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Abstract. The aim of this paper is to give an overview about monoidal intervals on three-

and four-element sets. Furthermore, two uncountable monoidal intervals on three-element

sets are presented in the paper, and we describe some infinite families of collapsing monoids.

1. Introduction

The importance of monoidal intervals comes from the fact that they are closely
related to one of the central themes in universal algebra: composition of operations.
Sets of operations that are closed under composition naturally arise in many areas
of mathematics. P. Hall [11] was lead to the concept of a clone, which can be defined
as a composition-closed set of operations containing all projection operations, by
studying the word problem for various classes of groups. For an arbitrary set A,
the set of all clones on A constitutes a complete lattice with respect to set-theoretic
inclusion, this lattice will be denoted by LA.

E. L. Post started to investigate composition-closed sets of truth functions (that
is, composition-closed sets of operations on a 2-element set) in order to understand
all possible propositional calculi in 2-valued logic. Post’s result in [25] gives a
complete description of all members of the clone lattice L{0,1}. It turns out that
L{0,1} has cardinality ℵ0.

However, the situation changes dramatically when A has more than two elements.
In [12] Ju. I. Janov and A. A. Mučnik proved that on a finite set A with more than
two elements there are 2ℵ0 clones, and the structure of the clone lattice on A is
rather complicated. A. A. Bulatov in [1] proved that if |A| > 4 then any direct
product of countably many finite lattices can be embedded into the clone lattice
LA.

Next we explain how the study of monoidal intervals may help to understand
the structure of the clone lattice better.

Let A be a set. For arbitrary clone C on A the set of all unary operations in
C is clearly a transformation monoid on A. Furthermore, it is not hard to show
(see Á. Szendrei [31], Proposition 3.1) that for arbitrary transformation monoid
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M on A the clones in which the set of unary operations coincides with M form
an interval Int(M) in the clone lattice LA. Such an interval is called a monoidal
interval. If A is finite, then there are only finitely many transformation monoids on
A. Hence the monoidal intervals Int(M) partition the clone lattice LA into finitely
many blocks. Since LA has cardinality 2ℵ0 if |A| > 3, one might expect that
‘for most transformation monoids M ’ the corresponding monoidal intervals contain
uncountably many clones. This expectation is justified by the fact that if |A| = 3,
then more than half of the monoidal intervals have cardinality 2ℵ0 . Nevertheless, it
turns out that for many interesting transformation monoids M the interval Int(M)
is countable. So, studying these intervals may lead to a better understanding of
some parts of the clone lattice LA.

The problem of classifying all monoids on a finite set A according to the cardi-
nalities of the corresponding monoidal intervals was first raised by Á. Szendrei [31].
For the case when A is a two-element set Post’s description of the clone lattice
provides a complete solution to this problem: there are three finite and three in-
finite intervals. For the case when A is a finite set with more than two elements,
and hence the clone lattice has cardinality 2ℵ0 , I. G. Rosenberg and N. Sauer in
[26] observed that each monoidal interval in LA either has cardinality 2ℵ0 or is
countable.

A transformation monoid M on A is called collapsing if the monoidal interval
Int(M) has only one element, namely the clone generated by M .

Description of collapsing monoids in general (e.g., in terms of semigroup theoret-
ical concepts) seems hopeless, however, we know that it is algorithmically decidable
whether a monoid is collapsing or not (cf. Theorem 2.1). We should note that, so
far, this is the only case for which such a decision algorithm exists.

Despite the fact that ‘for most M ’ the monoidal interval Int(M) is expected
to contain uncountably many clones, there are large intervals in the submonoid
lattice of the full transformation monoid such that all members of these intervals
are collapsing (cf. M. Dormán [5], Proposition 2.4.).

The article has two aims: the first one is to collect all results about monoidal
intervals on 3-element sets, while the second one is to start a systematical study of
collapsing monoids on 4-element sets.

On a 3-element set, up to permutations of the set, there are 160 transformation
monoids from which for 115 monoids the cardinalities of the corresponding monoidal
intervals have been known from previous articles (see Table 1). To these results we
can add two new ones in Theorems 4.1 and 4.5. In these theorems we will show
that each of the monoidal intervals corresponding to monoids M

(3)
6 and M

(3)
10 has

cardinality 2ℵ0 . (The numbering of the monoids is according to Table 1, where
these monoids are given by their generating sets.)

On a 4-element set, due to limitations of space, we study only transformation
monoids with cardinalities 6 10. The number of such monoids, up to permuta-
tions of the set, is 37642. Among these monoids 56 are collapsing. These results
were achieved by using ‘brute force method’ and a CSP based computer program
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that was written in Java programming language. In the article we focus on col-
lapsing monoids. Two new classes of collapsing monoids are described in Theo-
rems 3.3 and 3.5.

2. Preliminaries

This section is devoted to a survey of the basic concepts and techniques that will
be used in the article. In the following the set A is assumed to be the finite set
{0, 1, . . . , n− 1}, where n > 3 is a positive integer. For an element a ∈ A the tuple
whose components coincide with a will be denoted by â.

The full transformation semigroup, the symmetric group, and the set of unary
constant operations on A will be denoted by T (A), S(A), and C(A), respectively.
For an arbitrary element a of A we will use the notation ca for the unary constant
operation onA with value a. A transformation t onA will also be written in the from
t(0)t(1) . . . t(n) (e.g., 022 will denote the transformation {0, 1, 2} → {0, 1, 2}, 0 7→
0, 1 7→ 2, 2 7→ 2).

A set C of finitary operations on a set A is said to be a clone if it contains all
the projections and is closed under superposition of operations. It is obvious that
OA and the set PA of all projections on A are clones.

Since the intersection of an arbitrary family of clones on A is also a clone, the
set of all clones on A constitutes a complete lattice with respect to the set-theoretic
inclusion. This lattice will be denoted by LA. The greatest and the least elements of
LA are OA and PA, respectively. Furthermore, we can define the clone generated
by a subset F of OA as the intersection of all clones that contain F . This is the
least clone containing F , which will be denoted by 〈F 〉. If F is a finite subset of
OA, say F = {f1, . . . , fs}, then we write 〈f1, . . . , fs〉 instead of 〈{f1, . . . , fs}〉. For
a positive integer n, the set of all n-ary operations in a clone C will be denoted by
C(n).

Let f be an n-ary operation in OA (n ∈ N). The operation f depends on
its ith variable if there are elements a1, . . . , ai−1, ai+1, . . . , an ∈ A such that the
unary operation

A→ A, a 7→ f(a1, . . . , ai−1, a, ai+1, . . . , an)

is not a unary constant operation. We call the operation f essentially k-ary
(k ∈ N, k > 2) if it depends on exactly k of its variables. If f depends on at most
one of its variables, we call f essentially unary.

For a natural number k a k-ary relation on A is a subset of Ak. A relation is
finitary if it is k-ary for a positive integer k. We will denote by RA the set of all
finitary relations on A.

Let m and n be positive integers, and let ρ ∈ RA be an m-ary relation and
f ∈ OA be an n-ary operation. We call an n × m matrix X = (xi,j) over A a
ρ-matrix if every row of X belongs to ρ, i.e., (xi,1, . . . , xi,m) ∈ ρ for all i (1 6
i 6 n). The operation f is said to preserve the relation ρ if for every ρ-matrix
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X = (xi,j) ∈ An×m the m-tuple

f(X)
def.
=
(
f(x1,1, . . . , xn,1), . . . , f(x1,m, . . . , xn,m)

)
also belongs to ρ. It is obvious that the operation f preserves the relation ρ if and
only if ρ is a subalgebra of the algebra (A; f)m.

