
Collapsing monoids consisting of permutations and constants

Miklós Dormán

Abstract. In this paper we determine all collapsing transformation monoids that contain
at least one unary constant operation and whose nonconstant operations are permutations.
Furthermore, we describe a subclass of transformation monoids that consist of at least three
unary constant operations and some permutations for which the corresponding monoidal
intervals are 2-element chains.

Introduction

Let A be a finite set with at least two elements. It is well known that for an
arbitrary transformation monoid M on the set A the clones whose set of unary
operations coincides with M form an interval in the lattice of all clones on A
(see Á. Szendrei [9], Chapter 3). An interval of this form is called a monoidal
interval. On the set A there are only finitely many transformation monoids, hence
the monoidal intervals partition the lattice of clones into finitely many blocks. Since
the lattice of clones on A has cardinality 2ℵ0 if |A| > 3, one expects that “in most
cases” a monoidal interval contains uncountably many clones. However, it turns
out that for many transformation monoids the corresponding monoidal intervals
are finite. So, studying these intervals may lead us to a better understanding of
some parts of the lattice of clones.

In this paper we study the monoidal intervals corresponding to transformation
monoids that consist of some permutations and at least one unary constant oper-
ation. The most important result for transformation monoids of this kind is the
theorem of P. P. Pálfy [5], which states the following: if M is a transformation
monoid on a finite set whose cardinality is greater than 3, and M consists of all
unary constant operations and some permutations, then the monoidal interval cor-
responding to M has at most two elements. Furthermore, this interval has exactly
two elements if and only if M coincides with the set of all unary polynomial oper-
ations of a vector space.

Our main result is a complete description of collapsing transformation monoids
that consist of at least one unary constant operation and some permutations (The-
orem 1). For a family of transformation monoids that consist of permutations
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and more than two unary constant operations we will show that the correspod-
ing monoidal intervals are 2-element chains (Theorem 3). Furthermore, we will
prove that the monoidal interval corresponding to a transformation monoid that
contains exactly one unary constant operation and whose nonconstant operations
are permutations is infinite (Theorem 2).

Preliminaries

Throughout this paper N will denote the set of positive natural numbers, and
we will assume that A is a finite set. The set of all finitary operations on A will
be denoted by OA. A set C of finitary operations on A is said to be a clone if it
contains every projection and it is closed under composition. For a set F of finitary
operations on A there is a least clone containing F which will be called the clone

generated by F and will be denoted by 〈F 〉. The set of all clones on A is a lattice
with respect to set theoretic inclusion. This lattice will be denoted by LA.

Let C be a clone on A. For a positive integer n, the set of all n-ary operations of
the clone C will be denoted by C(n). It is easy to see that C(1) is a transformation
monoid. The monoid C(1) will be called the unary part of the clone C.

Let m and n be positive integers. We say that an n-ary operation f ∈ OA

preserves an m-ary relation % ⊆ Am if % is a subalgebra of (A; f)m. The set of all
operations on A that preserve a relation % will be denoted by Pol(%). It is easy to
see that Pol(%) is a clone.

Let M be an arbitrary transformation monoid on A. The stabilizer of the
monoid M is the set

Sta(M) =
{
f(x1, . . . , xn) ∈ OA

∣∣ n ∈ N and

f(m1(x), . . . , mn(x)) ∈ M for all m1, . . . , mn ∈ M
}
.

We note that the stabilizer of M is a clone on A. Furthermore, the unary part
of a clone C is M if and only if 〈M〉 ⊆ C ⊆ Sta(M). Therefore the clones whose
unary part is M form an interval in the lattice of all clones on A. The least and the
greatest elements of this interval are the clone 〈M〉 of essentially unary operations
generated by M and the stabilizer Sta(M) of M , respectively. This interval will be
denoted by Int(M). An interval of this form is called a monoidal interval. If the
interval Int(M) has only one element, then the transformation monoid M is called
collapsing. In this case the only element of Int(M) is 〈M〉.

