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Miklós Dormán

Abstract. In this paper we investigate transformation monoids that are built up from
inverse transformation monoids constructed from finite lattices by adding all the unary

constant transformations. We give a complete description for the corresponding monoidal

intervals in the clone lattice.

Introduction

Let A be a finite set with at least three elements, and let M be an arbitrary
transformation monoid on A. It is well known that the clones whose set of unary
operations coincides with M form an interval in the lattice of all clones on A (see Á.
Szendrei [7], Chapter 3). An interval of this form is called a monoidal interval. If
A is finite, then there are only finitely many transformation monoids on A. Hence
the monoidal intervals partition the clone lattice into finitely many blocks. Since
the clone lattice has cardinality 2ℵ0 if |A| > 3, one might expect that ‘for most
M ’ the monoidal interval Int(M) contains uncountably many clones. Nevertheless,
it turns out that for many interesting transformation monoids the corresponding
monoidal intervals are countable. So, studying these intervals may lead to a better
understanding of some parts of the clone lattice.

The problem of classifying transformation monoids according to the cardinalities
of the corresponding monoidal intervals was posed by Á. Szendrei in [7]. A large
family of monoids M with finite monoidal intervals is provided by Pálfy’s theorem
in [4]: if M consists of all constants and some permutations, then the corresponding
monoidal interval contains at most two elements; moreover, this interval has a single
element unless M coincides with the monoid of all unary polynomial operations of
a finite vector space.

Although, a complete classification of transformation monoids according to the
sizes of the corresponding monoidal intervals seems a very hard problem at present,
for certain classes of monoids we can solve this problem (cf. Pálfy’s theorem that
was mentioned in the preceding paragraph). In this paper we will consider trans-
formation monoids that consist of an inverse transformation monoid constructed
from a finite lattice and all the unary constant operations. We will get a description
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that is similar to Pálfy’s theorem. Namely, we will prove that the monoidal interval
corresponding to such a transformation monoid is finite (cf. Theorems 3.1 and 3.2);
moreover, this interval has a single element unless the lattice we start with has only
one atom (cf. Theorem 2.4).

1. Preliminaries

Let X, Y , Y ′, and Z be sets for which Y ⊆ Y ′ holds. By the composition of
the maps t : X → Y and t′ : Y ′ → Z we will mean the map X → Z, x 7→ t′(t(x)),
denoted by t′ ◦ t. For arbitrary subset W of X the restriction of the map t to the
set W is the map t�W : W → Y, x 7→ t(x).

For a finite set A we will denote the full transformation semigroup, and the set
of unary constant operations on A by TA, and CA, respectively. For an arbitrary
element a of A we will use the notation ca for the unary constant operation on A
with value a, and a tuple whose all components are a will be denoted by â.

For the set of positive integers we will use the notation N, and we will refer to
them as natural numbers.

Let A be a set and n be a positive integer. An `-ary operation on A is a
function f : A` → A. An operation is called finitary if it is `-ary for a natural
number `. The set of all finitary operations on A will be denoted by OA. An `-ary
operation f ∈ OA is said to depend on its i-th variable (1 6 i 6 `) if there are
elements a1, . . . , ai−1, ai, a

′
i, ai+1, . . . , a` of A such that

f(a1, . . . , ai−1, ai, ai+1, . . . , a`) 6= f(a1, . . . , ai−1, a
′
i, ai+1, . . . , a`).

We call the operation f essentially k-ary (k ∈ N, k > 2) if it depends on exactly k
of its variables. If f depends on at most one of its variables, we call f essentially
unary. The superposition of an `-ary operation f ∈ OA by k-ary operations
g1, . . . , g` ∈ OA is the k-ary operation f(g1, . . . , g`) ∈ OA defined by the rule

f(g1, . . . , g`)(x1, . . . , xk) = f
(
g1(x1, . . . , xk), . . . , g`(x1, . . . , xk)

)
.

A set C of finitary operations on a set A is said to be a clone if it contains all
the projections and is closed under superposition of operations. It is obvious that
OA and the set PA of all projections on A are clones. Since the intersection of an
arbitrary family of clones on A is also a clone, the set of all clones on A constitutes
a complete lattice with respect to the set-theoretic inclusion. Furthermore, we can
define the clone generated by a subset F of OA as the intersection of all clones
that contain F . This clone will be denoted by 〈F 〉. For a natural number `, the set
of all `-ary operations of a clone C will be denoted by C(`).

Let M be a transformation monoid on A, and let Int(M) denote the collection
of all clones C on A such that the set of unary operations of C is M . The clone 〈M〉
of essentially unary operations generated by M is a member of Int(M), in fact, it is
the least member of Int(M), so Int(M) is non-empty. Furthermore, it is clear that
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every clone C in Int(M) is contained in the set

Sta(M) =
{
f(x1, . . . , x`) ∈ OA | ` ∈ N, and

f(t1, . . . , t`) ∈M for all t1, . . . , t` ∈M
}
,

which is called the stabilizer of the monoid M . It is easy to verify that Sta(M) is
a clone on A, therefore Sta(M) is the largest member of Int(M). So, we see that
a clone C on A belongs to Int(M) if and only if 〈M〉 ⊆ C ⊆ Sta(M). Thus Int(M)
is the interval [〈M〉 ,Sta(M)] in the lattice of all clones on A. Such an interval is
called a monoidal interval.

The monoid M will be called collapsing if the monoidal interval corresponding
to it contains only one element, that is, there is no essentially at least binary oper-
ation in the stabilizer of M . In fact, it is enough to examine the binary operations
in Sta(M) as the following result of Grabowski [2] states.

Theorem 1.1 (Grabowski [2]). Let M be a transformation monoid on a finite
set A. Then M is collapsing if and only if the stabilizer of M does not contain
essentially binary operations.

Let L = (L;∨,∧) be a finite lattice. The least and greatest elements of L will
be denoted by 0L and 1L, respectively. If the lattice is clear from the context then
we omit the subscript, and simply write 0 and 1, respectively. The set of atoms of
L will be denoted by A(L), and we put A0(L) = A(L) ∪ {0}. If there is no danger
of confusion, we simply write A and A0, respectively. Two elements b and d of L
will be called similar iff the principal ideals (b] and (d] are isomorphic as lattices.
We write b ∼ d to denote that b is similar to d. The relation ∼ is an equivalence
relation on L. If the ∼-class containing b has only one element then b will be called
isolated. For every element b ∈ L we define a unary operation ϕb by the rule
ϕb(x) = x ∧ b (x ∈ L). In particular, ϕ0 = c0 is the unary constant operation with
range {0}. For similar elements b, d ∈ L the symbol Iso(b, d) will denote the set of
all lattice isomorphism between the principal ideals (b] and (d].

Define the set IS(L) of transformations on L in the following way:

IS(L) = {βb,d ◦ ϕb | b, d ∈ L, b ∼ d, and βb,d ∈ Iso(b, d)}.

Then IS(L) is an inverse submonoid of the full transformation semigroup on L (cf.
Saito–Katsura [6], Lemma 3.1).

Let N = IS(L) be the inverse monoid determined by the lattice L. The monoidal
interval corresponding to N was examined in [1]. In Propositions 1.2 and 1.3 we
recall some properties of the transformations in N and of the operations in Sta(N).

Proposition 1.2 (cf. Proposition 2.1 in [1]). Let t be an arbitrary transformation
from N . Then

(a) t is monotone;
(b) there is a unique element b ∼ t(1) of L such that t = βb,t(1) ◦ ϕb for some

isomorphism βb,t(1) ∈ Iso(b, t(1)); furthermore, for any l ∈ L we have t(l) =
t(1) if and only if b 6 l;
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(c) t(A0) ⊆ A0, and t(0) = 0, moreover, for arbitrary atom a ∈ A we have that
0 < t(a) if and only if a 6 b;

(d) if t(a) = 0 for every atom a of L then t = ϕ0.

Proposition 1.3 (cf. Lemma 2.2 in [1]). Suppose L has at least two atoms. If f
is a binary operation in the stabilizer of N then

(a) f(A0 ×A0) ⊆ A0 and f(0, 0) = 0;
(b) f�A0 is an essentially unary operation;
(c) if f�A0

does not depend on its first variable [second variable] then f(l, 0) = 0
[f(0, l) = 0] for all l ∈ L.

2. Monoidal intervals with a single element

Throughout this section, L will be a finite lattice with underlying set L, and
M will be a transformation monoid on L that is obtained from the monoid IS(L)
associated to L (see Section 1) by adding some constant transformations, that is,
M = IS(L) ∪ C ′ for some subset C ′ of CL. Our goal is to present two sufficient
conditions for such a monoid to be collapsing (Corollary 2.2 and Theorem 2.4).
Both proofs rely on Proposition 2.1 below.