For a subset R of RA the set of all finitary operations on A that preserve each
member of R will be denoted by Pol(R). If R is finite, say R = {ρ1, . . . , ρs}, then
we simply write Pol(ρ1, . . . , ρs). On the other hand, for a subset F of OA the set of
all finitary relations on A that are preserved by each member of F will be denoted
by Inv(F ). If F is finite, say F = {f1, . . . , fs}, then we simply write Inv(f1, . . . , fs).

For every set A the maps

Inv: P (OA)→ P (RA), F 7→ Inv(F ),

Pol : P (RA)→ P (OA), R 7→ Pol(R)

define a Galois connection between sets of operations and sets of relations, which
is the main tool in our investigation.

To give a more detailed introduction into the concept of a monoidal interval let
M be a transformation monoid on A, and let Int(M) denote the collection of all
clones C on A such that the set of unary operations of C is M . The clone 〈M〉 of
essentially unary operations generated by M is a member of Int(M), in fact, it is
the least member of Int(M), so Int(M) is non-empty. Furthermore, it is clear that
every clone C in Int(M) is contained in the set

Sta(M) =
{
f(x1, . . . , xn) ∈ OA | n ∈ N, and

f(m1(x), . . . ,mn(x)) ∈M for all m1, . . . ,mn ∈M
}
, (1)

which is called the stabilizer of the monoid M . It is easy to verify that Sta(M)
is a clone on A, therefore Sta(M) is the largest member of Int(M). Moreover, we
see that a clone C ∈ LA belongs to Int(M) if and only if 〈M〉 ⊆ C ⊆ Sta(M). Thus
Int(M) is the interval [〈M〉 ,Sta(M)] in the clone lattice LA. Such an interval is
called a monoidal interval.

The transformation monoids M and M ′ on the set A are said to be conjugate
if there is a permutation π ∈ S(A) such that

M ′ =
{
π−1mπ | m ∈M

}
.

It is easy to see that conjugation of monoids is an equivalence relation on T (A).
Moreover, if the transformation monoids M and M ′ are conjugate then the corre-
sponding monoidal intervals Int(M) and Int(M ′) are isomorphic, hence their car-
dinalities coincide. We note that isomorphism of transformation monoids does not
imply conjugation of these monoids or equality of cardinalities of the corresponding

monoidal intervals, transformation monoids M
(3)
23 and M

(3)
25 in Table 1 provide an

example.
Recall from the introduction that if a monoidal interval Int(M) has only one

element, then the transformation monoid M is called collapsing. In this case the
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only element of Int(M) is 〈M〉. By a result of J.-U. Grabowski [10] the following
statement is true.

Theorem 2.1. A transformation monoid on a finite set is collapsing if and only
if the stabilizer of the monoid contains no essentially binary operations.

To prove that for a transformation monoid M the monoidal interval Int(M) has
cardinality 2ℵ0 the following method of J. Demetrovics and L. Hannák in [4] will
be useful.

Let I be a set and C = {Ci : i ∈ I} is a set of clones on A, furthermore, let
R = {ρi : i ∈ I} is a set of finitary relations on A. The set C is said to be
independent if for all i ∈ I we have that

Ci 6⊆
〈⋃
{Cj : j ∈ I \ {i}}

〉
.

An easy consequence of independence of clones is the following: if C is a complete
join-subsemilattice of LA that contains an infinite independent subset then C has
cardinality 2ℵ0 (cf. [4], Proposition 1). We remark that a monoidal interval is an
example for a complete join-subsemilattice of LA.

The set C is separated by R if for all m,n ∈ I we have that Cm ⊆ Pol(ρn) if and
only if m 6= n. The significance of separation is that independence is a consequence
of it, that is, if C is separated by R then C is independent.

Theorem 2.2 (cf. [4], Proposition 3.). Let C = {Ci : i ∈ N} be a set of clones
separated by a set of relations R = {ρi : i ∈ N} on A. Let K1 ⊆ K2 be clones on
A such that Ci ⊆ K2 and K1 ⊆ Pol(ρi) hold for all i (i ∈ N). Then the interval
[K1,K2] = {C ∈ LA : K1 ⊆ C ⊆ K2} has cardinality 2ℵ0 .

The case when each member of C is generated by a single element of OA, say
Ci = 〈fi〉 for all i ∈ I, is especially important for the construction of monoidal
intervals of cardinality 2ℵ0 . The following corollary of Theorem 2.2 will handle this
case.

Corollary 2.3. Let M be a transformation monoid on A, let C = {〈fi〉 : i ∈ N}
be a set of subclones of Sta(M) and let R = {ρi : i ∈ N} be a set of relations on
A. If C is separated by R and M ⊆ Pol(ρi) hold for all i (i ∈ N) then the monoidal
interval Int(M) has cardinality 2ℵ0 .

3. Countable monoidal intervals

The set of transformation monoids on a fixed set for which the corresponding
monoidal intervals contain countable many clones can be divided into three parts
in a natural way:

• collapsing monoids,
• transformation monoids with finite monoidal intervals that are not collaps-

ing,
• transformation monoids with countable infinite monoidal intervals.
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The main results of this section are connected with the first part, we present two
new classes of collapsing monoids that will be discussed in Theorems 3.3 and 3.5.

Table 2 contains those transformation monoids on the three-element set {0, 1, 2}
for which it is known that the corresponding monoidal intervals are finite. However,
this table can be uncomplete.

Finally, on three- and four-element sets there is no known transformation monoid
with countable infinite monoidal interval.

During the section, A will always be the finite set {0, 1, . . . , n − 1} with n ∈
N, n > 3, and M will be a transformation monoid on A that contains all the unary
constant operations.

Proposition 3.1. Let B be a subset of A such that 2 6 |B| < |A|. If

m(B) ⊆ B holds for every transformation m ∈M \ C(A), (2)

then f(B ×B) ⊆ B holds for every essentially binary operation in the stabilizer of
M .

Proof. Let f be an arbitrary binary operation in Sta(M). Suppose that there are
elements b1, b2 ∈ B and a ∈ A \B such that f(b1, b2) = a. We will prove that f is
the binary constant operation with value a.

First, we remark that transformation t = f(cb1 , idA) is in M and coincides with
ca by (2), since t(b2) = f(b1, b2) = a.

Let a1 and a2 be arbitrary elements of A, and set s = f(idA, ca2). Then s(b1) =
f(b1, a2) = t(a2) = a and (2) imply that s = ca. Hence, f(a1, a2) = s(a1) = a.
This proves the assertion. �

Let θ be a congruence relation of the algebra (A;M). Then θ is a congruence
of the algebra (A; Sta(M)), as well, since C(A) ⊆M ensures that the set of unary
polynomial operations of Sta(M) coincides withM . Hence, if f is an `-ary operation
in Sta(M) (` ∈ N) then the operation

f/θ : (A/θ)` → A/θ, (a1/θ, . . . , a`/θ) 7→ f(a1, . . . , a`)/θ

is well-defined. It is easy to see that M/θ = {m/θ | m ∈M} is a transformation
monoid on A/θ. Moreover, the following statement is true.

Proposition 3.2. Let θ be a congruence of the algebra (A;M). If f is an `-ary
operation in Sta(M) (` ∈ N) then the operation f/θ belongs to Sta(M/θ).