Main Results

The set of all unary constant operations and the set of all permutations on A
will be denoted by C(A) and S(A), respectively. For arbitrary element v ∈ A we
will use the notation cv for the unary constant operation with value v. Throughout
the paper, the monoid M is supposed to be contained in C(A)∪S(A), moreover we
will assume that M contains at least one but not all unary constant operations. We
note that for collapsing monoids that contain all the unary constant operations and
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some permutations a complete desription is provided by Pálfy [5], as we mentioned
in the introduction. Hence we will also assume that M does not contain all unary
constant operations. Let V be the set of all elements v ∈ A such that cv ∈ M , and
set W = A\V . By the assumptions on the monoid M , we have that ∅ ( V, W ( A.
Define P to be the set of all permutations contained in M . The facts that A is
finite and M is closed under composition ensure that P is a permutation group on
A and

α(V ) = V, α(W ) = W (1)

hold for all α ∈ P . These equalities allow us to restrict P to V and W , and obtain
the permutation groups

PV = {α|V : α ∈ P} ⊆ S(V ),

PW = {α|W : α ∈ P} ⊆ S(W ).

Furthermore, let iV be the restriction map iV : P → P |V , α 7→ α|V . If the map iV
is injective, then for every transformation m ∈ M the unique extension of the map
m|V to A is m. Hence, if the map iV is injective, the map

j : PV → PW , α|V 7→ α|W .

is well-defined.
Our first theorem characterizes all collapsing monoids that consist of permuta-

tions and at least one unary constant operation. This extends the results obtained
by A. Fearnley and I. Rosenberg in [1].

Theorem 1. Let A be a finite set with at least two elements, and let M be a
transformation monoid on A that consists of at least one unary constant operation
and some permutations. Then M is collapsing if and only if

(i) |V | > 2,
(ii) PW is transitive,
(iii) iV is injective, and
(iv) one of the following conditions holds:

(a) the monoid M |V is collapsing,
(b) the map j is not injective,
(c) the permutation group PW is not regular.

Thus, a transformation monoid M that consists of at least one unary constant
operation and some permutations is not collapsing, i.e., staisfies |Int(M)| > 2, iff
one of (i)–(iv) fails for M . In some of these cases, namely if (i) fails or if (i)–(iii)
hold but (iv) fails, we know more about the monoidal interval Int(M). Theorem 2
below treats the case when (i) fails, and Theorem 3 the case when (i)–(iii) hold but
(iv) fails.

Theorem 2. Let M be a monoid such that it contains only one unary constant
operation and some permutations. Then the monoidal interval Int(M) is infinite.

Theorem 3. Let A be a finite set with at least two elements, and let M be a
transformation monoid on A that consists of at least two unary constant operations
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and some permutations. If conditions (i)–(iii) of Theorem 1 hold but condition (iv)
of Theorem 1 fails for M then Int(M) is isomorphic to Int(M |V ). Hence,

• if |V | = 2 and M |V = {idV , c0|V , c1|V }, then |W | = 1, M = {idA, c0, c1}, and
Int(M) is isomorphic to the direct square of the 2-element chain;

• if |V | = 2 and M |V is the full transformation semigroup on V , then |W | = 2,
M = {idA, c0, c1, (0 1)(2 3)}, and Int(M) is a 3-element chain;

• if |V | > 3, then Int(M) is a 2-element chain.

Proof of Theorem 2

In this section we prove Theorem 2.

Proof of Theorem 2. We may assume without loss of generality that 0 ∈ A and
c0 ∈ M . For every natural number n > 4 define the n-ary operation fn as follows:

fn(x1, . . . , xn) =

{
0 if | {i : xi = 0} | > 2,

xmin{j:xj 6=0} otherwise.

We will prove that the operations fn (n > 4) are in Sta(M) and the clones Cn =
〈{fn} ∪ M〉 (n > 4) are pairwise distinct.