Before stating Proposition 2.1, we discuss some basic properties of the monoids
M = IS(L)∪C ′ (C ′ ⊆ CL). The definition of IS(L) shows that c0 = ϕ0 ∈ IS(L) and
t(0) = 0 holds for every transformation t ∈ IS(L) (cf. Proposition 1.2 (c)), hence
it follows from the definition of M that t = cl holds with an element l ∈ L \ {0} if
t ∈M \ IS(L). The following consequences of these observations will be used later
on without further references:

• for t ∈M we have t(0) = 0 if and only if t ∈ IS(L);
• if t ∈M and t(0) 6= 0 then t = ct(0).

Proposition 2.1. Let N = IS(L) for a finite lattice L with underlying set L. If
M is a transformation monoid of the form M = IS(L) ∪ C ′ with C ′ ⊆ CL, then
Sta(M)(2) \ 〈M〉 ⊆ Sta(N)(2).

Proof. Suppose that M satisfies the assumption of the proposition. We will show
that every operation in Sta(M)(2) \ Sta(N)(2) is constant, and so, it belongs to〈
Sta(M)(1)

〉
= 〈M〉, which implies the desired conclusion.

Let f ∈ Sta(M)(2) \ Sta(N)(2) be an arbitrary operation. Then f 6∈ Sta(N)(2),
and so, for some n1, n2 ∈ N the unary operation t = f(n1, n2) does not belong to
N . However, n1, n2 ∈M and f ∈ Sta(M) provide that t ∈M . Hence, t ∈M \N =
C ′\{c0}, that is, t = cl for an element l ∈ L\{0}. We will show that f is the binary
constant operation with value l. To prove this, choose arbitrary elements b and d
in L, and set m = f(ϕb, ϕd). Then m ∈ M , because ϕb, ϕd ∈ M and f ∈ Sta(M).
Furthermore, the equalities n1(0) = 0 and n2(0) = 0 also hold, because n1, n2 ∈ N .
Hence, using the definitions of m and t, we get that

m(0) = f(ϕb(0), ϕd(0)) = f(0, 0) = f(n1(0), n2(0)) = t(0) = l 6= 0.

Thus that m = cl, and hence f(b, d) = f(ϕb(1), ϕd(1)) = m(1) = l. Therefore, f is
the constant operation with value l, as claimed. �
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Combining Proposition 2.1 with Theorem 1.1 we get the following corollary.

Corollary 2.2. Let L be a finite lattice with underlying set L. If IS(L) is collapsing
then so is every transformation monoid M on L that has the form IS(L) ∪ C ′ for
some C ′ ⊆ CL.

The finite lattices for which the transformation monoid IS(L) is collapsing is
characterized in [1, Theorem 3.1]. The characterization shows, among others, that
for IS(L) to be collapsing it is necessary that L has at least two atoms [1, Theo-
rem 3.1], and sufficient that L is an atomistic lattice with at least three elements
[1, Corollary 3.12].

Example 2.3. Let L be the 4-element lattice that can be seen in Figure 1. Let
βa1,a2 be the (unique) isomorphism between (a1] and (a2] with inverse βa2,a1 , fur-
thermore, let β1,1 be the (unique) automorphism of the lattice L with β1,1(a1) = a2.

u
u u
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0

1

a1 a2

Figure 1: The lattice L.

It is easy to see that

IS(L) = {ϕ0, ϕa1 , βa1,a2 ◦ ϕa1 , ϕa2 , βa2,a1 ◦ ϕa2 , ϕ1, β1,1 ◦ ϕ1} .
By Theorem 3.1 in [1], the monoid IS(L) is collapsing. Thus, Corollary 2.2 implies
that the monoids IS(L) ∪ {c0, ca1

, ca2
} and IS(L) ∪ CL are also collapsing.

From now on, we will assume that M is the transformation monoid IS(L)∪CL for
a finite lattice L = (L;∧,∨).

Theorem 2.4. If L contains at least two atoms then the monoid M = IS(L)∪CL

is collapsing.

Proof. Let N denote the transformation monoid IS(L) 6 TL. By Grabowski’s
result in [2], it is enough to prove that the stabilizer of M contains no essentially
binary operations. Let f ∈ Sta(M) be an essentially binary operation. Then
Proposition 2.1 implies that f belongs to Sta(N). Therefore, f�A0 is an essentially
unary operation by Proposition 1.3 (b). We may assume, without loss of generality,
that f�A0

does not depend on its second variable. Then by Proposition 1.3 (c) we
get that f(0, l) = 0 holds for all l ∈ L, that is, f(c0, idL) = c0.

Suppose that f(idL, c0) = c0. Let b and d be arbitrary elements of L \ {0}, and
set t = f(ϕb, ϕd). Then for all atoms a ∈ A we get that

t(a) = f(ϕb(a), ϕd(a)) = f(a ∧ b, a ∧ d) = f(a ∧ b, 0) = 0,

where the third equality holds, because a∧ b, a∧ d ∈ A0 and f�A0 does not depend
on its second variable. Therefore, the operation t belongs to N , and so, t = ϕ0 = c0
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by Proposition 1.2 (d). Thus,

f(b, d) = f(ϕb(1), ϕd(1)) = t(1) = 0.

Hence, f is an essentially unary operation contradicting our assumption on f .
Therefore, the unary operation f(idL, c0) is in N \ {c0}. From the facts that
f(ca, idL) ∈ M holds for every element a ∈ A and f�A0 does not depend on its
second variable we get that f(ca, idL) ∈ CL for all atoms a in L.

Since f depends on its second variable there is an element l ∈ L such that
f(cl, idL) ∈ M is not a unary constant operation. Then f(cl, idL) ∈ N \ {c0}, and
there is an atom a0 ∈ A for which f(cl, idL)(a0) 6= 0. Define the following unary
operations:

n = f(cl, idL),

m1 = f(idL, c0),

m2 = f(idL, ca0
).

Then n,m1,m2 ∈ M , because f ∈ Sta(M). In fact, we just proved that n ∈ N .
We also have that m1,m2 ∈ N since m1(0) = m2(0) = 0, and so, there are similar
elements bi, di ∈ L and βbi,di

∈ Iso(bi, di) such that mi = βbi,di
◦ ϕbi (i ∈ {1, 2}).

Furthermore,

0 6= f(cl, idL)(a0) = f(l, a0) = m2(l) = βb2,d2
(l ∧ b2)

implies that l ∧ b2 > 0. Then there is an atom a1 ∈ A such that a1 6 l ∧ b2 6 l, b2.
As m1(l) = f(l, 0) = n(0) = 0 and by Proposition 1.2 (a) we get that

m1(a1) 6 m1(l) = 0,

that is, m1(a1) = 0. Recalling that f�A0 does not depend on its second variable
and using that for the atom a1 the inequality a1 6 b2 holds, we obtain the following
series of equalities:

0 = m1(a1) = f(a1, 0) = f(a1, a0) = m2(a1) = βb2,d2
(a1 ∧ b2) = βb2,d2

(a1) ∈ A,

which is a contradiction. The proof of the theorem is complete. �

3. Finite monoidal intervals with more than one elements

Let L = (L;∧,∨) be a finite lattice that contains exactly one atom. Then there
is a largest element z ∈ L \ {0} such that

• [0, z] is a chain,
• L = [0, z] ∪ [z, 1].

Let T and H be the sublattices of L with universes T = [0, z] and H = [z, 1],
respectively (see Figure 2). We note that the set H has either exactly one element
or more than three elements, and the former case occurs if and only if z = 1.
Let N and M be the transformation monoids IS(L) and IS(L) ∪ CL, respectively.



TRANSFORMATION MONOIDS WITH FINITE MONOIDAL INTERVALS 7

Furthermore, let MT and MH be the transformation monoids IS(T)∪CT on T and
IS(H) ∪ CH on H, respectively. It is easy to see that

MT = {m�T | m ∈ N or m = cl (l ∈ T )} ,
MH = {m�H | m ∈ N, m(z) = z, or m = cl (l ∈ H)} .

The unique upper cover of 0 and the unique lower cover of z will be denoted by a
and s, respectively.

uu
uu
u�
�
�
�

0

a

z

s

1

···


T

H

Figure 2: The structure of lattice L.

Define the binary operations ul (l ∈ L, l 6= 0) and t on L in the following way:

b ul d = ϕl(b ∧ d) (b, d ∈ L),

b t d = ϕa(b ∨ d) (b, d ∈ L).

We remark that the operation u1 coincides with ∧.

The main results of the article are the following two theorems. The first one
deals with the general case leading the statement back to second one, which deals
with the case when the lattice is a chain.

Theorem 3.1. Let L be a finite lattice that contains exactly one atom. Then the
monoidal interval Int(IS(L)∪CL) is isomorphic to Int(IS(T)∪CT ), where T is the
sublattice of L with universe [0, z] with z the largest element in L \ {0} such that
[0, z] is a chain and L = [0, z] ∪ [z, 1]. Hence, it is isomorphic to the lattice that
can be seen in Figure 3.