Proof. Let ` be a natural number and let f be an `-ary operation in Sta(M). Let
m1/θ, . . . ,m`/θ be arbitrary elements in M/θ (m1, . . . ,m` ∈ M). Then the unary
operation m = f(m1, . . . ,m`) is in Sta(M). To prove that f/θ is in Sta(M/θ) we
remark that the sequence of maps (q0, q1, . . . ) : Sta(M)→ Sta(M/θ), where

qi : Sta(M)(i) → Sta(M/θ)(i), f 7→ f/θ

for all i ∈ N0, is a homomorphism between the clones Sta(M) and Sta(M/θ) (as
multisorted algebras) since the map Sta(M) → Sta(M/θ), f 7→ f/θ preserves
superposition and projections. Hence, we get that

(f/θ)(m1/θ, . . . ,m`/θ) =
(
f(m1, . . . ,m`)/θ

)
= m/θ. (3)
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This concludes the proof of the proposition. �

Let B be the set A \ {n − 1} and define relation εM,B on M in the following
way: transformations m,m′ ∈ M are εM,B-related if and only if restrictions m|B
and m′|B coincide. It is obvious that εM,B is an equivalence relation.

Theorem 3.3. Let M be a transformation monoid on A with the following prop-
erties:

(i) C(A) ⊆M ,
(ii) m(B) = B holds for every transformation m ∈M \ C(A),
(iii) |ca/εM,B | = 1 (a ∈ A),
(iv) |m/εM,B | 6 n− 1 (m ∈M \C(A)), furthermore, if |m/εM,B | = n− 1 then

m/εM,B contains a permutation, and finally,
(v) the monoid (M \ {cn−1})|B is collapsing.

Then M is collapsing.

Proof. To obtain a contradiction, we suppose that M is not collapsing. By The-
orem 2.1, we can choose an essentially binary operation, say f , in the stabilizer
of M . As M fulfills the requirements of Proposition 3.1, inclusion f(B × B) ⊆ B
holds.

As f |B is in the stabilizer of (M \{cn−1})|B , Assumption (v) implies that it does
not depend on both of its variables. We may suppose, without loss of generality,
that it does not depend on its second variable. Let s and t be the unary operations
f(idA, c1) ∈M and f(cn−1, idA) ∈M , respectively. Then for every b ∈ B the unary
operation f(cb, idA) is εM,B-related to cs(b), hence by (iii), it coincides with cs(b).
The fact that f is an essentially binary operation implies that s and t are not unary
constant operations. For arbitrary element a ∈ A we get that

f(idA(x), ca(x)) = f(x, a) =

{
s(x) if x ∈ B,

t(a) if x = n− 1.

Furthermore, since t is not constant, (ii) implies that

|t(A)| > |t(B)| = |B| = n− 1.

The transformation t can not be a permutation because in this case |s/εM,B | = n
would hold since the unary operations f(idA, cb) (b ∈ A) would be pairwise distinct
and εM,B-related to s, which contradicts (iv). If |t(A)| = n − 1 then t(A) ⊆ B by
(ii), and |s/εM,B | = n − 1, the latter implies that s/εM,B contains a permutation
ξ, hence,

n− 1 ∈ {m(n− 1) | m ∈ s/εM,B} = t(A) ⊆ B,
since ξ(n − 1) = n − 1, which is a contradiction. The proof of the theorem is
complete. �

Remark 3.4. If n = 3 then Theorem 3.3 does not give collapsing monoids, since
assumption (v) of the theorem can not hold, on a two-element set there is no col-
lapsing monoid.
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However, if n = 4 then Theorem 3.3 gives the following collapsing monoids, up to

permutations of the base set: M
(4)
k (k ∈ {8, 14, 15, 17, 26, 29, 38, 40, 54}) (for these

monoids see Table 4).

Theorem 3.5. Let A be a disjoint union of the sets B0 and B1 with |B0|, |B1| > 2.
If for every transformation m ∈M we have that

(i) m is either constant or the identity map on Bi (i ∈ {0, 1}), moreover,
(ii) if m is constant on both of the sets B0 and B1 then m is constant on A,
(iii) if m is not constant then m(Bi) ⊆ Bi (i ∈ {0, 1}),

then M is collapsing.

Before we start the proof of the theorem, it is worth noting that the structure
of M is simple. For k ∈ {0, 1} let Tk denote the following set transformations:

{m ∈ T (A) : m is constant on Bk with value in Bk and

m acts identical on A \Bk} .

Then assumptions of the theorem yields that M is a subset of {idA}∪C(A)∪T0∪T1.
Since composition of a transformation from T0 and a transformation form T1 is a
transformation that is constant on both of the sets B0 and B1 with distinct values,
monoid M is an arbitrary subset of either {idA} ∪C(A) ∪ T0 or {idA} ∪C(A) ∪ T1

that contains {idA} ∪ C(A).

Proof of Theorem 3.5. Let f be a binary operation in Sta(M). We will prove that
f can not be an essentially binary operation.

It is straightforward to check that θ = B2
0 ∪ B2

1 is a congruence of the algebra
(A;M). Then, by Proposition 3.2, the binary operation f/θ belongs to M/θ. Let
0 and 1 denote the sets B0 and B1, respectively. Then M/θ = {idA/θ, c0, c1}
and using Post’s results in [25], we obtain that Sta(M/θ) is the clone 〈c0, c1,∧,∨〉,
where ∧ and ∨ are the lattice operations with respect to the lattice order 0 6 1 on
{0,1}. Furthermore, f/θ coincides with one of the following binary operations in
Sta(M/θ)(2):

∧ 0 1
0 0 0
1 0 1

,
∨ 0 1
0 0 1
1 1 1

,

c
(2)
0 0 1
0 0 0
1 0 0

,
c
(2)
1 0 1
0 1 1
1 1 1

,
π1 0 1
0 0 0
1 1 1

,
π2 0 1
0 0 1
1 0 1

.

To prove that f is essentially unary, we will use the following simple fact about
transformations in M that is a consequence of (ii) and (iii):

if m/θ ∈ C(A/θ) then m ∈ C(A). (4)

If f/θ ∈ {c(2)
0 , c

(2)
1 , π1, π2} then f/θ does not depend on both of its variables.

Without loss of generality, we may assume that f/θ does not depend on its first
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variable. Let a be an arbitrary element of A. Then by (3) we get that

f(idA, ca)/θ = (f/θ)(idA/θ, ca/θ)

is a unary constant operation on A/θ, hence by (4), the unary operation f(idA, ca)
is a constant operation, as well. Therefore, operation f does not depend on its first
variable.

If f/θ = ∧ then for every element a ∈ B0 the unary operations f(idA, ca)|B0

and f(ca, idA)|B0
are constant, say with value a′ ∈ B0, on B0 by (3) and (4).

Suppose that there is an element b in B1 such that the restriction of the unary
operation f(cb, idA) on B1 is the identity operation idB1

. Then the unary operation
f(idA, cb′) violates assumption (ii), where b′ ∈ B1 \ {b}, since f(idA, cb′)|B0 is
constant with value a′ ∈ B0 and f(idA, cb′)(b) = f(b, b′) = f(cb, idA)(b′) = b′

imply that f(idA, cb′)|B1
is constant operation with value b′ ∈ B1. Hence, we get a

contradiction.
In a similar way, we get that equality f/θ = ∨ leads to a contradiction, as well.

We have thereby proved that the operation f must be essentially unary.
This concludes the proof of the theorem. �

Remark 3.6. Theorem 3.5 gives that on {0, 1, 2, 3}, up to permutations of the set,

there are two collapsing monoids with cardinality 6 10: M
(4)
8 and M

(4)
16 .