Consider arbitrary transformations m1, . . . , mn ∈ M , and let m = fn(m1, . . . , mn).
To prove that m ∈ M suppose first that | {i : mi = c0} | > 2. Then there are
indices 1 6 j < k 6 n such that mj = mk = c0. Let a be an arbitrary ele-
ment of A, and set a = (m1(a), . . . , mn(a)). Then fn(a) = 0 since the equalities
mj(a) = 0 and mk(a) = 0 ensure that more than one component of a is 0. Hence
m(a) = fn(a) = 0 for every element a ∈ A, proving that m = c0 ∈ M . It remains
to consider the case when | {i : mi = c0} | 6 1. In this case either mi 6= c0 for all i
(1 6 i 6 n) or there is exactly one i ∈ {1, . . . , n} such that mi = c0. Hence by (1),
| {i : mi(a) = 0} | = n > 2 if a = 0, and | {i : mi(a) = 0} | 6 1 if a 6= 0. Then by
the definition of fn we get that for arbitrary element a ∈ A

m(a) = fn(a) =





0 if a = 0,

m2(a) if a 6= 0 and m1 = c0,

m1(a) otherwise.

Hence the unary operation

fn(m1, . . . , mn) = m =

{
m2 if m1 = c0,

m1 otherwise

is in M , proving that the operations fn (n > 4) are in Sta(M).
Now we prove that the clones Cn (n > 4) are pairwise distinct. The binary

relation % = {(0, 0)}∪(W×W ) is a congruence relation of the algebras An = (A; Cn)
(n > 4). Identify the sets {0} and W with 0 and 1, respectively. The meet and
join operations with respect to the partial order 0 < 1 will be denoted by ∧ and ∨,
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respectively. Then the clone of term operations of the quotient algebra Clo (An/%)
is

Clo (An/%) = {f/% : f ∈ Cn} = 〈{fn/%} ∪ {m/% : m ∈ M}〉 = 〈fn/%, c0/%〉 ,

since the clone Cn is generated by the set {fn} ∪ {m : m ∈ M} and we have that
{m/% : m ∈ M} = {idA/%, c0/%}. The operation c0/% is the unary constant opera-
tion on {0, 1} with value 0, and the operation fn/% is the following:

(fn/%)(x1, . . . , xn) =

n∨

k=1

(x1 ∧ · · · ∧ xk−1 ∧ xk+1 ∧ · · · ∧ xn).

Using Post’s results in [7], we get that the clones Clo (An/%) = 〈fn/%, c0/%〉 (n > 4)
are pairwise distinct. Hence the clones Cn (n > 4) are pairwise distinct as well. This
completes the proof of the theorem.

Proof of Theorems 1 and 3

Lemma 4. If the permutation group PW is intransitive, then the monoid M is not
collapsing.

Proof. Assume that the permutation group PW is intransitive. Then for all elements
w ∈ W we have that {α(w) : α ∈ P} ( W . Consider an arbitrary element a ∈ A.
Then

{m(a) : m ∈ M} = V ∪ {α(a) : α ∈ P} ( V ∪ W = A.

Hence, M is not weakly transitive, and by a result of Ihringer–Pöschel [3], the
monoid M is not collapsing.

Lemma 5. Every operation in Sta(M) can be restricted to V .

Proof. Let f be an arbitrary n-ary operation in Sta(M), and choose arbitrary
elements v1, . . . , vn in V . The unary operation m = f(cv1

, . . . , cvn
) is constant with

value f(v1, . . . , vn), and m belongs to M , since cv1
, . . . , cvn

∈ M and f ∈ Sta(M).
Thus it follows from the definition of V that f(v1, . . . , vn) ∈ V .

We will denote the set {f |V : f ∈ Sta(M)} of restrictions of operations in Sta(M)
by Sta(M)|V .

Lemma 6. Suppose that

(i) |V | > 2, and
(ii) the permutation group PW is transitive.

If the map iV is not injective then M is not collapsing.

Proof. Suppose that the map iV is not injective. We will prove that the monoid
M is not collapsing by exhibiting an essentially binary operation in the stabilizer
of M . Since iV is not injective, there are permutations α, β ∈ P such that α 6= β



6 MIKLÓS DORMÁN

but α|V = β|V . Choose distinct elements v and v′ from V , and define the binary
operation f as follows:

f(x, y) =

{
α(x) if x ∈ V , or x ∈ W and y 6= v′,

β(x) if x ∈ W and y = v′.