Theorem 3.2. Let L be a finite chain with at least two elements in which 0L ≺ a
and s ≺ z = 1L hold, furthermore, let M be the transformation monoid IS(L)∪CL.
Then the monoidal interval Int(M) consists of the clones

〈M〉 , 〈M ∪ {t}〉 , 〈M ∪ {ul}〉 , and 〈M ∪ {ul,t}〉 (l ∈ L, l 6= 0).

These clones are pairwise distinct, and the monoidal interval Int(M) is the lattice
in Figure 3.
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〈M〉

〈M ∪ {ua}〉

〈M ∪ {us}〉

〈M ∪ {uz}〉

p p p
p p p

〈M ∪ {t}〉

〈M ∪ {ua,t}〉

〈M ∪ {us,t}〉

〈M ∪ {uz,t}〉

Figure 3: The monoidal interval Int(M).

We continue the section with some basic properties of the operations in Sta(M).

Proposition 3.3. Every operation in Sta(M) is monotone with respect to the lattice
order.

Proof. Let f be an `-ary operation in Sta(M), and let (b1, . . . , b`), (d1, . . . , d`) be
`-tuples in L` such that bi 6 di holds for every i (1 6 i 6 `). From the monotonicity
of the transformations

f(idL, cb2 , . . . , cb`), . . . , f(cd1
, . . . , cdi−1

idL, cbi+1
, . . . , cb`), . . . , f(cd1

, . . . , cd`−1
, idL)

in M we obtain that

f(b1, b2, . . . , b`) 6 f(d1, b2, . . . , b`)

...

f(d1, . . . , di−1, bi, bi+1, . . . , b`) 6 f(d1, . . . , di−1, di, bi+1, . . . , b`)

...

f(d1, . . . , d`−1, b`) 6 f(d1, d2, . . . , d`),

hence, f(b1, b2, . . . , b`) 6 f(d1, d2, . . . , d`) holds by the transitivity of 6. �

Let u be an arbitrary element in T \ {0}, and set U = [0, u] and V = [u, 1]. Let
MU be the transformation monoid

{m�U | m ∈ N or m = cl (l ∈ U)}

on U .

Proposition 3.4. Let f ∈ Sta(M) be an `-ary operation (` ∈ N). If f is not a
constant operation then

(a) f(0̂) = 0,
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(b) f(U `) ⊆ U ,
(c) f�U ∈ Sta(MU ).

Proof. (a) Suppose that f(0̂) = b 6= 0. We will prove that f is the constant
operation with value b. Let b1, . . . , b` be arbitrary elements of L, and set t =
f(ϕb1 , . . . , ϕb`). Then

t(0) = f
(
ϕb1(0), . . . , ϕb`(0)

)
= f(0̂) = b 6= 0

implies that t = cb, hence,

f(b1, . . . , b`) = f
(
ϕb1(1), . . . , ϕb`(1)

)
= t(1) = b.

Therefore, the operation f is a constant operation with value b.

(b) Assume f to be a nonconstant operation. Then f(0̂) = 0 holds by (a). Let
b1, . . . , b` be arbitrary elements of U = [0, u], and set t = f(ϕb1 , . . . , ϕb`). Then
t ∈ N since

t(0) = f(ϕb1(0), . . . , ϕb`(0)) = f(0̂) = 0,

and so, there are simlar elements b, d ∈ L and βb,d ∈ Iso(b, d) such that t = βb,d◦ϕb.
Since b1, . . . , b` 6 u we get that

t(u) = f(b1 ∧ u, . . . , b` ∧ u) = f(b1, . . . , b`) = t(1),

hence by Proposition 1.2 (b), b 6 u holds. Then d 6 u follows from d ∼ b and the
fact that u is an isolated element, and we get that

f(b1, . . . , b`) = t(1) = d 6 u,

that is, f(b1, . . . , b`) ∈ U .

(c) Let t1, . . . , t` be arbitrary elements of MU . Then there are transformations
t′1, . . . , t

′
` ∈ M such that t′i�U = ti holds for every i (1 6 i 6 `). Moreover,

f(t′1, . . . , t
′
`) 6∈ {cl | l ∈ V, l 6= u} follows from (b). Then

f�U (t1, . . . , t`) = f�U (t′1�U , . . . , t
′
`�U )

= f(t′1, . . . , t
′
`)�U ∈MU

implies that f�U ∈ Sta(MU ).
This completes the proof of Proposition 3.4. �

We consider the following subsets of Sta(M) that have a rôle in the rest of the sec-
tion. For the subset U = [0, u] of L let StaL,U (M) be the set of all operations from

Sta(M) whose ranges are contained in U , and let Sta[U ](M) = 〈M〉 ∪ StaL,U (M).

It is clear that Sta[U ](M) is a clone on L.
For an arbitrary `-ary operation g ∈ Sta(MU ) (` ∈ N) let fg be the operation

fg : L` → L, fg(b1, . . . , b`) = g(b1 ∧ u, . . . , b` ∧ u),

and for arbitrary operation f ∈ Sta(M) let gf be the operation (ϕu ◦ f)�U . Define
maps f and g as follows

f : Sta(MU )→ OL, g 7→ fg,

g : Sta(M)→ OU , f 7→ gf .
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Proposition 3.5. The map f preserves superposition, has range in StaL,U (M),
and satisfies fg�U = g for all g ∈ Sta(MU ).

To prove the proposition we need some more properties of the connection between
U and the transformations in M . It is straightforward to check that the following
statements are true.

Lemma 3.6. (a) If m ∈ M and m(U) ⊆ U then m(v) ∧ u = m(u) ∧ u holds
for every element v ∈ V and m�U = fm�U .

(b) If m ∈M and m(U) 6⊆ U then m ∈ {cv | v ∈ V, v 6= u}.
(c) If m is a transformation on L such that m�U ∈MU and m(v) = m(u) holds

for every element v ∈ V then m ∈M .

Proof of Proposition 3.5. To prove that f preserves superposition, choose oper-
ations g0, g1, . . . , g` be in Sta(MU ), where g0 is `-ary and g1, . . . , g` are k-ary
(`, k ∈ N). We note that for arbitrary k-tuples b = (b1, . . . , bk) ∈ Lk we have
that

fg0(g1,...,g`)(b) =
(
g0(g1, . . . , g`)

)
(b1 ∧ u, . . . , bk ∧ u)

= g0

(
g1(b1 ∧ u, . . . , bk ∧ u), . . . , g`(b1 ∧ u, . . . , bk ∧ u)

)
= g0

(
g1(b1 ∧ u, . . . , bk ∧ u) ∧ u, . . . , g`(b1 ∧ u, . . . , bk ∧ u) ∧ u

)
= fg0(fg1 , . . . , fg`)(b),

where the third equality is true, because the ranges of g0, g1, . . . , g` are contained
in U = [0, u], that is,

fg0(fg1 , . . . , fg`) = fg0(g1,...,g`),

which proves the required property of f.
Let g be an arbitrary `-ary operation in Sta(MU ) (` ∈ N). It is obvious that

fg�U = g, furthermore, fg(L`) ⊆ g(U `) ⊆ U , that is, the range of fg is contained in U .
Let m1, . . . ,m` be arbitrary transformations in M , and set m = fg(m1, . . . ,m`).
For every j (1 6 j 6 `) let m′j be the transformation mj if mj(U) ⊆ U and
cu if mj(U) 6⊆ U , that is, mj is a constant operation with value in V \ {u} by
Lemma 3.6 (b). As

m′j(b) ∧ u =

{
mj(b) ∧ u if mj(U) ⊆ U,
cu(b) ∧ u = u = mj(b) ∧ u if mj(U) 6⊆ U

hold for arbitrary elements j ∈ {1, . . . , `} and b ∈ L, we obtain that

m(b) = fg
(
m1(b), . . . ,m`(b)

)
= g
(
m1(b) ∧ u, . . . ,m`(b) ∧ u

)
= g
(
m′1(b) ∧ u, . . . ,m′`(b) ∧ u

)
(1)

= fg
(
m′1(b), . . . ,m′`(b)

)
,
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that is, m = fg(m′1, . . . ,m
′
`). Then

m�U = fg(m′1, . . . ,m
′
`)�U = fg(m′1�U , . . . ,m

′
`�U )

= fg(fm′1�U , . . . , fm′�̀U )
by (a)

= fg(m′1�U ,...,m′�̀U )

= g(m′1�U , . . . ,m
′
`�U )�U , (2)

and for every v ∈ V

m(v) = g(m′1(v) ∧ u, . . . ,m′`(v) ∧ u)

= g(m′1(u) ∧ u, . . . ,m′`(u) ∧ u)

= m(u), (3)

where in the first and third equalities we used (1), while the second equality follows
from Lemma 3.6 (a). Then (2) and (3), via Lemma 3.6 (c), ensure that m is in
M , hence fg is in Sta(M). Since the range of fg is contained in U , we get that the
range of f is a subset of StaL,U (M).

The proof of Proposition 3.5 is complete. �

We will consider f as a map Sta(MU ) → Sta(M) or Sta(MU ) → Sta[U ](M) or
Sta(MU )→ StaL,U (M), as the context requires.