4. Monoidal intervals with continuum many elements

The aim of this section is to prove that both of the monoidal intervals corres-

ponding to the monoids M
(3)
6 = {000, 002, 012} and M

(3)
10 = {000, 012, 022} have

cardinalities 2ℵ0 . The main tool in our proofs is Corollary 2.3, which is based on a
method due to J. Demetrovics and L. Hannák (cf. Theorem 2.2).

Theorem 4.1. The monoidal interval corresponding to the transformation monoid

M
(3)
6 = {000, 002, 012} has continuum many elements.

Proof. Let αn and βm be the following relations on A (m,n ∈ N, m, n > 3):

αn = {(2, 1, 0, . . . , 0, 0, 0), . . . , (0, 0, 0, . . . , 0, 2, 1), (1, 0, 0, . . . , 0, 0, 2)} ⊆ An,
βm = {(1, 2, 0, . . . , 0, 0, 0), . . . , (0, 0, 0, . . . , 0, 1, 2), (2, 0, 0, . . . , 0, 0, 1)} ⊆ Am.

Define operation fn and relation ρm (m,n ∈ Z, m, n > 3) on A as follows:

fn : An → A, fn(a) =

{
2 if a ∈ αn,
0 otherwise,

ρm =
(
{0, 2}m \ {2̂}

)
∪ βm ⊆ Am.

Our aim is to prove that sets {〈fn〉 | n ∈ N, n > 3} and {ρm | m ∈ N, m > 3} fulfill
the requirements of Corollary 2.3.

Claim 4.2. fn ∈ Sta(M
(3)
6 ) for every natural number n > 3.
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Let t1, . . . , tn be arbitrary transformations in M
(3)
6 and set t = fn(t1, . . . , tn).

Then inclusions

t(0) = fn(t1(0), . . . , tn(0)) ∈ fn({0}n) = {0},
t(1) = fn(t1(1), . . . , tn(1)) ∈ fn({0, 1}n) = {0},
t(2) = fn(t1(2), . . . , tn(2)) ∈ fn({0, 2}n) = {0}

ensure that t = c0 ∈M (3)
6 . Therefore, f belongs to Sta(M

(3)
6 ).

Claim 4.3. M
(3)
6 ⊆ Pol(ρm) for every natural number m > 3.

This claim follows from the observation that for every transformation t ∈ M (3)
6

and for every m-tuple (a1, . . . , am) ∈ ρm inclusion

(t(a1), . . . , t(am)) ∈ {(a1, . . . , am)} ∪
(
{0, 2}m \ {2̂}

)
holds.

Finally, we prove that

{〈fn〉 | n ∈ N, n > 3}
is separated by

{ρm | m ∈ N, m > 3} .

Claim 4.4. fn ∈ Pol(ρm) if and only if m 6= n (m,n ∈ N, m, n > 3).

To prove that fn 6∈ Pol(ρn) take the following ρn-matrix Xn:

Xn =



1 2 0 · · · 0 0
0 1 2 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 2
2 0 0 · · · 0 1


.

Then fn(Xn) = 2̂ 6∈ ρn, which proves the assertion.
Assume m and n to be distinct. Since the range of fn is {0, 2}, it is enough to

prove that fn(X) 6= 2̂ holds for arbitrary ρm-matrix X. To obtain a contradiction,

suppose that there is a ρ-matrix X = (xi,j) ∈ An×m for which fn(X) = 2̂ holds.
For every j (1 6 j 6 m) let cj be the n-tuple (x1,j , . . . , xn,j). Then equalities
fn(c1) = · · · = fn(cm) = 2 imply that

c1, . . . , cm ∈ αn, (5)

from which it follows that

each column of X contains exactly one 1 and exactly one 2. (6)

Suppose that equality cj = cj′ holds for some distinct indices j, j′ ∈ {1, . . . ,m}.
Then there is an index i for which xi,j = xi,j′ = 1 hold. However, it is impossible
since each row of a ρm-matrix contains at most one 1. Hence, the n-tuples c1, . . . , cm
are pairwise distinct, which implies that m < n. For k ∈ {1, 2} let Hk be the set
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of all indexes l ∈ {1 6 j 6 n} such that the lth row of X contains an etry with k,
that is,

Hk = {l ∈ N | 1 6 l 6 n and xl,j = k for some j (1 6 j 6 m)} .

Then |H1| = |H2| = m holds by (6). Moreover, H1 = {l +n 1 | l ∈ H2} also holds
by (5) and definition of α, where +n is the binary operation on {1, . . . , n} defined
by the rule

a+n b =

{
a+ b if a+ b 6 n,

a+ b− n if a+ b > n.

Suppose that equality H1 = H2 holds. Let l0 be an arbitrary element of H1. Then
l0 ∈ H2, and so, l0 +n 1 ∈ H1 = H2. By induction, we can easily prove that
l0 +n s ∈ H1 holds for every element s ∈ {1, . . . , n}, which leads to a contradiction,
since the elements l0 +n s (s ∈ {1, . . . , n}) are pairwise distinct that belong to H1,
hence, |H1| > n > m = |H2|. Therefore, H1 6= H2 and we can choose an element
l ∈ H1 \ H2. Then the lth row of X contains 1, but it does not contain 2, which
contradicts the fact that X is a ρm-matrix.

This concludes the proof of the theorem. �

A slight modification of the proof of Theorem 4.1 yields that monoidal interval

Int(M
(3)
10 ) is also uncountable.

Theorem 4.5. The monoidal interval corresponding to the transformation monoid

M
(3)
10 = {002, 012, 022} has continuum many elements.

Proof. Let the relations αn, βm and ρm on A (m,n ∈ N, m, n > 3) be the same as
in the proof of Theorem 4.1. Define operation f ′n (n ∈ N, n > 3) as follows:

f ′n : An → A, f ′n(a) =

{
2 if a ∈ αn ∪ {2̂},
0 otherwise.

.

Claim 4.6. f ′n ∈ Sta(M
(3)
10 ) for every natural number n > 3.

Let t1, . . . , tn be arbitrary transformations in M
(3)
10 and set t = f ′n(t1, . . . , tn).

Then equalities

t(0) = f ′n(t1(0), . . . , tn(0)) = f ′n(0̂) = 0,

t(2) = f ′n(t1(2), . . . , tn(2)) = f ′n(2̂) = 2

ensure that transformation t is in Sta(M
(3)
10 ), hence, f ′n is in Sta(M

(3)
10 ).

Claim 4.7. M
(3)
10 ⊆ Pol(ρm) for every natural number m > 3.

This claim follows from the observation that for every transformation t ∈ M (3)
10

and for every m-tuple (a1, . . . , am) ∈ ρm inclusion

(t(a1), . . . , t(am)) ∈ {(a1, . . . , am)} ∪
(
{0, 2}m \ {2̂}

)
holds.
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Finally, we prove that
{〈f ′n〉 | n ∈ N, n > 3}

is separated by
{ρm | m ∈ N, m > 3} .

Claim 4.8. f ′n ∈ Pol(ρm) if and only if m 6= n (m,n ∈ N, m, n > 3).

For every natural number n > 2 matrix Xn, defined in the proof of Claim 4.4,
shows that f ′n 6∈ Pol(ρn).