It follows from this definition that f(x, v) = α(x) for all x ∈ A. Since α is a
permutation, there are distinct elements a1, a2 ∈ A such that f(a1, v) 6= f(a2, v).
Furthermore, there is an element w ∈ W such that α(w) 6= β(w), and so f(w, v) =
α(w) 6= β(w) = f(w, v′). These equalities prove that the operation f is essentially
binary.

To prove that f is in the stabilizer of M , choose arbitrary transformations
m1, m2 ∈ M . Assume first that m1 is a permutation. Then by (1), m1(a) ∈ V for
every element a ∈ V , and m1(b) ∈ W for every element b ∈ W . Since α|V = β|V ,
we have that α(m1(a)) = β(m1(a)), hence

f(m1(a), m2(a)) = α(m1(a)) = β(m1(a)). (2)

If m2 is the unary constant operation with value v′, then for every element b ∈ W
we have that (m1(b), m2(b)) ∈ W ×{v′}, and so, f(m1(b), m2(b)) = β(m1(b)) holds
by the definition of f . Therefore f(m1, m2) is the unary operation β ◦ m1 ∈ M by
(2). If m2 6= cv′ , then m2(b) 6= v′ holds for every element b ∈ W . Hence, by the
definition of f , for all elements b ∈ W we have that f(m1(b), m2(b)) = α(m1(b)).
Therefore f(m1, m2) = α ◦ m1 ∈ M holds by (2).

If m1 is not a permutation, then m1 = ca for some element a ∈ V . Then
m1(x) = a ∈ V for every element x ∈ A. Hence f(m1(x), m2(x)) = α(x) for every
element x ∈ A, that is, f(m1, m2) = cα(a) is in M .

Hence f is an essentially binary operation in the stabilizer of M , which proves
that the monoid M is not collapsing.

The next three lemmas are concerned with the case when (i)–(iii) hold for M .

Lemma 7. Suppose that

(i) |V | > 2,
(ii) the permutation group PW is transitive, and
(iii) the map iV is injective.

If Sta(M)|V contains only essentially unary operations, then M is collapsing.

Proof. Let f be an arbitrary n-ary operation in Sta(M). By Lemma 5, the operation
f can be restricted to V , moreover by the assumption, the restriction f |V of f to V
is an essentially unary operation. Hence there is an index i ∈ {1, . . . , n} and there
is a unary operation m ∈ M for which f(v1, . . . , vn) = m(vi) holds for every n-tuple
(v1, . . . , vn) ∈ V n. Our aim is to prove that f is essentially unary. To prove this,
fix an element w0 ∈ W , and let (a1, . . . , an) be an arbitrary n-tuple in An. Then
there are transformations t1, . . . , tn ∈ M such that ti(w0) = ai (1 6 i 6 n). Set
t = f(t1, . . . , tn). Since f is in Sta(M), the unary operation t is in M . Furthermore,

t(w0) = f(t1, . . . , tn)(w0) = f(t1(w0), . . . , tn(w0)) = f(a1, . . . , an), (3)



COLLAPSING MONOIDS CONSISTING OF PERMUTATIONS AND CONSTANTS 7

and for every element a ∈ V we have that

t(a) = f(t1, . . . , tn)(a) = f(t1(a), . . . , tn(a)) = m(ti(a)). (4)

The unary operation m ∈ M is either a permutation or a unary constant operation.
If m is a unary constant operation, then there is an elements v ∈ V such that m =
cv. Then (4) implies that t(a) = v for all elements a ∈ V . However, since |V | > 2
this latter fact shows that t = cv, and so by (3), f(a1, . . . , an) = t(w0) = v = m(ai).
Otherwise, if m is a permutation, then t|V = (mti)|V by (4), and the injectivity of
iV implies that t = mti. Hence f(a1, . . . , an) = t(w0) = (mti)(w0) = m(ti(w0)) =
m(ai). Therefore, in both cases we get that for arbitrary n-tuple (a1, . . . , an) ∈ An

the equality

f(a1, . . . , an) = m(ai)

holds, proving that f is essentially unary. Hence M is collapsing, since the stabilizer
of M contains only essentially unary operations. This completes the proof.

If the monoid M |V is collapsing, then the monoid M is also collapsing, by
Lemma 7. Henceforth we will investigate the monoids M for which M |V is not
collapsing.

