sta(M), say n-ary. Then f/% ∈
Sta(M/%) = Sta(Γ{0,2} ∪ {id{0,2}}) is a monotone operation.

(c) Suppose that f ∈ Sta(M) is an n-ary operation for which f(An
2 ) * A2

holds. Then (f/%)(0) = 2, which implies that f/% is a constant operation with

value 2. Hence, f is a constant operation with value 2.

(d) Let f ∈ Sta(M) be a non-constant operation with f(0̂) = 0. Let a be

an arbitrary n-tuple in An
2 . Then X = (0̂T 0̂T aT ) ∈ A3×n is a %M -matrix,

hence, (0, 0, f(a))T = (f(0̂), f(0̂), f(a))T = f(X) ∈ % shows that f(a) ∈ A1.

The monotonicity of f |A1 follows from Lemma 4 with ε = ε0. �

Proposition 5. Let f ∈ Sta(M) be a non-constant operation with f(0̂) = 0.

Then f(2̂) = 2 and f is determined by its values on the set An
1 ∪An

2 .

Proof. Let f and g be n-ary operations in Sta(M) such that f(a) = g(a) holds

for every n-tuple a ∈ An
1 ∪An

2 . Let b be an arbitrary n-tuple in An\(An
1 ∪An

2 ).

Then b %n ε0(b) ∈ An
1 , and so,

g(b) % g(ε0(b)) = f(ε0(b)) % f(b),

which implies that

f(b) % g(b). (1)

If f(b) = 2 then g(b) = 2 by (1). If f(b) ∈ A2 then g(b) ∈ A2 by (1). Set

µ = f(µ1, . . . , µn), where

µk =

{
γb[k]

, if b[k] ∈ A2,

ε0, otherwise.

Then µ ∈M , (µ1(2), . . . , µn(2)) = b, and so, µ(2) = f(b) and

(µ1(0), . . . , µn(0)) = (µ1(1), . . . , µn(1)) ∈ An
2 .

Therefore,

g(µ1(0), . . . , µn(0)) = f(µ1(0), . . . , µn(0))

= f(µ1(1), . . . , µn(1))

= g(µ1(1), . . . , µn(1)),
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hence, g(b) = g(µ1(2), . . . , µn(2)) = f(µ1(2), . . . , µn(2)) = f(b).

This completes the proof of the statement. �

Let f ∈ Sta(M) be a non-constant n-ary operation. We may assume that

f(0̂) = 0, since otherwise we may take π ◦ f for which (π ◦ f)(0̂) = 0 and

〈π ◦ f〉M = 〈f〉M hold. Let gf : An
2 → A2 and hf : An

1 → A1 be the operations

f |A2
and f |A1

, respectively. Then hf is a monotone operation with respect to

the partial order 0 6 2 by Proposition 3 (b).

Suppose that gf depends on its i-th variable. Then there are elements

a1, . . . , an, a
′
i ∈ A2 such that gf (a) 6= gf (a′), where a = (a1, . . . , an) and

a′ = (a1, . . . , ai−1, a
′
i, ai+1, . . . , an). Moreover, f(a) = gf (a) 6= gf (a′) = f(a′).

Since (aj , aj , aj)
T ∈ %M (1 6 j 6 n, j 6= i) and (ai, a

′
i, 2)T ∈ %M , we get that

(f(a), f(a′), f(a1, . . . , ai−1, 2, ai+1, . . . , an)) ∈ %M ,

and so f(a1, . . . , ai−1, 2, ai+1, . . . , an) = 2. Then for arbitrary elements b ∈ An

with b[i] = 2 and b[j] ∈ {0, 1}n (j 6= i), the matrix

 a1 . . . ai−1 2 ai+1 . . . an
b[1] . . . b[i−1] 2 b[i+1] . . . b[n]

2 . . . 2 2 2 . . . 2


is a %M -matrix, which yields that f(b) = 2. Let d be an n-tuple in An such

that d[i] = 2. For an element x ∈ A let

x� =

{
1, if x = 1,

0, otherwise.

Then d�[1] . . .d�[i−1] 2 d�[i+1] . . . d�[n]

d�[1] . . .d�[i−1] 2 d�[i+1] . . . d�[n]

d[1] . . .d[i−1] 2 d[i+1] . . . d[n]


is a %M -matrix and f(d�[1], . . . ,d

�
[i−1], 2,d

�
[i+1], . . . ,d

�
[n]) = 2 by the previous

argument, hence, f(d) = 2.

The previous argument yields the following statement.

Proposition 6. Let f ∈ Sta(M) be a non-constant n-ary operation with

f(0̂) = 0. If gf depends on its i-th variable then f(a) = 2 holds for every

n-tuple a ∈ An with a[i] = 2.
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To describe the clones in Int(M) we will use the following binary operations:

0∨′′ 0 1 2

0 0 0 2

1 0 0 2

2 2 2 2

,

⇒∨′′ 0 1 2

0 0 0 2

1 1 1 2

2 2 2 2

,

+∨′′ 0 1 2

0 0 1 2

1 1 0 2

2 2 2 2

,

∨∨′′ 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

.