Proposition 3.7. The map g : Sta(M) → OU , f 7→ gf preserves superposition,
has range in Sta(MU ), and satisfies the following conditions: gϕu◦f = gf for every
f ∈ Sta(M), and gf = f�U for every f ∈ StaL,U (M).

Proof. First, we prove the second statement of the proposition. To prove it,
let f ∈ Sta(M) be an arbitrary `-ary operation (` ∈ N) and choose arbitrary
transformations t1, . . . , t` ∈ MU . Then there exist transformations t′1, . . . , t

′
` ∈ M

such that t′i�U = ti (1 6 i 6 `). Therefore,

gf (t1, . . . , t`) = (ϕu ◦ f)�U (t′1�U , . . . , t
′
`�U )

=
(
(ϕu ◦ f)(t′1, . . . , t

′
`)
)
�U

=
(
ϕu ◦ f(t′1, . . . , t

′
`)
)
�U ∈MU ,

since f(t′1, . . . , t
′
`) ∈ M . This proves that gf ∈ Sta(MU ), hence, the range of g is

contained in Sta(MU ).
For the truth of the first part of the third statement, we note that

gϕu◦f = (ϕu ◦ (ϕu ◦ f))�U = (ϕu ◦ f)�U = gf

for every operation f ∈ Sta(M). The second part of the third statement is obvious.
To verify that g preserves superposition, let the operations f0, f1, . . . , f` be in

Sta(M), where f0 is `-ary and f1, . . . , f` are k-ary (`, k ∈ N). Since

gf0(f1,...,f`) = g(ϕu◦f0)(f1,...,f`) and gf0(gf1 , . . . , gf`) = gϕu◦f0(gf1 , . . . , gf`),

follows from the equality gϕu◦f = gf , we may assume that the range of f0 is
contained in U . Let b = (b1, . . . , bk) be an arbitrary k-tuple in Uk, and set t =
f0(ϕf1(b), . . . , ϕf`(b)). Then t ∈ M and t(1) = f0(f1(b), . . . , f`(b)) ∈ U , together
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with Lemma 3.6 (a), implies that t(v)∧u = t(u)∧u for every element v ∈ V . Thus,
we obtain the following chain of equalities:

gf0(f1,...,f`)(b) =
(
f0(f1, . . . , f`)

)
(b) ∧ u

= f0

(
f1(b), . . . , f`(b)

)
∧ u

= t(1) ∧ u
= t(u) ∧ u
= f0

(
u ∧ f1(b), . . . , u ∧ f`(b)) ∧ u

= gf0
(
gf1(b), . . . , gf`(b)

)
=
(
gf0(gf1 , . . . , gf`)

)
(b),

for all elements b ∈ U `, which proves that gf0(gf1 , . . . , gf`) = gf0(f1,...,f`), that is, g
is a superposition-preserving map.

This concludes the proof of Proposition 3.7. �

We will consider g as a map Sta(M) → Sta(MU ). The restriction of g to
StaL,U (M) will be denoted by ĝ.

We note that the sequence of maps (g0, g1, . . . ) : Sta(M)→ Sta(MU ), where

gi : Sta(M)(i) → Sta(MU )(i), f 7→ gf (i ∈ N0),

is a homomorphism between the clones Sta(M) and Sta(MU ) (as multisorted al-
gebras) since g preserves superposition and projections. We will refer to this fact
that the map g is a clone homomorphism.

Proposition 3.8. The superposition-preserving maps

f : Sta(MU )→ StaL,U (M) and ĝ : StaL,U (M)→ Sta(MU )

are mutually inverse bijections.

Proof. Let f ∈ StaL,U (M) be an `-ary operation (` ∈ N). It is straightforward to
check that equality fgf

= f holds if f is a constant operation. If f is not constant

then f(0̂) = 0, by Proposition 3.4 (a). Let b = (b1, . . . , b`) be an arbitrary `-tuple

in L`, and set t = f(ϕb1 , . . . , ϕb`). Then t ∈ M , furthermore, t(0) = f(0̂) = 0 and
t(1) = f(b) imply that t = ϕf(b). Since f(b) 6 u we obtain that t(1) = t(u) holds.
From the latter equality we get that

f(b) = t(1)

= t(u)

= f(u ∧ b1, . . . , u ∧ b`)
= f(u ∧ b1, . . . , u ∧ b`) ∧ u
= gf (b1 ∧ u, . . . , b` ∧ u)

= fgf
(b),

that is,

f = fgf
= fĝf

. (4)
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Let g be an arbitrary `-ary operation in Sta(MU ) (` ∈ N). By Proposition 3.5, the
range of fg is contained in U . Hence, gfg = (ϕu ◦ fg)�U = fg�U . Then for every

b = (b1, . . . , b`) ∈ U ` we get that

g(b) = g(b1 ∧ u, . . . , b` ∧ u) = fg(b) = fg�U (b) = gfg (b),

that is,

g = gfg = ĝfg . (5)

Then (4) and (5) prove the statement of the proposition. �

For an arbitrary cloneD ∈ Int(MU ) let FD be the clone 〈M ∪ {fg | g ∈ D}〉 ⊆ OL,
and for an arbitrary clone C ∈ Int(M) let GC be the clone g(C) = {gf | f ∈ C}; it
is a clone because g is a clone homomorphism.

By Proposition 3.5, FD ⊆ Sta[U ](M), while the inclusion M ⊆ FD is obvious.
That is, FD ∈ Int(M). Furthermore, for every operation f ∈ FD \ 〈M〉 the range
of f is contained in U .

By Proposition 3.7, GC ⊆ Sta(MU ), so GC belongs to Int(MU ).

In the next proposition we summarize these results.

Proposition 3.9. (a) If D ∈ Int(MU ) then FD ∈ Int(M), moreover, the ranges of
operations in FD \ 〈M〉 are contained in U .

(b) If C ∈ Int(M) then GC ∈ Int(MU ).

Now, we are ready to define maps F and G in the following way:

F : Int(MU )→ [〈M〉 ,Sta[U ](M)], D 7→ FD,

G : [〈M〉 ,Sta[U ](M)]→ Int(MU ), C 7→ GC .

By Proposition 3.9, these maps are well-defined. The monotonicity of F and G with
respect to set-theoretic inclusion is an immediate consequence of their definitions.
Our aim is to prove that maps F and G are mutually inverse isomorphisms between

the lattices Int(MU ) and [〈M〉 ,Sta[U ](M)].

Theorem 3.10. Let L be a finite lattice that contains exactly one atom. If u ∈ L
is an element such that L = [0L, u] ∪ [u, 1L] and U = [0L, u] is a chain. Then the

lattices Int(MU ) and [〈M〉 ,Sta[U ](M)] are isomorphic. In particular, the maps F
and G are mutually inverse lattice isomorphisms.

Proof. As F and G are monotone maps with respect to set-theoretic inclusion, if
we prove that they are mutually inverse bijections, the assertion follows.

Let D be an arbitrary clone in Int(MU ). Then GFD = {gf | f ∈ FD}. For any
operation g in D we have that g = gfg , by Proposition 3.8, hence, g ∈ GFD since
fg ∈ FD. This implies that D ⊆ GFD . The reverse inclusion follows from the fact
that the set of generators of the clone FD, namely, the set M ∪ {fg | g ∈ D} is
mapped into D by the clone homomorphism g, by Proposition 3.8. Then by the
preceding argument,

GFD = D. (6)
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Let C be an arbitrary clone in [〈M〉 ,Sta[U ](M)]. Then the equality fgf
= f

holds for all f ∈ C \ 〈M〉, by Proposition 3.8. Thus, C ⊆ FGC . To prove the reverse
inclusion it is enough to verify that

{fg | g ∈ GC \ 〈MU 〉} ⊆ C.

Let g be an arbitrary element of GC \ 〈MU 〉. Then g = gf = (ϕu ◦ f)�U for a
suitable operation f ∈ C \ 〈M〉, hence,

fg = fgf
= f

holds by Proposition 3.8, since by our assumption on C, the range of f is contained
in U . This proves that

C = FGC . (7)

To finish the proof, we note that equalities (6) and (7) imply that the composi-
tions F ◦G and G ◦ F are the identity automorphisms of the lattices Sta(MU ) and

[〈M〉 ,Sta[U ](M)], respectively. Hence, they are bijective maps that are mutually
inverses lattice isomorphisms. From this, the assertion of the theorem follows. �

We will use Theorem 3.10 to prove both of the Theorems 3.1 and 3.2.
Before we start the proofs of our main theorems, we recall some definitions from

the beginning of the this section. The lattice L = (L;∧,∨) is finite with at least two
elements that contains exactly one atom a. Furthermore, z is the largest element in
L \ {0} such that [0, z] is a chain and L = [0, z]∪ [z, 1]. The element s is the unique
under cover of z. The sublattices of L with universes T = [0, z] and H = [z, 1]
are T and H, respectively. The transformation monoids N and M are IS(L) and
IS(L) ∪ CL, respectively.