Lemma 8. Suppose that

(i) |V | > 2,
(ii) the permutation group PW is transitive,
(iii) the map iV is injective, and
(iv) the monoid M |V is not collapsing.

If the map j : PV → PW , α|V 7→ α|W is not injective or the permutation group PW

is not regular, then M is collapsing.

Proof. To prove the statement, suppose that either the map j is not injective or the
permutation group PW is not regular. Then there are permutations α, β ∈ P such
that α|V 6= β|V and α(w∗) = β(w∗) for some element w∗ ∈ W . By Proposition 7,
it is enough to prove that Sta(M)|V contains only essentially unary operations.

Suppose that Sta(M)|V contains an operation that is not essentially unary. Thus
Sta(M)|V is a clone on V with unary part M |V that is different from the essentially
unary clone 〈M |V 〉. If |V | > 3, this implies by the result of Pálfy [5] that the
clone Sta(M)|V is the set of all polynomial operations of some finite vector space
(V ; + , λ · (λ ∈ K)) over a finite field K. If |V | = 2, say V = {0, 1}, then
the assumtion that j is not injective or PW is not regular implies that |PV | 6= 1.
Therefore M |V is the full transformation semigroup on V , and the monoidal interval
Int(M |V ) is the 3-element chain 〈M |V 〉 ( 〈+, c1〉 ( OV , where + is addition modulo
2. Hence, either Sta(M)|V = 〈+, c1〉 or Sta(M)|V = OV . Thus we get that, in all
cases, the monoid M |V is the set of all unary polynomial operations of some finite
vector space (V ; +, λ· (λ ∈ K)) over a finite field K, moreover, the binary operation
x− y is in Sta(M)|V . Then there are elements λ1, λ2 ∈ K and v1, v2 ∈ V such that
α|V = λ1 ·x+ v1 and β|V = λ2 ·x+ v2, and there is a binary operation f ∈ Sta(M)
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for which f |V (x, y) = x − y. Define the unary transformations t1 and t2 to be the
transformations f(α, α) and f(α, β), respectively. Then for all v ∈ V we have that

t1|V (v) = f |V (α|V , β|V )(v)

= α(v) − α(v)

= 0,

t2|V (v) = f |V (α|V , β|V )(v)

= α|V (v) − β|V (v)

= (λ1 − λ2) · v + (v1 − v2).

Hence, t1 = c0. Suppose that λ1 6= λ2. Then t2|V is a permutation, hence t2 must
be a permutation. Since α(w∗) = β(w∗) and w∗ ∈ W , we get that

0 = t1(w
∗) = f(α, α)(w∗) = f(α(w∗), α(w∗)) = f(α(w∗), β(w∗)) = t2(w

∗) ∈ W.

This is a contradiction, since 0 ∈ V . Thus λ1 = λ2. This implies that v1 6= v2,
since α|V 6= β|V , and that t2|V is constant with value v1−v2. Hence t2 is the unary
constant operation cv1−v2

, and we have

0 = t1(w
∗) = f(α, α)(w∗) = f(α(w∗), α(w∗))

= f(α(w∗), β(w∗)) = f(α, β)(w∗) = t2(w
∗) = v1 − v2.

This contradiction proves that Sta(M)|V contains only essentially unary operations.
It follows from Lemma 7 that the monoid M is collapsing, and this completes the
proof of Lemma 8.

Lemma 9. Suppose that

(i) |V | > 2,
(ii) the permutation group PW is transitive,
(iii) the map iV is injective, and

If the map j : PV → PW , α|V 7→ α|W is injective and the permutation group PW is
regular, then the intervals Int(M) and Int(M |V ) are isomorphic.

Proof. We note that the map j is well-defined, since iV is injective by the assump-
tion.

Claim 10. For arbitrary elements a ∈ A and w ∈ W there is a unique transfor-
mation mw,a in M such that mw,a(w) = a. Moreover, if a ∈ V , then mw,a is the
unary constant operation ca, and if a ∈ W , then mw,a is a permutation.

If a ∈ V , then mw,a must be the unary operation ca, since for all permutations
m ∈ P we have that m(w) ∈ W by (1). If a ∈ W then (1) shows that mw,a must
be a permutation, and the regularity of PW ensures the existence and uniqueness
of such permutation. This completes the proof of Claim 10.

