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Abstract 1

We present some new families of collapsing monoids. These
monoids form large intervals in the submonoid lattices of the
full transformation semigroups. Some of these intervals have
cardinalities ≥ 22cn

where n is the size of the base set.

1 Introduction

A set of operations on a set A is said to be a clone if it contains the projections
and is closed under superposition. It is easy to see that the unary operations
in a clone form a transformation monoid. This monoid will be called the
unary part of the clone.

Throughout this paper we will assume that the base set A is finite. It is
well known that, in this case, for an arbitrary transformation monoid M on
A the clones whose unary part is M form an interval in the lattice of clones.
This interval will be denoted by I(M). Note that the clone of essentially
unary operations generated by M is always a member of I(M), so I(M) is
not empty. As there are only finitely many transformation monoids on A, the
intervals I(M) partition the lattice of clones on A into finitely many blocks.
Since the lattice of clones on A has cardinality 2ℵ0 if |A| ≥ 3, one expects that
“in most cases” I(M) contains uncountably many clones. However, it turns
out that for many interesting transformation monoids M the interval I(M)
is finite. So, studying these intervals may lead to a better understanding of
some parts of the lattice of clones.
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The problem of classifying those transformation monoids M for which
I(M) is finite (or uncountable) was posed in [16]. The one-element transfor-
mation monoid is an example for an M such that I(M) has cardinality 2ℵ0

(cf. [12]). The first explicit construction of a transformation monoid M with
|I(M)| = ℵ0 is due to Krokhin [7]. The full transformation semigroup on A
is an example of a monoid M such that I(M) is finite; in fact, in this case
I(M) is an (|A|+ 1)-element chain (Burle [1]). A large family of monoids M
with I(M) finite is provided by Pálfy’s theorem ([13]): if M consists of all
constants and some permutations, then |I(M)| ≤ 2; moreover, |I(M)| = 1
unless M coincides with the monoid of all unary polynomial operations of a
finite vector space over a finite field.

If the interval I(M) has only one element, then the transformation monoid
M is called collapsing. In this case the only element of I(M) is the clone
of essentially unary operations generated by M . The aim of this paper is to
construct large intervals of transformation monoids such that all members of
these intervals are collapsing. The construction is presented in Section 2. In
Section 3 we give a complete list of collapsing transformation monoids on a
three-element set. A computer study of these monoids led to the construction
discussed in Section 2.

2 Intervals of collapsing monoids

Let M be a transformation monoid on a finite set A. A k-ary operation f ∈
OA can be a member of a clone with unary part M only if f(m1(x), . . . , mk(x))
belongs to M for all m1, . . . , mk ∈ M . It is not hard to see that the operations
f satisfying this condition form a clone with unary part M . Hence this is
the largest clone with unary part M , and is called the stabilizer of M . We
say that a binary operation f is essentially binary if f depends on both of
its variables. By a result of Grabowski [5], a transformation monoid M is
collapsing if and only if its stabilizer contains no essentially binary operations.

Let A be a finite set with at least four elements. Let P, Q, and R be
pairwise disjoint nonempty subsets of A such that |R| ≥ 2. Let T (P, Q, R)
be the set of all transformations t ∈ T (A) such that for all p ∈ P, q ∈ Q
and r, r′ ∈ R with r 6= r′, if t(r) = t(r′) then t(p) ∈ {t(q), t(r)}. Let M
be an arbitrary transformation monoid on A. The monoid M is said to be
rich with respect to P, Q, R if for some s ∈ A, and for all a, b ∈ A such
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that a 6= b and s ∈ {a, b}, M contains transformations t1 and t2 such that
t1(P ) = t1(Q) = {a}, t1(R) = {b} and t2(P ) = t2(R) = {a}, t2(Q) = {b}. If
P, Q, R are clear from the context, then we will simply say that M is rich.

Example 2.1 Let B be the set {0, 1, 2, 3}, and M be the monoid of all
transformations t ∈ T (B) such that t(2) = t(3) and t(0) ∈ {t(1), t(2)}, or
t is the identity operation. If we choose the sets P = {0}, Q = {1} and
R = {2, 3}, then it is obvious that the monoid M is rich, and it is contained
in T (P, Q, R).

The main result of this paper is the following.

Theorem 2.2 Let A be a finite set with at least four elements, and let

P, Q, R be disjoint nonempty subsets of A such that |R| ≥ 2. Then every

rich monoid M ⊆ T (P, Q, R) is collapsing.