When the lattice L is a chain

In this part, we will assume that z = 1 holds in L. Then L is a chain, H is a
1-element set that contains only 1 and T = L. Let S be the sublattice of L with
universe S = [0, s], and let MS be the transformation monoid IS(S) ∪ CS on S. It
is straightforward to check that

M = {ϕl | l ∈ L} ∪ CL,

MS = {ϕl�S | l ∈ S} ∪ CS .

Assume that the chain L has at least three elements, that is, assume that

a 6 s.

In a series of propositions we will examine the operations in Sta(M). For any
positive integer ` let hL` be the mapping

hL` : L` → P (N), (b1, . . . , b`) 7→ {i ∈ N | 1 6 i 6 `, bi = 1} ,
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and for the `-ary operation f ∈ Sta(M) let WL
f and wL

f be defined as follows:

WL
f =

{
b ∈ L` | f(b) = 1

}
,

wL
f =

{
min

{
|hL` (b)| | b ∈WL

f

}
if WL

f 6= ∅,
∞ if WL

f = ∅.

It follows from the definition of wL
f and in (8) by Proposition 3.4 (a), that

wL
f = 0 if and only if f is a constant operation with value 1, (8)

wL
f = ` if and only if WL

f = {1̂}, (9)

wL
f =∞ if and only if f(L`) ⊆ S. (10)

If the lattice L is clear from the context then we will omit the superscript, that is,
we will write h`, Wf , and wf instead of hL` , WL

f , and wL
f , respectively.

For a subset I of {1, . . . , `} and for an element b = (b1, . . . , b`) ∈ L` let bI denote
the `-tuple (b′1, . . . , b

′
`) for which

b′i =

{
bi if i ∈ I,
0 otherwise

holds for every i (1 6 i 6 `).

Proposition 3.11. Let f be an arbitrary `-ary operation in Sta(M) (` ∈ N).

(i) If J is an arbitrary subset of {1, . . . , `}, then for every element b ∈ L` if
f(bJ) 6= 0 then f(b) = f(bJ).

(ii) If d ∈ L` is an `-tuple for which f(d) = 1 holds and I = h`(d), then

f(dI) = f(1̂) = 1.

Proof. Let b = (b1, . . . , b`) be an arbitrary `-tuple in L`. For every i ∈ {1, . . . , `}
let ti be the transformation cbi if i ∈ J and ϕbi otherwise, and set t = f(t1, . . . , t`) ∈
M . Clearly t(0) = f(bJ) and t(1) = f(b). Hence, if f(bJ) 6= 0 then t = cf(bJ ), and
so, f(b) = t(1) = f(bJ). This proves (i).

To prove (ii), let d = (d1, . . . , d`) ∈ L` be an `-tuple for which f(d) = 1 holds

and let I = h`(d). By the monotonicity of f , we obtain that 1 = f(d) 6 f(1̂) 6 1,

that is, f(1̂) = 1. Applying the same construction as in the proof of (i) in the case
when b = d and J = I, we get that t(0) = f(dI) and t(1) = f(d) = 1. Moreover,

ti(s) =

{
cdi(s) = di if i ∈ I,
ϕdi

(s) = di ∧ s = di if i 6∈ I

holds for every i (1 6 i 6 `), since if i 6∈ I then di 6 s. Hence, t(s) = f(d) =
1, which implies that t = c1. Therefore, f(dI) = t(0) = 1. The proof of the
proposition is complete. �

Proposition 3.12. Let f be an arbitrary `-ary operation in Sta(M) (` ∈ N).
Suppose that 0 < wf < ` holds for the operation f , and let d = (d1, . . . , d`) be an
element in Wf such that |h`(d)| = wf . Then for arbitrary element b ∈ L` we have
that b ∈Wf if and only if h`(d) ⊆ h`(b).
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Proof. Suppose that b = (b1, . . . , b`) ∈ Wf . Set I = h`(d) and J = h`(b). By
Lemma 3.11 (ii), we may assume that di = 0 if i ∈ {1, . . . , `} \ I and bj = 0 if
j ∈ {1, . . . , `} \ J . Let g be the binary operation f(g1, . . . , g`) on L, where for
i ∈ {1, . . . , `} the binary operation gi is defined to be projection onto the first
variable if i ∈ I \ J , projection onto the second variable if i ∈ J \ I, constant 1
if i ∈ I ∩ J , and constant 0 in all the other cases. Then g ∈ Sta(M), because
f, g1, . . . , g` ∈ Sta(M). Furthermore, g(1, 0) = f(d) = 1 and g(0, 1) = f(b) = 1
imply that g(c1, idL) = g(idL, c1) = c1, hence, g(0, 0) = 1. And so, the `-tuple
(g1(0, 0), . . . , g`(0, 0)) ∈ Wf and h`(g1(0, 0), . . . , g`(0, 0)) = I ∩ J ⊆ I. By the
minimality of wf = |I|, we get that I ∩ J = I, that is, h`(d) = I ⊆ J = h`(b).

Suppose that h`(d) ⊆ h`(b). Then d = dI 6 b, hence, the monotonicity of f
implies that 1 = f(d) 6 f(b), that is, b ∈Wf .

This completes the proof of the proposition. �

By the preceding proposition, for every operation f ∈ Sta(M), say f is `-ary,
there is a unique set in {h`(b) | b ∈Wf} of size wf .

In the next statement we will describe the essentially binary operations in the
stabilizer of M .

Proposition 3.13. If f is an essentially binary operation in Sta(M), then f co-
incides with either t or ul for some l ∈ L \ {0}.

Proof. Let f be an essentially binary operation in Sta(M). Then f(0, 0) = 0 and
f(S × S) ⊆ S hold by Proposition 3.4 (a) and (b), respectively.

The proof splits according to the value of wf . We note that wf = 0 is impossible
because this equality would imply that f is the constant operation with value 1.

In the following we will use some simple facts concerning the unary operations
in M . Let m be an arbitrary element in M . Since all the elements of L are isolated,
we get that for arbitrary elements b, d ∈ L the relation b ∼ d holds if and only if
b = d, furthermore, Iso(b, d) =

{
id(b]

}
. Then by Proposition 3.4 (b) we have that

(†) either m = cm(1) or m = ϕm(1),

in particular,

(†c) if m(1) = 0 then m = c0, and if m(0) > 0 then m = cm(0),
(†ϕ) if m(0) = 0 then m = ϕm(1).

Case 1: wf = ∞, that is the range of f is contained in S. Let b∗ denote the
element f(1, 1) ∈ L \ {0, 1}; b∗ 6= 0, because f is a monotone and essentially binary
operation, and b∗ 6= 1, because of (10). Then the unary operations f(c1, idL) and
f(idL, c1) are in {cb∗ , ϕb∗} by (†), since f(c1, idL)(1) = f(idL, c1)(1) = f(1, 1) = b∗.

If f(c1, idL) = cb∗ then f(idL, c0) = ϕb∗ by (†ϕ), since

f(idL, c0)(0) = f(0, 0) = 0,

f(idL, c0)(1) = f(1, 0) = f(c1, idL)(0) = b∗,

and so,

f(cl, idL) = cϕb∗ (l) (11)
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for every element l ∈ L \ {0} by (†c), since

f(cl, idL)(0) = f(l, 0) = f(idL, c0)(l) = ϕb∗(l) = l ∧ b∗ > 0.

If b∗ > a, where a is the unique atom in the chain L, then for all l ∈ L we have
that

f(idL, cl)(a) = f(a, l) = f(ca, idL)(l)
by (11)

= ϕb∗(a) = a ∧ b∗ = a,

f(idL, cl)(b
∗) = f(b∗, l) = f(cb∗ , idL)(l)

by (11)
= ϕb∗(b

∗) = b∗ > a,

which show that f(idL, cl) is not a unary constant operation, hence f(0, l) =
f(idL, cl)(0) = 0 holds for all l ∈ L. Thus, it follows that

f(c0, idL) = c0. (12)

Hence, combining (11) and (12), we get that f does not depend on its second
variable, which contradicts the assumption on f .

If b∗ = a then for all elements l, l′ ∈ L with l > a we get that

f(l, l′) = f(cl, idL)(l′)
by (11)

= cϕa(l)(l
′) = ϕa(l) = a ∧ l = a. (13)

Since f(c0, idL)(0) = f(0, 0) = 0 and f(c0, idL)(1) = f(0, 1) 6 f(1, 1) = a, we see
that

f(c0, idL) ∈ {c0, ϕa}
by (†ϕ). The equality f(c0, idL) = c0 can be excluded, because in this case (11) and
(12) would imply that f is not an essentially binary operation. Hence, f(c0, idL) =
ϕa, and this with (13) show that f = t.