For an arbitrary n-ary operation g in Sta(M |V ) we will define an n-ary oper-
ation ĝ on An in the following way. Choose and fix an element w0 in W , and
consider arbitrary elements a1, . . . , an of A. Let m ∈ M be the unique extension of
g(mw0,a1

|V , . . . , mw0,an
|V ) ∈ M |V , and let the value of ĝ on the n-tuple (a1, . . . , an)

be m(w0).
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Claim 11. The value of ĝ on the n-tuple (a1, . . . , an) does not depend on the choice
of w0.

Let w′
0 be an arbitrary element of W , and let m′ ∈ M be the unary operation for

which

m′|V = g(mw′

0
,a1

|V , . . . , mw′

0
,an

|V ).

Our goal is to prove that m′(w′
0) = m(w0). By Claim 10 we get that

mw0,ai
= mw′

0
,ai

mw0,w′

0
(1 6 i 6 n),

and so, for every element v ∈ V we get that

m|V (v) = g(mw0,a1
|V , . . . , mw0,an

|V )(v)

= g(mw0,a1
|V (v), . . . , mw0,an

|V (v))

= g(mw0,a1
(v), . . . , mw0,a1

(v))

= g((mw′

0
,a1

mw0,w′

0
)(v), . . . , (mw′

0
,an

mw0,w′

0
)(v))

= g(mw′

0
,a1

(mw0,w′

0
(v)), . . . , mw′

0
,an

(mw0,w′

0
(v)))

= g(mw′

0
,a1

|V (mw0,w′

0
(v)), . . . , mw′

0
,an

|V (mw0,w′

0
(v)))

= g(mw′

0
,a1

|V , . . . , mw′

0
,an

|V )(mw0,w′

0
(v))

= m′(mw0,w′

0
(v))

= (m′mw0,w′

0
)(v)

= (m′mw0,w′

0
)|V (v).

Hence m|V = (m′mw0,w′

0
)|V , and the injectivity of iV implies that m = m′mw0,w′

0
.

Therefore

m′(w′
0) = m′(mw0,w′

0
(w0)) = (m′mw0,w′

0
)(w0) = m(w0).

This completes the proof of Claim 11.

Claim 12. For arbitrary unary operations t1, . . . , tn ∈ M and for arbitrary element
w ∈ W we have that

ĝ(t1(w), . . . , tn(w)) = t(w),

where t ∈ M is the unique extension of the unary operation g(t1|V , . . . , tn|V ).

By Claim 10 we get that

t|V = g(t1|V , . . . , tn|V ) = g(mw,t1(w)|V , . . . , mw,tn(w)|V ),

and so, ĝ(t1(w), . . . , tn(w)) = t(w) by Claim 11 and by the definition of ĝ. This
proofs Claim 12.

Claim 13. The operation ĝ is the unique extension of g in the stabilizer of M .

First we show that ĝ is an extension of g. Consider arbitrary elements v1, . . . , vn

of V . By definition, ĝ(v1, . . . , vn) = m(w0) where m is the unique extension of
g(mw0,v1

|V , . . . , mw0,vn
|V ). By Claim 10,

g(mw0,v1
|V , . . . , mw0,vn

|V ) = g(cv1
|V , . . . , cvn

|V ) = cg(v1,...,vn)|V ,
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and so, (i) and the injectivity of iV imply that m = cg(v1,...,vn). Hence

ĝ(v1, . . . , vn) = m(w0) = g(v1, . . . , vn).

This proves that ĝ is an extension of g.
Next we prove that ĝ is in the stabilizer of M . Consider arbitrary elements

t1, . . . , tn of M , and set t = ĝ(t1, . . . , tn). Our aim is to prove that t belongs to M .
By the preceding paragraph, the restriction of t to V is the unary operation

t|V = ĝ(t1, . . . , tn)|V = ĝ|V (t1|V , . . . , tn|V ) = g(t1|V , . . . , tn|V ) ∈ M |V .