Assume m and n to be distinct. Since the range of f ′n is {0, 2}, it is enough to

prove that fn(X) 6= 2̂ holds for arbitrary ρm-matrix X. To obtain a contradiction,

suppose that there is a ρm-matrix X = (xi,j) ∈ An×m for which f ′n(X) = 2̂ holds.
For every j (1 6 j 6 m) let cj be the n-tuple (x1,j , . . . , xn,j). Then equalities
f ′n(c1) = · · · = fn(cm) = 2 imply that

c1, . . . , cm ∈ αn ∪ {2̂}. (7)

If all the n-tuples c1, . . . , cm belong to αn then we are done: we get a contradiction
by the proof of Claim 4.4. Hence, there is an index j ∈ {1, . . . ,m} such that cj = 2̂.

There cannot be more than one indexes j′ for which cj′ = 2̂ hold, because in this

case each row of X would belong to {0, 2}m \ {2̂}. However, this implies that every

column of X coincide with 2̂ by (7), which is impossible since 2̂ 6∈ ρm. Then all
columns of X except the jth one belong to αn, hence, every column of X contains
exactly one entry with 1. Since the rows of X that contain an entry with 1 coincide
and (7) imply that X has at most two columns, which is a contradiction.

With this the proof of the theorem is completed. �

5. Computational details

5.1. Generating Transformation Semigroups and Monoids and Checking
the Collapsing Property. In this section we describe briefly the generation of
transformation semigroups and monoids and the checking of the collapsing property
of a monoid. Afterward, we describe the software environment, giving some sample
codes and indicate possible speedups. The reader who is not interested in technical
and implementation details can skip Section 5.2.

For the computation we represented transformation semigroups and monoids by
finite lists of lists. One list enumerates the images of the elements from the base
set A = {0, 1, 2, 3} under the transformation t in a canonical order, i.e.., Lt =
{t(0), t(1), t(2), t(3)}. Let us assume that list T contains all the transformations
Lt. For generating all the transformation semigroups of a fixed size k, on the set
|A| = 4, we checked the standard closure operation on each k-element subset of
the T . In addition, we associated with each monoid a canonical index to save
memory by storage. To check the collapsing property of a monoid, Theorem 2.1
by Grabowski is used. It is clear that this algorithmic characterization of the
collapsing property is in some sense optimal. Using this theorem, it is sufficient to
generate all possible essential binary operations and check them one by one to solve
the decision problem. We represented a binary operation by giving its Cayley table
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again as a finite list of lists. Instead of an exhaustive search among the essential
binary operations a constraint satisfaction paradigm can be applied to solve the
decision problem more effectively.

5.2. Implementation Details. We did our computation on a standard linux
desktop machine with Mathematica [33] and Java. The Mathematica programming
language and the available Combinatorica package made it possible to write a sim-
ple prototype code for generating the semigroups, monoids and for checking the
collapsing property of monoids. We give two pieces of codes and afterward explain
the possible speed-ups.

The variable A4P contains all the 256 transformations on {0, 1, 2, 3}. TrOp com-
putes the composition of two transformations and ClSubset checks closure. Instead
of storing the transformation semigroups as list of lists, we associate a canonical
index to each of the subsets of A4P. What we get after the first call is the index list
of the transformation semigroups with two elements with offset 256.

Code #1:

**DEFINITIONS**

A4P=Tuples[Range[4], 4]-1;

TrOp[el1 List, el2 List] :=Map[el2[[el1[[#]]+1]] &, Range[Length[el1]]]

ClSubset[l List] :=

Module[{L = Tuples[l, 2]}, Complement[Union[Map[TrOp[#] &, L]], l] == {}]
**CALL**

Flatten[Position[ Map[ClSubset[NthSubset[#, A4P]] &,

Range[1 + 256, 256 + Binomial[256, 2]]], True]]

**OUTPUT**

{1,2,3,4,5,8,...,32612,32634}

Now we wish to check whether monoid M is collapsing or not. The computation
is based on the crucial Theorem 2.1. To be concrete, let us assume that variable
M44[[317]] contains the monoid

{{0, 0, 0, 0}, {0, 1, 2, 3}, {1, 1, 1, 1}, {2, 2, 2, 2}} .

The TestOp auxiliary function tests whether a binary operation is essential and
Sta(M) contains the operation. Here is a brute force code which does the job.

Code #2:

**DEFINITIONS**

PropBinSel[tab ] := Length[Union[tab]]>1 ∧ Length[Union[Transpose[tab]]]>1

CollBinOp[M , op ] := Module[{LP = Tuples[M, 2]},
Complement[ Union[Table[ Map[op[[Sequence@@(1+#)]] &, Transpose[LP[[j]]]],

{j, Length[LP]}]], M] == {}]
TestOp[M , op ] := PropBinSel[op] ∧ CollBinOp[M, op]

NthBinOp[n , A ] := Partition[PadLeft[IntegerDigits[n - 1, A], A^2] + 1, A]-1

**CALL**

Count[Map[TestOp[M44[[317]], NthBinOp[#, 4]] &, Range[1, 4^16]], True]

**OUTPUT**

0
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Since the result is 0, that is, there is no essential binary operation in Sta(M44[[317]]),
the exhaustive search confirms that the monoid is collapsing, see the first row of
Table 4.

Now we turn to the problem of making the computations more effective. First
we emphasize the role of the hardware and software architecture for speeding up.
Specifically, we discuss a parallelization option, which is available in the recent
version of Mathematica and the possibility of compiling codes. Second, we discuss
underlying mathematical theories which makes the generation of semigroups and
monoids, and deciding the collapsing property fast.

In Mathematica, if one has a simple subalgorithm which is used often, one has
the chance to compile the code of the function and run it faster. Such possible
algorithms could be TrOp, ClSubset for instance. Moreover, from Mathematica 7,
one can exploit the fact directly, that recent desktop machines have several cores and
Intel CPU even more threads available. Typically if one has a list of homogeneous
elements and a certain property should be checked or on each element the same
operation should be executed, the command Parallelize is handy. The speeding
up could be 4-12 times even a simple desktop machine having a processor with 8/12
threads [33].

The generation of monoids of size n could be made faster if we store one canonical
representative of all the conjugacy classes of monoids of size at most n− 1. In the
prototype Mathematica implementation we stored the monoids with their canonical
indices, but it turned out that one needs big resources if all monoids need to be
generated and stored. Therefore we also tried a parallelized C programm on a
computer grid which was able to generate all the monoids.

For checking if a monoid is collapsing, we have to bring binary operations and
monoids into connection. Instead of the brute force search described above in the
small piece of Code 2, we express the problem as a constraint satisfaction problem
(see e.g. [32]), or more specifically as a Boolean satisfaction problem.

Let M be a fixed monoid on the set A, and suppose that we are searching for an
essential binary operation f in the stabilizer of M . For each tuple (a, b, c) ∈ A3 we
introduce a Boolean variable xabc which will express the fact that

xabc ≡ f(a, b) = c.

These variables encode an operation if and only if for each a, b ∈ A there exists
a unique c ∈ A for which xabc is true. The existence and uniqueness of c can be
expressed by the following Boolean formulae

Exist =
∧
a,b∈A

∨
c∈A

xabc, and

Unique =
∧
a,b∈A

∧
c,d∈A
c6=d

¬xabc ∨ ¬xabd.
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We can also express the fact that f is in the stabilizer of M using the Boolean
formula

Stabil =
∧

s,t∈M

∨
r∈M

∧
a∈A

xs(a),t(a),r(a).

The binary operation depends on its first variable, if there exists elements a, b, c ∈ A
such that f(a, c) 6= f(b, c), which can be expressed as

Dep1 =
∨

a,b,c,d∈A

xacd ∧ ¬xabd.