As the assumption f(idL, c1) = cb∗ leads to similar results, we may suppose that
the equalities

f(c1, idL) = f(idL, c1) = ϕb∗

hold for f . Applying these equalities we get that

f(c0, idL)(1) = f(0, 1) = f(idL, c1)(0) = ϕb∗(0) = 0,

f(idL, c0)(1) = f(1, 0) = f(c1, idL)(0) = ϕb∗(0) = 0,

which imply that
f(c0, idL) = f(idL, c0) = c0,

by (†c). By the above, we have for all elements l ∈ L that

f(cl, idL)(0) = f(l, 0) = f(idL, c0)(l) = c0(l) = 0,

f(cl, idL)(1) = f(l, 1) = f(idL, c1)(l) = ϕb∗(l),

hence,
f(cl, idL) = ϕϕb∗ (l)

for every element l ∈ L, by (†ϕ). Then for arbitrary elements l, l′ ∈ L we obtain
that

f(l, l′) = f(cl, idL)(l′) = ϕϕb∗ (l)(l
′) = l′ ∧ (l ∧ b∗) = (l′ ∧ l) ∧ b∗ = l ub∗ l′,

that is, f = ub∗ = uf(1,1).
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Case 2: wf = 1. Let d ∈ Wf be an element such that |h2(d)| = 1. We may
assume, without loss of generality, that h2(d) = {1}. Then f(1, 0) = 1, and so,
f(c1, idL)(0) = f(1, 0) = 1 and f(idL, c0)(1) = f(1, 0) = 1 imply that f(c1, idL) =
c1 and f(idL, c0) = ϕ1 = idL by (†c) and (†ϕ), respectively. Hence,

f(cl, idL) = cl (14)

for every element l ∈ L \ {0} by (†c), since f(cl, idL)(0) = f(l, 0) = f(idL, c0)(l) =
l > 0. Using this, we get for arbitrary element l′ ∈ L \ {0}

f(idL, cl)(l
′) = f(l′, l) = f(cl′ , idL)(l) = cl′(l) = l′,

which yields that f(idL, cl) = idL holds for all l (l ∈ L), hence,

f(0, l′′) = f(idL, cl′′)(0) = idL(0) = 0

hold for all elements l′′ ∈ L. This implies that f(c0, idL) = c0, which with (14)
forces f not to depend on its second variable. This contradiction shows that there
is no essentially binary operation f with wf = 1.

Case 3: wf = 2. Then f(c1, idL)(1) = f(1, 1) = 1 and f(c1, idL)(0) = f(1, 0) 6= 1
imply that f(c1, idL) = ϕ1 = idL, by (†). In a similar way, we get that f(idL, c1) =
idL. Therefore, f(c0, idL) = c0 and f(idL, c0) = c0 hold by (†c), since

f(c0, idL)(1) = f(0, 1) = f(idL, c1)(0) = 0,

f(idL, c0)(1) = f(1, 0) = f(c1, idL)(0) = 0.

Hence, for every element l ∈ L we have that

f(cl, idL)(0) = f(l, 0) = f(idL, c0)(l) = c0(l) = 0,

f(cl, idL)(1) = f(l, 1) = f(idL, c1)(l) = idL(l) = l,

which yields that f(cl, idL) = ϕl (l ∈ L), by (†ϕ). Therefore,

f(l, l′) = f(cl, idL)(l′) = ϕl(l
′) = l ∧ l′ = l u1 l

′

holds for arbitrary elements l, l′ ∈ L, that is, f = u1.

This concludes the proof of Proposition 3.13. �

Proposition 3.14. If f is an `-ary operation in Sta(M) \ 〈M〉 with wf = ` then
f(b1, . . . , b`) = b1 u1 · · · u1 b` for all b1, . . . , b` ∈ L.

Proof. Let us remark that if f is an operation in Sta(M) \ 〈M〉, then the arity
of f is at least 2. We will proceed by induction on the arity of f . Proposition 3.13
ensures that the assertion is true for ` = 2. Assume the statement is true for
operations in Sta(M) \ 〈M〉 with arity less than `, and let f ∈ Sta(M) \ 〈M〉 be an
`-ary operation (` > 3) such that wf = `. Define the operations f1, . . . , f` in the
following way

fi : L`−1 → L, fi(b1, . . . , bi−1, bi+1, . . . , b`) = f(b1, . . . , bi−1, 1, bi+1, . . . , b`)

(1 6 i 6 `). It is obvious that for every i (1 6 i 6 `)

fi(b1, . . . , bi−1, bi+1, . . . , b`) = 1⇐⇒ b1 = · · · = bi−1 = bi+1 = · · · = b` = 1
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holds, which ensures that wfi = ` − 1 and fi depends on all of its variables. The
operations f1, . . . , f` belong to Sta(M) since for every i (1 6 i 6 `)

fi = f(π
(`−1)
1 , . . . , π

(`−1)
i−1 , c1 ◦ π(`−1)

1 , π
(`−1)
i , . . . , π

(`−1)
`−1 ) ∈ Sta(M),

where π
(`−1)
j : L`−1 → L is the (` − 1)-ary jth projection (1 6 j 6 ` − 1). Hence,

f1, . . . , f` ∈ Sta(M) \ 〈M〉 and we can apply the inductive hypothesis to the oper-
ations f1, . . . , f`:

fi(b1, . . . , bi−1, bi+1, . . . , b`) = b1 u1 · · · u1 bi−1 u1 bi+1 u1 · · · u1 b` (15)

holds for every (`− 1)-tuple (b1, . . . , bi−1, bi+1, . . . , b`) ∈ L`−1 and for every i (1 6
i 6 `). Let b = (b1, . . . , b`) be an arbitrary element in L`, and set b0 = b1u1 · · ·u1b`.
Our aim is to prove that f(b) = b0. Let j ∈ {1, . . . , `} be an index such that
bj = b1 ∨ · · · ∨ b` holds in L, and set t = f(cb1 , . . . , cbj−1

, idL, cbj+1
, . . . , cb`) ∈ M .

Then

t(1) = f(b1, . . . , bj−1, 1, bj+1, . . . , b`)

= fj(b1, . . . , bj−1, bj+1, . . . , b`)

= b1 u1 · · · u1 bj−1 u1 bj+1 u1 · · · u1 b`

= b1 u1 · · · u1 b`

= b0

implies that t is equal to either cb0 or ϕb0 . However,

t(bj) =

{
b0 if t = cb0 ,

bj ∧ b0 = b0 if t = ϕb0 ,

that is, in both cases we get that t(bj) = b0, hence, f(b) = t(bj) = b0.
With this the statement of the proposition is proved. �

Proposition 3.15. If f is an `-ary operation in Sta(M)\〈M〉 such that 0 < wf 6 `
then 〈f〉 = 〈u1〉.

Proof. Let f be an `-ary operation in Sta(M)\〈M〉 such that 0 < wf 6 ` (` ∈ N).
Let d ∈Wf be an element for which |h`(d)| = wf holds, and set I = h`(d). We may
suppose, without loss of generality, that I = {1, . . . , wf}. Let g be the operation

g : Lwf → L, (l1, . . . , lwf
) 7→ f(l1, . . . , lwf

, 0, . . . , 0).

Then wg = wf , by Lemma 3.11 (ii), hence by Lemma 3.14, we have that

g(b1, . . . , bwf
) = b1 u1 · · · u1 bwf

for all b1, . . . , bwf
∈ L. By Lemma 3.11 (i), for every element b = (b1, . . . , b`) ∈ L`

if f(bI) 6= 0 then

f(b) = f(bI) = g(b1, . . . , bwf
) = b1 u1 · · · u1 bwf

.

Now we will prove that the equality f(b) = f(bI) also holds when f(bI) = 0.
Suppose that, on the contrary, there is an `-tuple b ∈ L` for which f(bI) = 0
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and f(b) 6= 0 hold. For every element i ∈ {1, . . . , `} let ti ∈ M be the following
transformation:

ti =

{
idL if i ∈ I and bi = 0,

cbi otherwise,

and set t = f(t1, . . . , t`). Then t ∈ M and t(0) = f(b) 6= 0, which implies that
t = cf(b) by (†c). Let b0 = u1 {bi | i ∈ I, bi 6= 0}. Since a is the unique atom in the
lattice L, we see that b0 > a. Moreover, if d ∈ L \ {0} then d > a and for every
i ∈ I

ti(d) =

{
idL(d) = d > a if bi = 0,

cbi(d) = bi > a if bi 6= 0

holds, and so,

f
((
t1(d), . . . , t`(d)

)
I

)
= g
(
t1(d), . . . , twf

(d)
)

= t1(d) u1 · · · u1 twf
(d)

= d u1 b0 > a,

where in the third equality we used that d occurs among the elements ti(d) (i ∈ I)
since 0 ∈ {bi | i ∈ I}, which follows from

b1 u1 · · · u1 bwf
= g(b1, . . . , bwf

) = f(bI) = 0.