The proof of Theorem 2.2 is based on the lemma below, which states
that in the operation table of an essentially binary operation a particular
configuration always occurs.

Lemma 2.3 Let f ∈ OA be an essentially binary operation on a finite set

A with at least two elements. Then, for every element s ∈ A there exist

a, b, c, d ∈ A such that s ∈ {a, b} ∩ {c, d} and f(a, d) 6= f(b, d) 6= f(b, c).

Proof. Let s be a fixed element of A. Suppose first that the unary
operation f(s, x) is constant. Since f depends on its second variable, there
are elements u, v ∈ A such that f(u, s) 6= f(u, v). Thus, if f(s, v) = f(u, v),
then f(s, s) = f(s, v) = f(u, v) 6= f(u, s), so the elements a = s, b = u, c =
v, d = s satisfy the requirements. Otherwise we have f(s, v) 6= f(u, v) 6=
f(u, s), hence the choice a = s, b = u, c = s, d = v is appropriate. The same
argument yields suitable elements if the unary operation f(x, s) is constant.
Finally, if none of the unary operations f(s, x) and f(x, s) are constant, then
there are elements a, c ∈ A such that f(a, s) 6= f(s, s) 6= f(s, c), hence the
elements a, b = s, c, and d = s satisfy the requirements of the lemma. �

Proof of Theorem 2.2 Let M be a monoid which is rich with respect
to P, Q, R, and let s ∈ A be an element witnessing the richness of M .
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Choose elements p, q, r, r′ ∈ A such that p ∈ P, q ∈ Q, and r, r′ ∈ R with
r 6= r′. We will show that the stabilizer of M contains no essentially binary
operation. By Grabowski’s result in [5] this will imply that M is collapsing.
Let f ∈ OA be an essentially binary operation. By Lemma 2.3, there are
elements a, b, c, d such that s ∈ {a, b} ∩ {c, d} and f(a, d) 6= f(b, d) 6= f(b, c).
Since M is a rich monoid, there are transformations t′, t′′ ∈ M such that

t′(p) = t′(q) = b, t′(r) = t′(r′) = a

and
t′′(p) = t′′(r) = t′′(r′) = d, t′′(q) = c.

Let t(x) = f(t′(x), t′′(x)) (x ∈ A). Then

t(p) = f(b, d), t(q) = f(b, c) and t(r) = t(r′) = f(a, d).

If f(a, d) 6= f(b, c) then t(p), t(q) and t(r) are pairwise distinct, while, if
f(a, d) = f(b, c) then t(p) 6= t(q) = t(r). Hence, in both cases, the trans-
formation t is not in T (P, Q, R), thus, t is not in M. This proves that the
operation f doesn’t belong to the stabilizer of M. �

Now we show that for a finite set A with |A| ≥ 6 in the submonoid lat-
tice of T (A) there are large intervals which contain only collapsing monoids.
In the sequel, the monoid generated by a set H of transformations will be
denoted by 〈H〉. If H = {t1, . . . , tr} then we will write 〈t1, . . . , tr〉 instead of
〈{t1, . . . , tr}〉.

Let A be a finite set with |A| ≥ 6. Let the elements p, q, r, r′ ∈ A be
pairwise distinct, and let P = {p}, Q = {q}, R = {r, r′}, A′ = A\(P∪Q∪R).
We define the monoid N on A to be the monoid of all transformations t ∈
T (P, Q, R) for which t(r) = t(r′) and the restriction of t onto A′ is the identity
operation on A′, or t is the identity operation. For an arbitrary monoid K ∈
T (A′) we will denote by K̂ the monoid which consists of all transformations
from T (A) whose restriction onto A′ is a member of K, and whose restriction
onto the set P ∪ Q ∪ R is the identity transformation. Since t ∈ 〈N ∪ K̂〉
implies that t|A′ ∈ K, we get that if K1, K2 are submonoids of T (A′) and

K1 6= K2 then 〈N∪K̂1〉 6= 〈N∪K̂2〉. Furthermore, 〈N∪ ̂T (A′)〉 ⊆ T (P, Q, R),
and any element of A witnesses the richness of N .
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Proposition 2.4 Let A be a finite set with |A| = n ≥ 6. Then all members

of the interval [N, 〈N∪ ̂T (A′)〉] are collapsing, and this interval has cardinality

greater than 22cn
for some positive constant c.

To prove Proposition 2.4, we need a simple lower bound of the cardinality
of the subsemigroup lattice of T (A).