Let t̂ ∈ M be the unique extension of g(t1|V , . . . , tn|V ) ∈ M |V to A. Then t̂|V = t|V ,
and for arbitrary element w ∈ W we have that

t(w) = ĝ(t1, . . . , tn)(w) = ĝ(t1(w), . . . , tn(w)) = t̂(w),

where the first equality follows from the definition of ĝ and the last equality from
Claim 12. Since t|V = t̂|V , this proves that t = t̂ ∈ M . Hence the operation ĝ is in
Sta(M).

Finally, we show that there are no other extensions of g in Sta(M). Assume that
g̃ is an extension of g in the stabilizer of M . Then for every n-tuple (v1, . . . , vn) ∈
V n we have that ĝ(v1, . . . , vn) = g̃(v1, . . . , vn) = g(v1, . . . , vn). Consider arbi-
trary n-tuple (a1, . . . , an) ∈ An, and let m ∈ M be the unique extension of
g(mw0,a1

|V , . . . , mw0,an
|V ). Then

m|V = g(mw0,a1
|V , . . . , mw0,an

|V )

= g̃|V (mw0,a1
|V , . . . , mw0,an

|V )

= g̃(mw0,a1
, . . . , mw0,an

)|V .

Since g̃ ∈ Sta(M), the unary operation g̃(mw0,a1
, . . . , mw0,an

) is in M , and the
injectivity of iV implies that g̃(mw0,a1

, . . . , mw0,an
) = m. Furthermore, we get that

g̃(a1, . . . , an) = g̃(mw0,a1
(w0), . . . , mw0,an

(w0))

= g̃(mw0,a1
, . . . , mw0,an

)(w0)

= m(w0)

= ĝ(a1, . . . , an).

Thus g̃(a1, . . . , an) = ĝ(a1, . . . , an) holds for arbitrary n-tuples (a1, . . . , an) ∈ An,
and so g̃ = ĝ. This proves Claim 13.

Claim 14. For an arbitrary clone C ∈ Int(M |V ) the set Ĉ = {ĝ : g ∈ C} is a clone,
which belongs to the monoidal interval Int(M).

First we note that for every operation f ∈ Sta(M) the equality

f̂ |V = f (5)

holds by Claim 13. Let f ∈ Sta(M) be an arbitrary projection on the set A, say
f is the n-ary i-th projection. Then f |V is the n-ary i-th projection on V , hence

f |V ∈ C. Furthermore by (5), f = f̂ |V ∈ Ĉ. This proves that the set Ĉ contains all
the projections.
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Let f ∈ Ĉ be an arbitrary k-ary operation, and let f1, . . . , fk ∈ Ĉ be arbitrary
n-ary operations. Then there are operations g ∈ C(k) and g1, . . . , gk ∈ C(n) such

that f = ĝ and fi = ĝi (1 6 i 6 k). Our aim is to prove that the operation ĥ is in

Ĉ. To prove this consider arbitrary n-tuple (a1, . . . , an) ∈ An, set h = g(g1, . . . , gk),
and let t, t1, . . . , tk ∈ M be the unique unary transformations for which

t|V = h(mw0,a1
|V , . . . , mw0,an

|V ),

ti|V = gi(mw0,a1
|V , . . . , mw0,an

|V ) (1 6 i 6 k).

Then by the definition of ĥ, ĝi (1 6 i 6 k) we have that ĥ(a1, . . . , an) = t(w0) and
ĝi(a1, . . . , an) = ti(w0). Since

g(t1|V , . . . , tk|V ) = g(g1(mw0,a1
|V , . . . , mw0,an

|V ), . . . , gk(mw0,a1
|V , . . . , mw0,an

|V ))

= (g(g1, . . . , gk))(mw0,a1
|V , . . . , mw0,an

|V )

= h(mw0,a1
|V , . . . , mw0,an

|V )

= t|V ,

we get that ĝ(t1(w0), . . . , tp(w0)) = t(w0) by Claim 12, and so, by the definition of

ĥ,

ĝ(ĝ1, . . . , ĝk)(a1, . . . , an) = ĝ(ĝ1(a1, . . . , an), . . . , ĝk(a1, . . . , an))

= ĝ(t1(w0), . . . , tk(w0))

= t(w0)

= ĥ(a1, . . . , an).