Dependency on the second variable can be expressed in a similar way. Now the
Boolean formula

Exist ∧Unique ∧ Stabil ∧Dep1 ∧Dep2

is solvable if and only if there exists an essential binary operation in Sta(M).
With this approach, the execution time of a Java programm for the decision of

collapsing property even for the biggest monoids has been reduced to a few minutes.
One of the authors provides a web application of checking collapsing property

http://www.math.u-szeged.hu/~mmaroti/applets/CollapsingMonoid.html

which is linked to the monoid lists in the webpage

http://www.math.u-szeged.hu/~vajda/CMO.

6. Conclusion and Future Work

We collected all the available results regarding the length of monoidal intervals
for T3 and extended them with some new results. Here all the collapsing monoids
are known, however the cardinality of some moinoidal intervals are unfortunately is
still unknown. We enumerated all transformation subsemigroups and submonoids
of the full transformation monoid T4. We gave the number of conjugacy classes for
monoids. We investigated the collapsing property of transformation submonoids of
T4, which could be seen as a direct continuation of the work described in [5]. To
save space, we only give the number of monoids, the number of conjugacy classes
and the list of collapsing monoids up to size 10 in this article. We did not enumerate
all the collapsing monoids, but a more thorough list can be found on the webpage
mentioned above.

It turns out that the sharp algorithmic criteria of Grabowski [10] combined with
CSP solvers are good enough to decide the collapsing property of any monoids in
T4. It is clear that with the current computational methodology and technology
we could enumerate all the collapsing monoids, but it is also clear that a system-
atic description and characterization has not yet been done with this work. We
will continue this research and propose it as a challenge problem for the scientific
community, as well.

Open Problem 6.1. Give the full enumeration and characterization of the col-
lapsing monoids of T4. Find the sizes of monoidal intervals on three- and the
four-element sets.
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Open Problem 6.2. Let M 6 C(A)∪S(A) be a transformation monoid on a finite
set with at least three elements that contains exactly one unary constant operation.
Is it true that the monoidal interval corresponding to M has cardinality continuum?

7. Tables

This section is devoted to tables. It contains four tables and their descriptions.
These tables summarize our and earlier results about certain classes of monoidal
intervals.

In Table 1 we summarize known results that concern with monoidal intervals on
three-element sets. In the first column we can find serial numbers for monoids. The
arrangement of monoids is by the following order vA on the set of all submonoids
of T (A): if M and M ′ are submonoids of T (A) then M vA M ′ if either |M | < |M ′|
or |M | = |M ′| and t1 = t′1, . . . , ti−1 = t′i−1, ti v t′i, where M = {t1, . . . , ts},
M ′ = {t′1, . . . , t′s} and their elements are enumerated in their ‘natural lexicographic
order’ v. From each conjugacy class the first monoid of this class with respect to
vA is selected, and this set of representatives constitute the table. In the second
column there are minimal generating systems for the monoids. In third column
of Table 1 expression [x/yz] (x, y ∈ N, z ∈ {a, b}) shows cardinality x of M ,
isomorphism class y of M , and finally, z indicates that the isomorphism class of
M splits into more than one conjugacy classes. The fourth column of the table
contains the cardinalities of the conjugacy classes. The fifth and the sixth columns
give the cardinality of Int(M) and references, respectively. In the fifth column the
symbol ‘?’ indicates that the cardinality of the corresponding monoidal interval is
unknown, so far.

In Table 2 we collect the known finite monoidal intervals on {0, 1, 2}. This table
is just an extract from Table 1 and we do not know whether is it complete or not.

Table 3 gives us some basic facts about number of monoids and collapsing
monoids on {0, 1, 2, 3}, and their numbers up to conjugation.

Finally, Table 4 contains all collapsing transformation monoids on {0, 1, 2, 3} with
cardinalities up to 10. In this table ‘CSPA’ indicates that, so far, we can provide
only direct computation that ensures the collapsing property of the monoid. (CSPA
is an abbreviation for ‘CSP Attack’.)

Table 1: Monoidal intervals on {0, 1, 2}

n X
M

(3)
n

Iso. class Numb. of conj. |Int(M(3)
n )| Ref.

1 {012} [1/1] 3 2ℵ0 [22, 24]

2 {000, 012} [2/1a] 3 2ℵ0 [12, 18]

3 {002, 012} [2/1b] 6 2ℵ0 [3]
4 {021} [2/2] 3 ?

5 {001, 012} [3/1] 6 2ℵ0 [18]

6 {000, 002, 012} [3/2a] 6 2ℵ0 Th. 4.1

7 {000, 011, 012} [3/2b] 6 2ℵ0 [6]

8 {000, 021} [3/3] 3 2ℵ0 [30]
9 {000, 012, 111} [3/4a] 3 4 [18]

10 {002, 012, 022} [3/5] 3 2ℵ0 Th. 4.5
11 {002, 012, 112} [3/4b] 3 ?
12 {012, 220} [3/6] 6 ?
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13 {120} [3/7] 1 3 [29]

14 {001, 002, 012} [4/1] 6 2ℵ0 [18]

15 {001, 010, 012} [4/2a] 6 2ℵ0 [18]

16 {001, 011, 012} [4/2b] 6 2ℵ0 [18]

17 {001, 012, 111} [4/3] 6 2ℵ0 [18]
18 {002, 010, 012} [4/4] 3 ?
19 {000, 002, 012, 022} [4/5] 6 ?
20 {002, 012, 111} [4/6] 6 ?
21 {000, 002, 012, 222} [4/7] 6 ?
22 {000, 011, 012, 022} [4/8] 3 ?
23 {000, 102} [4/9a] 3 1 [9]
24 {000, 012, 111, 222} [4/10] 1 1 [23]
25 {002, 102} [4/9b] 3 ?

26 {001, 002, 010, 012} [5/1] 6 2ℵ0 [18]

27 {002, 011, 012} [5/2] 6 2ℵ0 [18]

28 {001, 002, 012, 111} [5/3] 6 2ℵ0 [18]

29 {001, 010, 011, 012} [5/4] 6 2ℵ0 [18]

30 {001, 010, 012, 111} [5/5a] 6 2ℵ0 [18]

31 {001, 011, 012, 111} [5/5b] 6 2ℵ0 [18]

32 {001, 012, 110} [5/6] 3 2ℵ0 [18, 21]

33 {001, 012, 112} [5/7] 6 2ℵ0 [18]

34 {001, 012, 222} [5/8] 6 2ℵ0 [18]
35 {002, 010, 012, 111} [5/9] 6 ?
36 {000, 002, 012, 022, 222} [5/10] 3 ?
37 {000, 002, 012, 112} [5/11] 3 ?
38 {002, 012, 111, 222} [5/12] 6 6 [8]
39 {000, 012, 220} [5/13] 6 ?
40 {000, 011, 021} [5/14] 3 ?
41 {000, 021, 111} [5/15] 3 1 [23]
42 {002, 012, 200} [5/16] 3 ?
43 {002, 012, 221} [5/17] 3 ?

44 {002, 010, 011, 012} [6/1] 6 2ℵ0 [18]
45 {001, 012, 020} [6/2] 3 ?

46 {001, 002, 010, 012, 111} [6/3] 6 2ℵ0 [18]
47 {001, 012, 022} [6/4] 6 ?