Therefore by Lemma 3.11 (i),

t(d) = f
(
t1(d), . . . , t`(d)

)
= f

((
t1(d), . . . , t`(d)

)
I

)
= d u1 b0 > a

for all d ∈ L \ {0}. Hence, as a consequence of the equalities t = cf(b) and

t(a) = a u1 b0 = a,

t(1) = 1 u1 b0 = b0,

we get that f(b) = b0 = a hold. Furthermore, the equality of b0 and a implies that
the set J = {i ∈ I | bi = a} is not empty. Define transformations t′i for i = 1, . . . , `
in the following way:

t′i =


idL if i ∈ I and bi = 0,

c1 if i ∈ J,
cbi otherwise,

and set t′ = f(t′1, . . . , t
′
`). Then all the transformations t′1, . . . , t

′
`, t
′ are in M . In

particular, for i ∈ I we have that

t′i(a) =


a if i ∈ I and bi = 0,

1 if i ∈ J,
bi if i ∈ I and bi > a,

t′i(1) =


1 if i ∈ I and bi = 0,

1 if i ∈ J,
bi if i ∈ I and bi > a,
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hold. Using again that 0 ∈ {bi | i ∈ I}, we obtain that

f((t′1(a), . . . , t′`(a))I) = g(t′1(a), . . . , t′wf
(a)) = t′1(a) u1 · · · u1 t

′
wf

(a) = a,

f((t′1(1), . . . , t′`(1))I) = g(t′1(1), . . . , t′wf
(1)) = t′1(1) u1 · · · u1 t

′
wf

(1) > a.

Hence, by Lemma 3.11 (i), it follows that

t′(a) = f
(
t′1(a), . . . , t′`(a)

)
= f

((
t′1(a), . . . , t′`(a)

)
I

)
= a,

t′(1) = f(t′1(1), . . . , t′`(1)) = f
((
t′1(1), . . . , t′`(1)

)
I

)
> a,

which means that t′ ∈M is not a unary constant operation, and so, t′(0) = 0 by (†).
This is impossible by the assumption on the choice of b for the following reason:
since bi 6 t′i(0) holds for every i (i ∈ {1, . . . , `}), the monotonicity of f implies that

0 6= f(b) = f(b1, . . . , b`) 6 f(t′1(0), . . . , t′`(0)) = t′(0) = 0.

This contradiction shows that, f(b) = f(bI) holds for all `-tuples b ∈ L`, that is,

f(b) = f(bI) = g(b1, . . . , bwf
) = b1 u1 · · · u1 bwf

.

Thus, the operation f is in 〈u1〉. Since f 6∈ 〈M〉, it depends on at least two of its
variables, which ensures that wf > 2. Hence, the inclusion u1 ∈ 〈f〉 also holds.
Therefore, 〈f〉 = 〈u1〉. �

As a corollary of Proposition 3.15 we obtain the following statement.

Corollary 3.16. If f ∈ Sta(M) \ 〈M〉 is an operation that depends on all of its
variables then wf equals either ∞ or the arity of f .

Proof of Theorem 3.1. By the results of E. L. Post in [5], the statement is true
for |L| = 2.

Assume that the theorem is valid for all chains L′ with 2 6 |L′| < |L|. We
proceed to prove the statement for the chain L.

We will apply the inductive hypothesis for the sublattice L′ = S of L that was
introduced at the beginning of this subsection. The universe of S is [0, s], where
s ≺ 1L. In particular, S is a chain with |L| − 1 elements. The transformation
monoid MS is

IS(S) ∪ CS = {ϕl�S | l ∈ S} ∪ CS .

By the inductive hypothesis for the chain S we obtain that Int(MS) is the lattice
that can be seen in Figure 4,
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〈MS ∪ {ũs, t̃}〉

Figure 4: The monoidal interval Int(MS).

where ũl = ul�S (l ∈ S, l 6= 0) and t̃ = t�S . By Theorem 3.10, the lattices Int(MS)

and [〈M〉 ,Sta[S](M)] are isomorphic, the map F : Int(MU ) → [〈M〉 ,Sta[S](M)] is

a lattice isomorphism. Hence, Sta[S](M) = F〈MS∪{ũs,t̃}〉.

Claim 3.17. Let G be an arbitrary subset of Sta(MS). Then

F〈G〉 = 〈M ∪ {fg | g ∈ G}〉 .

Then 〈G〉 ⊆ Sta(MS) and F〈G〉 = 〈M ∪ {fg | g ∈ 〈G〉}〉, which contains the clone
〈M ∪ {fg | g ∈ G}〉. Since f is a superposition-preserving map, the set {fg | g ∈ 〈G〉}
is contained in 〈{fg | g ∈ G}〉, hence M∪{fg | g ∈ 〈G〉} ⊆ 〈M ∪ {fg | g ∈ G}〉, which
proves the reverse inclusion F〈G〉 ⊆ 〈M ∪ {fg | g ∈ G}〉. This completes the proof
of the claim.

We recall that the operations ũl (l ∈ S, b 6= 0) and t̃ were defined by the rule
ũl = ul�S and t̃ = t�S . Using the previous claim and the facts that

fũs
= fus�S = us,

ft̃ = ft�S = ts,

we get that

Sta[S](M) = F〈MS∪{ũs,t̃}〉 = 〈M ∪ {us,t}〉 .

Let C ∈ Int(M) be a clone such that C 6⊆ Sta[S](M). Choose an operation f from

C \ Sta[S](M). Then 0 < wf < ∞ by (8) and (10), and so, by Lemma 3.15 the
operation u1 belongs to C. Hence, we get the following statement.

Claim 3.18. Every clone in Int(M) that is not contained in Sta[S](M) contains
the operation u1.

Claim 3.19. If C is a clone in Int(M), which contains an operation f with 0 <
wf <∞ that depends on at least two of its variables, then C = FGC ∨ 〈u1〉. Hence,
C is equal to either 〈M ∪ {u1,t}〉 or 〈M ∪ {u1}〉.
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Let C be a clone in Int(M), which contains an operation f with 0 < wf < ∞
that depends on at least two of its variables. Then f does not belong to 〈M〉.
Thus, Lemma 3.15 implies that f is in 〈u1〉 \ 〈M〉. Therefore, the operation u1 is
in 〈f〉 ⊆ C.

Let g be an arbitrary operation in Sta(M) \ 〈M〉, say g is `-ary. If the range of g
is contained is S then g = fgg ∈ FGC , by Proposition 3.8. Otherwise, if 0 < wg 6 `
then g ∈ 〈u1〉, by Lemma 3.15. Therefore, C ⊆ FGC ∨ 〈u1〉. Since u1 ∈ C and
FGC ⊆ C, we obtain that

C = FGC ∨ 〈u1〉 . (16)

The clone GC is in Int(MS) and it contains the operation gu1
= ũ1, hence by the

inductive hypothesis, GC is equal to either 〈MS ∪ {ũ1, t̃}〉 or 〈MS ∪ {ũ1}〉. Since
fũ1

= us and ft̃ = t, we have by Claim 3.17 that

F〈MS∪{ũ1,t̃}〉 = 〈M ∪ {us,t}〉 ,
F〈MS∪{ũ1}〉 = 〈M ∪ {us}〉 .

Hence, by (16), C coincides with one of the clones

〈M ∪ {us,t}〉 ∨ 〈u1〉 = 〈M ∪ {u1,t}〉 ,
〈M ∪ {us}〉 ∨ 〈u1〉 = 〈M ∪ {u1}〉 ,

as required. This completes the proof of Claim 3.19. �

Now we return to the remaining case.

When the lattice L is not a chain

From now on we assume that z 6= 1. We recall that z is the largest element in
L \ {0} such that [0, z] is a chain and L = [0, z] ∪ [z, 1], furthermore, T and H are
the sublattices of L with universes T = [0, z] and H = [z, 1], respectively. Then
MT and MH are the transformation monoids

IS(T) ∪ CT = {m�T | m ∈ N or m = cb (b ∈ T )} and

IS(H) ∪ CH = {m�H | m ∈ N, m(z) = z, or m = cb (b ∈ H)} ,

respectively, where N = IS(L). Since z 6= 1, the lattice H contains at least two
atoms, and so, |H| > 4.

Our aim is to prove that the monoidal interval corresponding to M = IS(L) is
isomorphic to Int(MT ). To prove this we will use Theorem 2.4 and Theorem 3.1.
Before we state and give the proof of Theorem 3.2, in Proposition 3.20 and Propo-
sition 3.21 we will examine the operations in Sta(M). Recall that, by Proposi-
tion 3.4 (b), if f ∈ Sta(M) is not a constant operation then f(ẑ) 6 z holds.

Proposition 3.20. Let f be an `-ary operation from Sta(M) that is not a constant
operation (` ∈ N). If f(ẑ) < z then for every `-tuple (b1, . . . , b`) ∈ L` we have that

(a) f(b1, . . . , b`) < z,
(b) f(b1, . . . , b`) = f(b1 ∧ z, . . . , b` ∧ z).
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Proof. Suppose that f(ẑ) < z holds for f . First we prove that the inequality
f(b) < z holds for every element b ∈ L`. Suppose for a contradiction that there is
an element b = (b1, . . . , b`) ∈ L` such that f(b) > z.