Therefore ĥ = ĝ(ĝ1, . . . , ĝk), which proves that the operation ĥ is in Ĉ since h =

g(g1, . . . , gk) ∈ C. These show that the set Ĉ is a clone. It is remaining to prove

that the unary part of Ĉ is M . As Ĉ(1) =
{
m̂ : m ∈ C(1)

}
= {m̂ : m ∈ M |V }, the

injectivity of iV and equation (5) ensure that Ĉ(1) = M . This completes the proof
of Claim 14.

Define the map Φ as follows:

Φ: Int(M |V ) → Int(M), C 7→ Ĉ.

We will prove that Φ is an isomorphism between the lattices Int(M |V ) and Int(M).
Let C and D be arbitrary clones in Int(M |V ). Suppose that C 6= D. Then we
may assume, without loss of generality, that there is an operation g in C \ D.
Then ĝ ∈ Φ(C), and ĝ 6∈ Φ(D) since otherwise g = ĝ|V ∈ D would hold. Hence
ĝ ∈ Φ(C) \ Φ(D), and so, Φ(C) 6= Φ(D). This proves that Φ is injective. Let F be
an arbitrary clone in Int(M). Then F|V = {f |V : f ∈ F} is a clone in Int(M |V )
for which

Φ(F|V ) =
{
f̂ |V : f ∈ F

}
= F

by (5). Hence, Φ is surjective, and so, it is bijective. Furthermore, the inverse map
of Φ is

Φ−1 : Int(M) → Int(M |V ), F 7→ F|V .
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Let C1, C2 ∈ Int(M |V ) and F1,F2 ∈ Int(M) be arbitrary clones such that C1 ⊆ C2

and F1 ⊆ F2. Then

Φ(C1) = {ĝ : g ∈ C1} ⊆ {ĝ : g ∈ C2} = Φ(C2)

and

Φ−1(F1) = {f |V : f ∈ F1} ⊆ {f |V : f ∈ F2} = Φ−1(F2)

prove that the map Φ is an isomorphism. This completes the proof of the statement
and hence the proof of Lemma 9.

Proof of Theorem 1. Suppose that the monoid M is collapsing. Then by Therorem 2,
the number of unary constant operations in M is greater than 1. Hence |V | > 2,
and (i) holds. Lemma 4 shows that the permutation group PW must be transitive,
while the injectivity of the map iV follows from Lemma 6. These prove that M has
the properties (ii) and (iii). If neither one of the conditions (b) and (c) of (iv) holds
for M , then the intervals Int(M |V ) and Int(M) are isomorphic by Lemma 9, and
so, the monoid M |V is collapsing, since M is. Then condition (a) of (iv) holds for
M . This shows that (iv) also holds for the monoid M .

Suppose that conditions (i)–(iv) hold for the monoid M . The assumption that
(iv) holds for M means that either M |V is collapsing or j is not injective or PW

is not regular. If M |V is collapsing, then Sta(M)|V ⊆ Sta(M |V ) contains only
essentially unary operations, and therefore M is collapsing by Lemma 7. If M |V is
not collapsing then (iv) implies that either j is not injective or PW is not regular.
Therefore, M is collapsing by Lemma 8.

This completes the proof of Theorem 1.

Proof of Theorem 3. If conditions (i)–(iii) of Theorem 1 hold but condition (iv)
of Theorem 1 fails for M then Int(M) is isomorphic to Int(M |V ) by Lemma 9. If
|V | > 3 then by the result of Pálfy [5], the monoidal interval Int(M |V ) is a 2-element
chain, and so, Int(M) is a 2-element chain, as well. To finish the proof we note that
if |V | = 2, say V = {0, 1}, then M |V is either the monoid {c0|V , c1|V , idV } and
Int(M |V ) is isomorphic to he direct square of the 2-element chain or M |V is the full
transformation semigroup and Int(M |V ) is isomorphic to the 3-element chain (cf.
Post [7] and Szendrei [9]). Therefore, in the former case Int(M) is isomorphic to
he direct square of the 2-element chain, and in the latter case Int(M) is isomorphic
to the 3-element chain. The proof of Theorem 3 is complete.
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