Algebra Universalis

The mathematics of G. Grätzer and E. T. Schmidt

GÁbor Czédli

I think it is hopeless to try to give a concise account of the over 300 publications of George Grätzer and E. Tamás Schmidt. There is a danger of getting lost in too many details (for instance, mentioning Grätzer [G 35], where the concept of Mal'cev condition was introduced and named). Hence, I will be guided by the following five restrictions. (1) I will discuss only lattice theoretic results. (2) I will try to concentrate on their deepest results, (3) on results with the largest impact, and (4) on series of papers. (5) I will give preference to joint or at least partially joint works. Even then, I will be able to cover only a small part of their results satisfying these five criteria.

1. Characterizing congruence lattices of algebras

In [GS 19], when they were only 26 years of age, Grätzer and Schmidt proved their best known result (the so-called Grätzer-Schmidt Theorem), solving a famous open problem of G. Birkhoff.

Theorem. Congruence lattices of (finitary) algebras are characterized as algebraic lattices.

About half a dozen new proofs have been published in the 45 years after the publication in [GS 19]. No one has found a magical two page proof of this result.

2. Congruence lattices of finite lattices

The papers [GS $19,32,33,40-42,46-48,51,54,56,57]$ and [G 155] all deal with representing a finite distributive lattice as the congruence lattice of a finite lattice with special properties. For some closely related results, see Schmidt [S 14, 16, 28]. The topic is surveyed in Grätzer's new book ([GB 7]). A typical result is the following (Grätzer, Lakser, and Schmidt [GS 40]):

Theorem. Every finite distributive lattice can be represented as the congruence lattice of a finite semimodular lattice.

For many representation results, there are "congruence-preserving extension" variants, which are usually much harder to prove. Here is an example ([GS 47]):

Theorem. Every finite lattice has a congruence-preserving extension to a finite semimodular lattice.

In an interesting combinatorial aspect of this field, one inquires about the minimum size of the lattice L that represents a distributive lattice D with n joinirreducible elements. Many results give upper bounds for the size of L, but only for two cases has it been proved that the upper bound is optimal.

Theorem. Every finite distributive lattice D can be represented as the congruence lattice of a lattice L of size $O\left(n^{2}\right)$ and the size $O\left(n^{2}\right)$ is optimal.

The size $O\left(n^{2}\right)$ construction is due to Grätzer, Lakser, and Schmidt [GS 32], and the optimal part to Grätzer, Rival, and Zaguia [G 122]. There is only one other upper bound, by Grätzer and E. Knapp [G 155], for which there is an optimal part by the same authors (submitted). The most complicated paper on the subject is Grätzer and Lakser (Representing homomorphisms of congruence lattices as restrictions of congruences of isoform lattices, submitted to Acta Sci. Math. (Szeged) in Nov. 2007), which builds on [GS 51, 55, 57] and [G 121].

3. Congruence lattices of lattices

It has long been conjectured that congruence lattices of lattices can be characterized as distributive algebraic lattices; equivalently, as ideal lattices of distributive join-semilattices with zero. One of the deep positive results is due to Schmidt [S 7] and [S 25]:

Theorem. Let L be the the ideal lattice of a distributive lattice with zero. Then L can be represented as the congruence lattice of a lattice.

For a detailed accounting of this field, see [G151], which lists all the positive results and the surprising counterexample to this conjecture by F. Wehrung. ${ }^{1}$

4. Complete congruence lattices of complete lattices

G. Birkhoff asked in 1945 what are the congruence lattices of infinitary algebras. This problem was solved by G. Grätzer and W. A. Lampe in Appendix 7 of [GB 4]. Answering an even more difficult question, Grätzer [GP 7] proved that

Theorem. Complete congruence lattices of complete lattices are characterized as complete lattices.

[^0]This was followed up in a series of papers [GS 21, 23-26, 28-30, 38, 51]. The best result is in [GS 29]:

Theorem. Complete congruence lattices of complete distributive lattices are characterized as complete lattices.

5. Independence results

Grätzer [GB 6] raised the following problem (Problem II.18):
Let L be a nontrivial lattice and let G be a group. Does there exist a lattice K such that K and L have isomorphic congruence lattices and the automorphism group of K is isomorphic to G ?

The finite case was solved in the affirmative, independently in 1978 by V.A. Baranskiĭ and A. Urquhart. In 1995 Grätzer and Schmidt [GS 30] proved a much stronger result, the strong independence of the automorphism group and the congruence lattice in the finite case. In [G 134] (a joint paper with F. Wehrung), this was generalized to arbitrary lattices. (And the proof jumps from 5 to about 50 pages, if we include the relevant portions of [G 127]!)