48 {002, 011, 012, 111} [6/5] 6 2ℵ0 [18]

49 {001, 002, 012, 110} [6/6] 6 2ℵ0 [18, 21]

50 {001, 002, 012, 112} [6/7] 6 2ℵ0 [18]

51 {001, 002, 012, 222} [6/8] 6 2ℵ0 [18]

52 {001, 010, 011, 012, 111} [6/9] 6 2ℵ0 [18]

53 {001, 010, 012, 110} [6/10] 6 2ℵ0 [18, 21]

54 {001, 010, 012, 222} [6/11] 6 2ℵ0 [18]

55 {001, 011, 012, 112} [6/12] 6 2ℵ0 [18]

56 {001, 011, 012, 222} [6/13] 6 2ℵ0 [18]

57 {001, 102} [6/14] 3 2ℵ0 [18, 21]

58 {001, 012, 110, 222} [6/15] 3 2ℵ0 [18, 21]

59 {001, 012, 112, 222} [6/16] 6 2ℵ0 [18]
60 {002, 012, 101} [6/17] 6 ?
61 {002, 010, 012, 111, 222} [6/18] 3 ?
62 {002, 012, 022, 111} [6/19] 3 ?
63 {000, 002, 102} [6/20] 3 ?
64 {000, 002, 012, 112, 222} [6/21] 3 ?
65 {012, 111, 220} [6/22] 6 ?
66 {000, 120} [6/23] 1 1 [23]
67 {002, 210} [6/24] 3 ?
68 {102, 220} [6/25] 3 ?
69 {021, 102} [6/26] 1 1 [23]

70 {002, 010, 011, 012, 111} [7/1] 6 2ℵ0 [18]
71 {001, 021} [7/2] 3 ?

72 {001, 002, 010, 012, 110} [7/3] 6 2ℵ0 [18, 21]

73 {001, 002, 010, 012, 222} [7/4] 6 2ℵ0 [18]

74 {002, 011, 012, 110} [7/5] 6 2ℵ0 [18, 21]

75 {002, 011, 012, 112} [7/6] 6 2ℵ0 [18]
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76 {002, 011, 012, 222} [7/7] 6 2ℵ0 [18]

77 {001, 002, 012, 110, 112} [7/8] 3 2ℵ0 [18, 21]

78 {001, 002, 012, 110, 222} [7/9] 6 2ℵ0 [18, 21]

79 {001, 002, 012, 112, 222} [7/10] 6 2ℵ0 [18]

80 {001, 010, 011, 012, 110} [7/11] 3 2ℵ0 [18, 21]

81 {001, 010, 011, 012, 222} [7/12] 6 2ℵ0 [18]

82 {001, 012, 101} [7/13] 6 2ℵ0 [18, 21]

83 {001, 010, 012, 110, 222} [7/14] 6 2ℵ0 [18, 21]

84 {001, 011, 012, 112, 222} [7/15] 6 2ℵ0 [18]

85 {001, 102, 222} [7/16] 3 2ℵ0 [18, 21]
86 {002, 012, 101, 222} [7/17] 6 ?
87 {000, 002, 012, 200} [7/18] 3 ?
88 {000, 002, 102, 222} [7/19] 3 ?
89 {001, 010, 012, 022} [8/1] 3 ?

90 {002, 010, 011, 012, 110} [8/2] 6 2ℵ0 [18, 21]

91 {002, 010, 011, 012, 222} [8/3] 6 2ℵ0 [18]
92 {001, 012, 020, 111} [8/4] 3 ?

93 {001, 002, 012, 101} [8/5] 6 2ℵ0 [18, 21]

94 {001, 002, 010, 012, 112} [8/6] 6 2ℵ0 [18, 21]

95 {001, 002, 010, 012, 110, 222} [8/7] 6 2ℵ0 [18, 21]
96 {001, 012, 022, 111} [8/8] 6 ?

97 {002, 012, 100} [8/9] 6 2ℵ0 [18, 21]

98 {002, 011, 012, 110, 222} [8/10] 6 2ℵ0 [18, 21]

99 {002, 011, 012, 112, 222} [8/11] 6 2ℵ0 [18]

100 {001, 002, 102} [8/12] 6 2ℵ0 [18, 21]

101 {001, 002, 012, 110, 112, 222} [8/13] 3 2ℵ0 [18, 21]

102 {001, 012, 220} [8/14] 6 2ℵ0 [18, 21]

103 {001, 010, 011, 012, 110, 222} [8/15] 3 2ℵ0 [18, 21]

104 {001, 012, 101, 222} [8/16] 6 2ℵ0 [18, 21]
105 {001, 012, 122} [8/17] 3 ?
106 {012, 101, 220} [8/18] 3 ?
107 {002, 012, 111, 200} [8/19] 3 ?
108 {000, 002, 210} [8/20] 3 ?
109 {000, 002, 012, 221} [8/21] 3 ?

110 {001, 011, 021} [9/1] 3 2ℵ0 [15]

111 {002, 010, 011, 012, 112} [9/2] 3 2ℵ0 [18, 21]

112 {002, 010, 011, 012, 110, 222} [9/3] 6 2ℵ0 [18, 21]
113 {001, 021, 111} [9/4] 3 ?

114 {002, 012, 101, 112} [9/5] 6 2ℵ0 [18, 21]

115 {001, 002, 012, 101, 222} [9/6] 6 2ℵ0 [18, 21]

116 {001, 002, 010, 012, 112, 222} [9/7] 6 2ℵ0 [18, 21]

117 {001, 010, 012, 220} [9/8] 6 2ℵ0 [17, 21]

118 {002, 012, 100, 222} [9/9] 6 2ℵ0 [18, 21]

119 {011, 012, 220} [9/10] 6 2ℵ0 [17, 21]

120 {001, 002, 102, 222} [9/11] 3 2ℵ0 [18, 21]

121 {001, 010, 012, 100} [9/12] 3 2ℵ0 [18, 21]
122 {002, 111, 012} [9/13] 3 ?
123 {000, 102, 220} [9/14] 3 ?
124 {000, 021, 102} [9/15] 1 2 [23]
125 {001, 010, 012, 022, 111} [10/1] 3 ?

126 {002, 010, 012, 100} [10/2] 6 2ℵ0 [18, 21]

127 {002, 010, 011, 012, 112, 222} [10/3] 3 2ℵ0 [18, 21]

128 {010, 011, 012, 220} [10/4] 6 2ℵ0 [17, 21]

129 {002, 012, 101, 112, 222} [10/5] 6 2ℵ0 [18, 21]

130 {001, 012, 101, 220} [10/6] 6 2ℵ0 [17, 21]
131 {001, 002, 012, 122} [10/7] 3 7 [21]

132 {012, 100, 220} [10/8] 6 2ℵ0 [17, 21]

133 {001, 002, 012, 221} [10/9] 3 2ℵ0 [17, 21]

134 {001, 010, 102} [10/10] 3 2ℵ0 [18, 21]

135 {001, 010, 012, 100, 222} [10/11] 3 2ℵ0 [18, 21]

136 {001, 011, 021, 111} [11/1] 3 2ℵ0 [21]

137 {002, 010, 012, 100, 112} [11/2] 3 2ℵ0 [18, 21]
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138 {002, 010, 012, 100, 222} [11/3] 6 2ℵ0 [18, 21]

139 {002, 010, 012, 221} [11/4] 6 2ℵ0 [17, 21]

140 {001, 102, 220} [11/5] 3 2ℵ0 [17, 21]

141 {001, 010, 102, 222} [11/6] 3 2ℵ0 [18, 21]

142 {002, 010, 102} [12/1] 3 2ℵ0 [15, 18, 21]

143 {002, 010, 012, 100, 112, 222} [12/3] 3 2ℵ0 [18, 21]

144 {010, 012, 100, 220} [12/3] 6 2ℵ0 [17, 21]