It cannot be that b ∈ T `, since that would imply that b 6 ẑ, from which it
follows that f(b) 6 f(ẑ) < z holds, by the monotonicity of f . Hence, the `-tuple
b belongs to L` \ T `. Let t be the transformation t = f(idL, . . . , idL) ∈ M . The
operation t cannot be a constant operation, since

t(z) = f(ẑ) < z 6 f(b) 6 f(1̂) = t(1)

holds, by the assumptions on f and b, and by the monotonicity of f . Hence
t ∈ N \ {c0}, and so, there are similar elements d, d′ ∈ L and βd,d′ ∈ Iso(d, d′) such
that t = βd,d′ ◦ϕd. Then d′ = t(1) > z implies that d > z. However, from these we
get that

f(ẑ) = t(z) = βd,d′(z ∧ d) = βd,d′(z) = z,

since z is an isolated element. This contradicts our assumption on f . Therefore,
the inequality f(b) < z holds for every element b ∈ L`. This is what was to be
proved in part (a).

To prove (b) let b = (b1, . . . , b`) be an arbitrary element of L`, and set t =

f(ϕb1 , . . . , ϕb`). Then t(0) = f(0̂) = 0 follows from Proposition 3.4 (a), which
implies that t ∈ N , and so, there are similar elements d, d′ ∈ L and βd,d′ ∈ Iso(d, d′)
such that t = βd,d′ ◦ ϕd. Since d ∼ d′ = t(1) = f(b) < z and all the elements in T
are isolated, we obtain that d = d′ and βd,d′ = id(d]. Hence t = ϕf(b), and so,

f(b) = t(1) = t(z) = f(z ∧ b1, . . . , z ∧ b`)

holds for arbitrary element b ∈ L`. This proves part (b).
With this we finished the proof of the Proposition 3.20. �

Proposition 3.21. Let f be an `-ary (` ∈ N) operation from Sta(M) for which
f(ẑ) = z holds. Then

(a) f(H`) ⊆ H and f�H ∈ Sta(MH),
(b) if f depends on at least two of its variables than for arbitrary elements

d1, . . . , d` ∈ L we have that

f(d1, . . . , d`) = f(d1 ∧ z, . . . , d` ∧ z)
holds.

Proof. (a) Let b be an arbitrary element in H`. Then, by the monotonicity of f ,
ẑ 6 b implies that z = f(ẑ) 6 f(b), that is, f(b) ∈ H. This proves the first part of
statement (a).

Let t be an arbitrary element of MH . If t(z) > z then t is constant since z is an
isolated element, and t′ = ct(z) ∈ M is an extension of t. Furthermore, if t(z) = z
then let t′ be the following transformation of L:

t′ : L→ L, t′(b) =

{
t(b) if b ∈ H,
b if b ∈ T .

Then t′ ∈M , and it is an extension of t.
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Let t1, . . . , t` be arbitrary elements in MH , and let t′1, . . . , t
′
` be their extensions

to L, described in the preceding paragraph. Then

f�H(t1, . . . , t`) = f�H(t′1�H , . . . , t
′
`�H) = f(t′1, . . . , t

′
`)�H ,

f(t′1, . . . , t
′
`) ∈M and f(t′1, . . . , t

′
`)(z) = f(ẑ) = z imply that f(t′1, . . . , t

′
`)�H ∈MH .

This completes the proof of part (a).
(b) We may assume without loss of generality that f depends on all of its vari-

ables. From part (a) we obtain that f�H ∈ Sta(MH), and f�H is an essentially
unary operation, by Theorem 2.1, since H contains at least two atoms. Then there
is an index i0 ∈ {1, . . . , `} and a transformation m ∈MH such that

f�H(b1, . . . , b`) = m(bi0) (17)

holds for every `-tuple (b1, . . . , b`) in H`. Moreover, it follows from f(0̂) = 0 and
f(ẑ) = z that m(z) = z, which ensures that m ∈ IS(H).

Furthermore, f�T belongs to Sta(MT ) by Proposition 3.4 (c). As T is a chain
with largest element z and f(ẑ) = z we get that 0 6 wT

f�T <∞.

If wT
f�T = 0 then f�T is the constant operation with value z, and by Propo-

sition 3.4 (a), f is constant. This contradicts our assumption on f , hence, 0 <
wT

f�T 6 `. Then Corollary 3.16 implies that

f�T (b1, . . . , b`) = b1 uz · · · uz b` = b1 ∧ · · · ∧ b`

for all b1, . . . , b` ∈ T , that is,

f(b1, . . . , b`) = b1 ∧ · · · ∧ b` (18)

for all b1, . . . , b` ∈ T . Let d = (d1, . . . , d`) be an arbitrary element in L`, fur-

thermore, set d0 = d1 ∧ · · · ∧ d` and t = f(ϕd1
, . . . , ϕd`

). Since t(0) = f(0̂) = 0,
by Proposition 3.4 (a), the transformation t is in N . Thus, there are similar ele-
ments d, d′ ∈ L and βd,d′ ∈ Iso(d, d′) such that t = βd,d′ ◦ ϕd. The argument splits
according to whether d0 < z or z 6 d0 holds.

Case 1: d0 < z. For any element l ∈ T we get that (l ∧ d1, . . . , l ∧ d`) ∈ T `,
hence by (18), t(l) = f(l ∧ d1, . . . , l ∧ d`) = (l ∧ d1) ∧ · · · ∧ (l ∧ d`) = l ∧ d0, that is,

t(l) = l ∧ d0 (19)

for all l ∈ T . The assumption z 6 d would imply that t(l) = l holds for every
element l ∈ T , since all the elements of T are isolated. However, t(z) = z ∧ d0 =
d0 < z holds in this case by (19). Thus, we get that d < z, and so, d′ = d
and t = ϕd. Then d = ϕd(d) = t(d) = d0 ∧ d implies that d 6 d0, moreover,
d0 = t(d0) 6 t(1) = d follows from the monotonicity of t. Hence, d = d0 and
we can produce the following series of equalities in which we use that t = ϕd and
t(1) = d = d0 = t(z):

f(d1, . . . , d`) = f
(
ϕd1

(1), . . . , ϕd`
(1)
)

= t(1) = t(z) = f(d1 ∧ z, . . . , d` ∧ z).
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Case 2: z 6 d0. Then z 6 d1, . . . , d`, and so, d1, . . . , d` ∈ H and by (17), we
get that

f�H(d1, . . . , d`) = f(d1, . . . , d`) = m(di0) ∈ H.

We will show that f(d) = z. Suppose for a contradiction that z < f(d). Then by
Proposition 1.2 (d), there is an atom a] in H such that m(a]) > z. Let n be the
unary operation n = f(idL, . . . , idL, ca] , idL, . . . , idL) ∈M , where ca] occurs in the
ith0 argument of f . Then n(0) = f(0, . . . , 0, a], 0, . . . , 0) = 0∧· · ·∧0∧a]∧0 · · ·∧0 = 0
by Case 1, and the following holds by (17):

n(z) = f(z, . . . , z, a], z, . . . , z) = m(a]) > z,

which is a contradiction, since z is an isolated element in L and n is not a constant
operation. Thus,

f(d) = z = f(d1 ∧ z, . . . , d` ∧ z).

This concludes the proof of Proposition 3.21. �

Proof of Theorem 3.2. Let f be an arbitrary operation in Sta(M)\〈M〉. Then
f depends on at least two of its variables, and f(ẑ) 6 z by Proposition 3.4 (b).
The range of f is contained in T : if f(ẑ) < z then it is a consequence of Proposi-
tion 3.20 (a), while if f(ẑ) = z then it follows from Proposition 3.21 (b). Hence,

the stabilizer Sta(M) of M coincides with Sta[T ](M), and so,

[〈M〉 ,Sta(M)] = [〈M〉 ,Sta[T ](M)].

By Theorem 3.10, the intervals [〈M〉 ,Sta[T ](M)] and Int(MT ) are isomorphic. As
T is a chain they are isomorphic to the lattice that can be seen in Figure 3.

The statement of the theorem is proved. �

We close the article with some examples.

Example 3.22. Let L be the 2-element lattice on the set L = {0, 1} with 0 < 1.
Then IS(L) = {c0, idL} and Int(IS(L)) has cardinality ℵ0, while for the monoid
IS(L) ∪ CL = {idL, c0, c1} the corresponding monoidal interval is a four-element
interval of the clone lattice on L (cf. Post [5]).

Example 3.23. Let L be the 3-element lattice on the set L = {0, a, 1} with
0 < a < 1. In the interval [IS(L), IS(L) ∪ CL] of the submonoid lattice of T (L)
there are three monoids: IS(L), IS(L) ∪ {ca}, and IS(L) ∪ CL. The monoidal in-
terval corresponding to IS(L) = {c0, ϕa, idL} has continuum many elements (cf.
Dormán [1], Theorem 4.2). The monoidal interval Int(IS(L)∪CL) has six elements
(cf. Theorem 3.1). The cardinality of IS(L) ∪ {ca} is unknown.
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