Lemma 2.5 Let A be a finite set with |A| = n ≥ 2. Then the full trans-

formation semigroup T (A) has at least 22Cn
subsemigroups for some positive

constant C.

Proof. If |A| = 2 then |T (A)| = 9 > 22
3
4
·2

. For |A| = n ≥ 3 let P ′(A) be
the set of all subsets of A whose cardinality is [n/2]. Let U be an arbitrary
element of P ′(A), and let MU be the semigroup of all transformations whose
ranges are contained in U . It is easy to see that if H is a subset of P ′(A) then
TH =

⋃

U∈H

MU is a subsemigroup of T (A). Furthermore, if H1, H2 ⊆ P ′(A)

and H1 6= H2 then TH1 6= TH2 . Thus, we have that the subsemigroups
TH (H ⊆ P ′(A)) are pairwise distinct, and

|{TH | H ⊆ P ′(A)}| = 2|P
′(A)| = 2( n

[n/2]) ≥ 24[n/2]/(2[n/2]) ≥ 22c1n

for some positive constant c1. If we choose C = min{ 3
4
, c1} then C will satisfy

the requirement of the lemma. �

Proof of Proposition 2.4. Since the monoid N is rich and 〈N ∪
̂T (A′)〉 ⊆ T (P, Q, R), we see from Theorem 2.2 that every monoid in the

interval [N, 〈N ∪ ̂T (A′)〉] is collapsing. Furthermore, this interval has cardi-
nality greater than the number of subsemigroups of T (A′), hence by Lemma

2.5 we have |[N, 〈N ∪ ̂T (A′)〉]| ≥ 22C(n−4)
≥ 22cn

for some positive constant c.
�

3 Collapsing monoids on a three element set

In this section we will describe all collapsing monoids on a 3-element set.
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Let A be a 3-element set. We will define two sets of transformations on
A. Let p, s ∈ A be arbitrary elements of A. Let Tp denote the set of all
transformations t ∈ T (A) such that either t is a permutation fixing p or t is
not a permutation, and t(p) ∈ {t(q), t(r)} for {p, q, r} = A. Furthermore, let
Mp,s be the set of all transformations t ∈ Tp such that t(A) ⊆ {s, a} for some
a ∈ A \ {s} or t is the identity transformation. It is easy to see that both
Tp and Mp,s are transformation monoids on A. For these monoids we get a
result analogous to Theorem 2.2.

Theorem 3.1 Let A be a 3-element set. Then each monoid M ⊆ T (A) for

which there are elements p, s ∈ A such that Mp,s ⊆ M ⊆ Tp is collapsing.

Proof. Let M be a monoid on A such that Mp,s ⊆ M ⊆ Tp for some
p, s ∈ A. As in Theorem 2.2, it suffices to show that the stabilizer of M
contains no essentially binary operation. Let f ∈ OA be an essentially binary
operation, and suppose that f is in the stabilizer of M . By Lemma 2.3, there
are elements a, b, c, d ∈ A such that s ∈ {a, b}∩{c, d} and f(a, d) 6= f(b, d) 6=
f(b, c). Since Mp,s ⊆ M , there are transformations t1, t2 ∈ M such that

t1(p) = t1(q) = b, t1(r) = a and t2(p) = t2(r) = d, t2(q) = c.

Let t(x) = f(t1(x), t2(x)) (x ∈ A). Then t ∈ M , and

t(p) = f(b, d), t(q) = f(b, c) and t(r) = f(a, d).

Thus t(p) 6∈ {t(q), t(r)}. By the assumptions on M , we have that t ∈ Tp,
therefore we get that t is a permutation which fixes the element p. Hence
p = f(b, d). We will show that this leads to a contradiction. Since the ele-
ments f(b, d), f(b, c), and f(a, d) are pairwise distinct, we have that f(a, c) ∈
{f(b, d), f(b, c), f(a, d)}.

Case 1: f(a, c) = f(a, d) or f(a, c) = f(b, c). Assume the first equality
holds, and let t3, t4 ∈ Mp,s be transformations such that

t3(p) = t3(r) = b, t3(q) = a and t4(p) = t2(q) = c, t4(r) = d.

Let t′(x) = f(t3(x), t4(x)) (x ∈ A). Then t′ is a permutation and t′(p) =
f(b, c) 6= p, which is a contradiction. Mutatis mutandis for the case f(a, c) =
f(b, c).
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Case 2: f(a, c) = f(b, d). Let t5, t6 ∈ Mp,s be transformations such that

t5(p) = t5(q) = b, t5(r) = a and t6(p) = t6(r) = c, t6(q) = d.