Proposition 7. The stabilizer of M is 〈∨∨′′ , 0∨′′〉M .

Proof. Let f be an n-ary operation in Sta(M) \ 〈M〉 such that f(0̂) = 0. We

may assume that gf depends exactly on its first k variables. Let

Pf = {a ∈ An
2 : gf (a) = f(a) = 1} ,

Qf = min {b ∈ An
1 : hf (b) = f(b) = 2} = {b1, . . . ,bq}.

Then

g(x) = ∨
a∈Pf

∧ax (x ∈ An
2 ),

and

h(x) = ∨′′
b∈Qf

∧′′ bx (x ∈ An
1 ),

where

∧ax = πa[1](x[1]) ∧ · · · ∧ πa[k](x[k]),

∧′′ bx = ∧′′
{
x[i] : 1 6 i 6 n and b[i] = 2

}
,

and π0 = idA and π1 = π. By Proposition 6, the n-tuples {0}i−1 × {1} ×
{0}n−i (1 6 i 6 k) belong to the set Qf . We will assume that bi = {0}i−1 ×
{1} × {0}n−i (1 6 i 6 k). Let

f̃(x) =

(
∨∨′′
a∈Pf

(∧∨′′ ax)

)
⇒∨′′

(
q

⇒∨′′

j=k+1
(0∧′′ bjx)

)
(x ∈ An),

where ∧∨′′ ax = πa[1](x[1])∨∨′′ . . .∨∨′′ πa[n](x[n]). Then equalities f̃ |A2
= gf

and f̃ |A1
= hf proves that f = f̃ . Since a∧∨′′ b = π(π(a)∨∨′′ π(b)) holds for

arbitrary elements a, b ∈ A, we get that Sta(M) is generated by ∨∨′′ and 0∧′′

over M . �

Let f be a non-surjective operation in Sta(M) \ 〈M〉 with f(0̂) = 0. Then

the range of f is A1 and gf is the constant operation with value 0, furthermore,

the clone generated by hf over MA1 = {(ε0 ◦ µ)|A1 : µ ∈M} = Mε0 is one of

the following clones on A1:

I ′′ = 〈MA1〉, E ′′ = 〈∧′′〉MA1
, V ′′ = 〈∨′′〉MA1

, M′′ = 〈∧′′,∨′′〉MA1
.



By MD Finite monidal intervals II – A 10-element monoidal interval 7

Thus, 〈f〉M ∈ {〈M〉, 〈0∧′′〉M , 〈0∨′′〉M , 〈0∧′′ , 0∨′′〉M}, in fact,

Intns(M) = {〈M〉, 〈0∧′′〉M , 〈0∨′′〉M , 〈0∧′′ , 0∨′′〉M}.

Let f be a surjective n-ary operation in Sta(M) \ 〈M〉 with f(0̂) = 0.

Then f is idempotent and gf is not a constant operation, hence, 〈gf 〉MA2
∈

{N ,L,BF}, where

N = 〈MA2
〉, L = 〈+〉MA2

, BF = OA2
.

We may assume that gf depends on its first variable. The operation hf is a

monotone operation that belongs to 〈∧′′,∨′′〉MA1
. By Proposition 6,

hf (x) = ∨′′
b∈Hh

∧′′ b · x = x[1] ∨′′ ∨′′
b∈Hhf

\{(2,0,...,0)}
∧′′ b · x (x ∈ An),

where Hhf
= min {b ∈ An

1 : hf (b) = f(b) = 2}, hence,

hf (x, y, . . . , y) = x∨′′ y and f(x, y, . . . , y) = x⇒∨′′ y.

If ∧′′ ∈ 〈g〉MA2
then 0∧′′ ∈ 〈f〉M .

Suppose that 〈g〉MA2
= L. Then + ∈ 〈g〉MA2

, and so, +∨′′ is a member of

〈f〉M .

Let C be a clone in Int(M). Set

CA2
=
{
f |A2

: f ∈ C, f(A2
arity(f)) ⊆ A2

}
,

CA1
= {(ε0 ◦ f)|A1

: f ∈ C} .

Then CA2 and CA1 are clones, moreover, CA2 ∈ Sta(MA2) and CA1 ∈ Sta(MA1),

where MA2
= {m|A2

: m ∈M, m(A2) ⊆ A2} = TA2
and MA1

= Mε0 = CA1
∪

{idA1
}.

Proposition 8. If CA1
= 〈MA1

〉 then C = 〈M〉.

Proof. Let f ∈ Sta(M) be an n-ary operation that depends on its variables.

If n > 2 then by a theorem of A. Salomaa (see Lemma 4.1. in Hobby–

McKenzie [5]) there are distinct indexes i and j (1 6 i < j 6 n) and elements

ak (1 6 k 6 n, k 6= i, j) such that the binary operation

f ′ : A2 → A, (x, y) 7→ f(a1, . . . , ai−1, x, ai+1, . . . , aj−1, y, aj+1, . . . , an)

depends on both of its variables. Then f ′ belongs to 〈f〉M and (ε0 ◦ f ′)|A1

depends on its variables.