145 {002, 010, 011, 012, 221} [12/4] 3 2ℵ0 [17, 21]
146 {001, 012, 202} [12/5] 3 1 [5]

147 {002, 012, 101, 221} [12/6] 6 2ℵ0 [17, 21]
148 {001, 012, 200} [12/7] 6 1 [5]

149 {002, 010, 102, 222} [13/1] 3 2ℵ0 [18, 21]
150 {021, 101} [13/2] 3 1 [5]

151 {002, 010, 012, 100, 221} [14/1] 3 2ℵ0 [17, 21]

152 {010, 102, 220} [15/1] 3 2ℵ0 [17, 21]
153 {001, 010, 012, 200} [16/1] 3 ?
154 {001, 002, 012, 121} [16/2] 3 1 [5]

155 {001, 021, 100} [17/1] 3 2ℵ0 [15, 21]
156 {001, 021, 112} [17/2] 3 1 [5]
157 {001, 012, 020, 122} [22/1] 1 3 [28]
158 {001, 021, 122} [23/1] 3 3 [28]
159 {001, 120} [24/1] 1 3 [28]
160 {001, 021, 102} [27/1] 1 4 [2]

Table 2: Finite monoidal intervals on {0, 1, 2}

n XM Iso. class Numb. of conj. |Int(Mn)| Ref.
9 {000, 012, 111} [3/4a] 3 4 [18]
13 {120} [3/7] 1 3 [29]
23 {000, 102} [4/9a] 3 1 [9]
24 {000, 012, 111, 222} [4/10] 1 1 [23]
38 {002, 012, 111, 222} [5/12] 6 6 [8]
41 {000, 021, 111} [5/15] 3 1 [23]
66 {000, 120} [6/23] 1 1 [23]
69 {021, 102} [6/26] 1 1 [23]
124 {000, 021, 102} [9/15] 1 2 [23]
131 {001, 002, 012, 122} [10/7] 3 7 [21]
146 {001, 012, 202} [12/5] 3 1 [5]
148 {001, 012, 200} [12/7] 6 1 [5]
150 {021, 101} [13/2] 3 1 [5]
154 {001, 002, 012, 121} [16/2] 3 1 [5]
156 {001, 021, 112} [17/2] 3 1 [5]
157 {001, 012, 020, 122} [22/1] 1 3 [28]
158 {001, 021, 122} [23/1] 3 3 [28]
159 {001, 120} [24/1] 1 3 [28]
160 {001, 021, 102} [27/1] 1 4 [2]

Table 3: Transformation monoids M on {0, 1, 2, 3} with |M | 6 10

|M | Numb. of monoids Up to conj. Numb. of coll. monoids Up to conj.
1 1 1 0 0
2 49 6 0 0
3 394 27 0 0
4 1805 105 4 1
5 6066 302 13 2
6 18690 880 97 8
7 48536 2177 76 7
8 113107 4975 150 13
9 234261 10128 148 12
10 444008 19041 124 13
Σ 866917 37642 612 56
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Table 4: Collapsing transformation monoids M on {0, 1, 2, 3} with |M | 6 10

n |M(4)
n | X

M
(4)
n

Numb. of conj. Ref.

1 4 {0000, 0123, 1111, 2222} 4 [9, 18]
2 5 {0000, 0132, 2222} 12 [9]
3 5 {0000, 0123, 1111, 2222, 3333} 1 [23]
4 6 {0011, 0123, 0202} 12 CSPA
5 6 {0011, 0123, 0220} 24 CSPA
6 6 {0022, 0123, 0220, 1111} 12 CSPA
7 6 {0123, 1111, 2203} 24 [9]
8 6 {0023, 0123, 1111, 2222, 3333} 12 Th. 3.3, Th. 3.5
9 6 {0000, 0132, 1111, 2222} 6 [23]
10 6 {0000, 1032, 2222} 3 [23]
11 6 {0000, 1203} 4 [9]
12 7 {0011, 0213} 12 [6]
13 7 {0022, 0123, 0220, 1111, 3333} 6 CSPA
14 7 {0032, 0123, 1111, 2222} 12 Th. 3.3
15 7 {0023, 0123, 0223, 1111, 3333} 12 Th. 3.3
16 7 {0000, 0023, 0123, 1123, 2222, 3333} 6 Th. 3.5
17 7 {0123, 1111, 2203, 3333} 24 Th. 3.3
18 7 {0000, 0231, 1111} 4 [23]
19 8 {0001, 0101, 0123, 0330} 24 CSPA
20 8 {0011, 0022, 0123, 0303} 12 CSPA
21 8 {0011, 0123, 0202, 1111} 12 CSPA
22 8 {0011, 0123, 0220, 1111} 24 CSPA
23 8 {0011, 0123, 1313} 12 CSPA
24 8 {0022, 0321, 1111} 6 CSPA
25 8 {0022, 0123, 1111, 2002} 12 CSPA
26 8 {0023, 0132, 1111, 2222} 12 Th. 3.3
27 8 {0000, 0023, 1023, 2222, 3333} 6 CSPA
28 8 {0000, 0023, 0123, 2213} 12 CSPA
29 8 {0123, 1111, 2230} 12 Th. 3.3
30 8 {0000, 0132, 1023, 2222} 3 [23]
31 8 {0000, 2310} 3 [23]
32 9 {0011, 0213, 1111} 12 CSPA
33 9 {0011, 0123, 0202, 3333} 12 CSPA
34 9 {0011, 0123, 0220, 3333} 24 CSPA
35 9 {0011, 0123, 1313, 2222} 12 CSPA
36 9 {0022, 1111, 2103} 12 CSPA
37 9 {0022, 0123, 1111, 2002, 3333} 6 CSPA
38 9 {0023, 0123, 0332, 1111} 16 Th. 3.3
39 9 {0000, 0023, 0123, 1132, 2222} 6 CSPA
40 9 {0023, 0123, 1111, 2003, 3333} 12 Th. 3.3
41 9 {0000, 1023, 2203} 12 CSPA
42 9 {0000, 0023, 0123, 2213, 3333} 12 CSPA
43 9 {0000, 0132, 2103} 4 [23]
44 10 {0001, 0101, 0123, 0330, 1111} 24 CSPA
45 10 {0011, 0101, 0123, 0220, 1111} 12 CSPA
46 10 {0011, 0213, 3333} 12 CSPA
47 10 {0011, 0022, 0123, 0220, 1221} 12 CSPA
48 10 {0321, 1111, 2002} 6 CSPA
49 10 {0022, 1111, 2103, 3333} 6 CSPA
50 10 {0022, 0220, 1111, 2301} 6 CSPA
51 10 {0000, 0023, 0132, 1123, 2222} 6 CSPA
52 10 {0000, 0032, 1023, 2222} 6 CSPA
53 10 {0000, 0023, 1032, 2222} 6 CSPA
54 10 {0023, 1111, 2103, 3333} 12 Th. 3.3
55 10 {0000, 1023, 2203, 3333} 12 CSPA
56 10 {0000, 0132, 0213, 1111} 4 [23]

References

[1] Bulatov, A. A., Finite sublattices of the lattices of clones, Algebra i Logika, 33,(5), 1994.
(Russian)



MONOIDAL INTERVALS ON THREE- AND FOUR-ELEMENT SETS 21

[2] Burle, G. A., Classes of k-valued logic which contain all functions of a single variable,

Diskretnyi Analiz, 10 (1967), 3–7.

[3] Demetrovics, J. and Hannák, L., On the cardinality of self-dual closed classes in k-valued
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