Let t′′(x) = f(t5(x), t6(x)) (x ∈ A). Then t′′ ∈ M , and t′′(r) = t′′(q) 6= t′′(p),
which is again a contradiction. �

Now we are in a position to give a complete list of collapsing monoids on
a 3-element set.

Let A be a 3-element set. Without loss of generality, we may assume
that A = {0, 1, 2}. Let M1 and M2 be submonoids of T (A). We say that
M1 is equivalent to M2, and we write M1 ./ M2, iff there is a permutation
α on A such that M2 = {α−1mα | m ∈ M1}, that is M2 is the conjugate
of M1 by α. It is straightforward to check that ./ is an equivalence relation
on the set of submonoids of T (A). Furthermore, if M1 ./ M2 then I(M1) ∼=
I(M2). On a 3-element set the subsemigroups of T (A) were described by
Lau [10], [11]. Using this description, we get 699 submonoids on A in 160
./-classes. We will use several earlier results to obtain the complete list of
collapsing monoids on A. These results are due to Demetrovics–Hannák [2],
[3], Fearnley–Rosenberg [4], Krokhin [8], [9], Pálfy [13], Pálfy–Szendrei [14].
We will use the following notation for the constants and the permutations in
T (A):

x c0(x) c1(x) c2(x) id(x) τ0(x) τ1(x) τ2(x) σ(x) σ2(x)
0 0 1 2 0 0 2 1 1 2
1 0 1 2 1 2 1 0 2 0
2 0 1 2 2 1 0 2 0 1

Theorem 3.2 On the 3-element set A = {0, 1, 2} there are 27 collapsing

monoids in 10 ./-classes. If M is a collapsing monoid on A, then M is

equivalent to exactly one of the following monoids:

(1) 〈c0, τ2〉 = {id, c0, c1, τ2},

(2) 〈c0, c1, c2〉 = {id, c0, c1, c2},

(3) 〈c0, c2, τ2〉 = {id, c0, c1, c2, τ2},

(4) 〈c0, σ〉 = {id, c0, c1, c2, σ, σ2},
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(5) S3,

(6) M2,0,

(7) M2,2,

(8) 〈M2,2, τ2〉 = M2,2 ∪ {τ2},

(9) T2 \ {τ2},

(10) T2,

where T2 is the monoid of all transformations t ∈ T (A) such that either t
is a permutation fixing 2 or t(2) ∈ {t(0), t(1)}, while M2,s (s ∈ {0, 2}) is

the monoid of all transformations t ∈ T2 such that t(A) ⊆ {s, a} for some

a ∈ A \ {s} or t is the identity transformation.

Proof. From results in [4], [13] and [14], it follows that the monoids (1),
(2)–(4), and (5), respectively, are collapsing, while for the monoids (6)–(10)
this property is the consequence of Theorem 3.1. To check that transforma-
tion monoids that are equivalent to neither of (1)–(10) are not collapsing we
used the results in [1], [2], [3], [6], [8], [9], [12], [13], [14], and a computer
program (written in PASCAL) based on the result of Grabowski [5]. �

t〈c0, τ2〉

t〈c0, c2, τ2〉

t〈M2,2, τ2〉

tT2

t

M2,2

t
T2 \ {τ2}

tM2,1
tM2,0

t
〈c0, c1, c2〉

t
〈c0, σ〉

t
S3

PPPPPP

PPPPPP

PPPPPPPPPPPPPPPPPP

@
@

@
@

@
@

HHHHHHHHHHHHHHHHHHHHHHHH

@
@

@
@

@
@

hhhhhhhhhhhhhhhhhhhhhhhh

�
�

�
�

Figure 1

In Figure 1 a fragment of the poset of collapsing monoids on {0, 1, 2} can
be seen. The whole poset can be obtained by rotating this fragment about
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the “axis” S3, 〈c0, σ〉, 〈c0, c1, c2〉 through
2π

3
and

4π

3
. Rotating the whole

poset through
2π

3
corresponds to conjugating the monoids by σ, and M2,1

is the conjugate of M2,0 by τ2. Hence the three monoids on the “axis” form
singleton ./-classes, the ./-class of M2,0 has six elements, while all the other
./-classes contain exactly three elements.
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