The statement of the proposition follows. �

Proposition 9. Let f be a surjective operation in Sta(M) \ 〈0∧′′ , 0∨′′〉M , and

set C = 〈f〉M . Then ⇒∨′′ ∈ C, furthermore 〈⇒∨′′〉M is the unique upper cover

of 〈0∨′′〉M and 〈0∧′′ ,⇒∨′′〉M is the unique upper cover of 〈0∧′′ , 0∨′′〉M .

Proof. We may assume that f depends on all of its variables. By Proposi-

tion 2 (c), f(An
2 ) ⊆ A2 and gf = f |A2

is not a constant operation.

If gf depends on at least two of its variables then, by Salomaa’s theorem,

there is a binary operation in 〈gf 〉ΓA2
that depends on its variables, hence,
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there is a binary surjective operation in 〈f〉ΓA
that depends on its variables.

Therefore, in this case the statement follows.

Suppose that gf is an essentially unary operation. We may assume that it

depends on its first variable. Then the (n− 1)-ary operation

f [2, 1] : An−1 → A, (x2, . . . , xn) 7→ f(2, x2, . . . , xn)

is a constant operation with value 2 by Proposition 6. As f depends on its

variables, there is an n-tuple a ∈ An such that a[1] ∈ A2 and f(a) = 2. Define

the binary operation w on A as follows:

w(a, b) = f(a, µ2(b), . . . , µn(b)) (a, b ∈ A),

where for every index i (2 6 i 6 n)

µi =

{
γa[i]

, if a[i] ∈ A2,

idA, if a[i] = 2.

Then w(2, b) = 2 (b ∈ A) and w(a[1], 2) = f(a) = 2, which imply that w =

⇒∨′′ .

This completes the proof. �

Proposition 10. Let f be a surjective operation in Sta(M) \ 〈0∧′′ ,⇒∨′′〉M ,

and set C = 〈f〉M . Then +∨′′ ∈ C, furthermore 〈+∨′′〉M is the unique upper

cover of 〈⇒∨′′〉M and 〈0∧′′ ,+∨′′〉M is the unique upper cover of 〈0∧′′ ,⇒∨′′〉M .

Proof. Suppose that CA2
= 〈MA2

〉. We may assume that f(0̂) = 0. Then

gf = f |A2 belongs to CA2 , and so, it is an essentially unary operation that is

not constant since f is surjective. Reordering the variables of f if necessary,

we may assume that gf (x) = x[1] holds for every n-tuple x ∈ An.

The clone generated by the operation hf = f |A1
over MA1

is either 〈∨′′〉MA1

or 〈∧′′,∨′′〉MA1
since ⇒∨′′ ∈ C, furthermore, in the latter case 0∧′′ ∈ C also

holds. Thus, there is an operation f̃ in 〈0∧′′ ,⇒∨′′〉M such that gf̃ = gf and

hf̃ = hf , which proves that f = f̃ . This contradicts to our assumption on f .

Then 〈MA2〉 ( CA2 , and so, + ∈ CA2 . Since +∨′′ ∈ Sta(M) is the unique

operation whose restriction to A2 is +, we get that +∨′′ ∈ C. �

Proposition 11. Let f be a surjective operation in Sta(M) \ 〈0∧′′ ,+∨′′〉M .

Then ∨∨′′ ∈ C,

Proof. Set C = 〈f〉M . We may assume that f(0̂) = 0. Then + 6∈ CA2
, and so,

CB = 〈∨〉MA2
. Since ∨∨′′ ∈ Sta(M) is the unique operation whose restriction

to A2 is ∨, we get that ∨∨′′ ∈ C. �

Proof of Theorem 1. Combining Propositions 7–11, we get that Int(M) con-

sists of the clones

〈M〉, 〈0∨′′〉M , 〈⇒∨′′〉M , 〈+∨′′〉M , 〈∨∨′′〉M ,
〈0∧′′〉M , 〈0∧′′ , 0∨′′〉M , 〈0∧′′ ,⇒∨′′〉M , 〈0∧′′ ,+∨′′〉M , 〈0∧′′ ,∨∨′′〉,

and the monoidal interval can be seen in Figure 1 on page 9. �
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Sta(M) = 〈0∧′′ ,∨∨′′〉M

〈∨∨′′〉M 〈0∧′′ ,+∨′′〉M

〈+∨′′〉M 〈0∧′′ ,⇒∨′′〉M

〈⇒∨′′〉M Stans(M) = 〈0∧′′ , 0∨′′〉M

〈0∨′′〉M 〈0∧′′〉M

〈M〉

Figure 1. The interval Int(M)

References

[1] Dormán, M.: Collapsing inverse monoids. Algebra Universalis 56, 241–261 (2007)
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