Theorem (The Strong Independence Theorem for Lattices).
Let L_{A} and L_{C} be lattices, and let L_{C} have more than one element. Then there exists a lattice K that is an automorphism-preserving extension of L_{A} and a congruencepreserving extension of L_{C}. If L_{A} and L_{C} are countable, then K can be constructed as a countable lattice.

6. Extension theorems

In Schmidt $[\mathrm{S} 14,16]$, a very important construction was introduced. Let D be a bounded distributive lattice. Then there exists a modular lattice $M_{3}[D]$ that contains a $\{0,1\}$-sublattice $M_{3}=\{o, a, b, c, i\}$ with $[0, a] \cong D$. This had many applications, for instance, $[\mathrm{S} 14,16]$ and [GS 53]. The $M_{3}[D]$ construction was generalized by Grätzer and Wehrung [G 126] by dropping the requirement that D be distributive. This led to a solution of a long-standing problem:

Theorem. Every lattice has a proper congruence-preserving extension.
This was further generalized by Grätzer and Wehrung to arbitrary lattices, see [G127, 129, 133], and applied in [G 134]. For a survey of this field, see [G 136]. Another direction is due to Grätzer and M. Greenberg, see [G 138-140, 142].

7. Freely adjoining a (relative) complement to a lattice

This field starts with a celebrated result of R. P. Dilworth (1944): Every lattice can be embedded into a uniquely complemented lattice. In 1969 C. C. Chen and Grätzer [G 29] found a stronger form of this result:
Theorem. Every bounded at most uniquely complemented lattice has a \{0,1\}embedding into a uniquely complemented lattice.

The proof utilizes an analysis of the free lattice obtained by freely adjoining a complemented element to a lattice, and this provides a much simplified proof of Dilworth's result. The technique introduced there has found many applications; see Grätzer [G 34, 45, 86, 93, 143, 148] and [GP 3]. Here is a sample result from Grätzer and H. Lakser [G 143]:

Theorem. Let K be a lattice, and let $[a, c]$ be an interval in K. If $[a, c]$ in K is at most uniquely relatively complemented, then K has an extension L such that the interval $[a, c]$ of L is uniquely relatively complemented.

GÁbor Czédli

University of Szeged, Bolyai Institute, Szeged, Aradi vértanúk tere 1, Hungary 6720
e-mail: czedli@math.u-szeged.hu
URL: http://www.math.u-szeged.hu/~czedli/

Publications of G. Grätzer and E. T. Schmidt

The following comprehensive list of publications is divided into separate bibliographies, according to their type and subject matter. The mathematical article lists are further subdivided by decade.

Grätzer and Schmidt

Mathematical Articles

[GS 1] G. Grätzer and E. T. Schmidt, On a problem of M. H. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455-460.
[GS 2] G. Grätzer and E. T. Schmidt, On the Jordan-Dedekind chain condition, Acta Sci. Math. (Szeged) $\mathbf{1 8}$ (1957), 52-56.
[GS 3] G. Grätzer and E. T. Schmidt, Über die Anordnung von Ringen, Acta Math. Acad. Sci. Hungar. 8 (1957), 259-260 (German).
[GS 4] G. Grätzer and E. T. Schmidt, Ideals and congruence relations in lattices. I, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 7 (1957), 93-109 (Hungarian).
[GS 5] G. Grätzer and E. T. Schmidt, Ideals and congruence relations in lattices. II, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 7 (1957), 417-434 (Hungarian).
[GS 6] G. Grätzer and E. T. Schmidt, On the lattice of all join-endomorphisms of a lattice, Proc. Amer. Math. Soc. 9 (1958), 722-726.
[GS 7] G. Grätzer and E. T. Schmidt, Characterizations of relatively complemented distributive lattices, Publ. Math. Debrecen 5 (1958), 257-287.
[GS 8] G. Grätzer and E. T. Schmidt, Two notes on lattice-congruences, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 83-87.
[GS 9] G. Grätzer and E. T. Schmidt, On ideal theory for lattices, Acta Sci. Math. (Szeged) 19 (1958), 82-92.
[GS 10] G. Grätzer and E. T. Schmidt, Ideals and congruence relations in lattices, Acta Math. Acad. Sci. Hungar. 9 (1958), 137-175.
[GS 11] G. Grätzer and E. T. Schmidt, On the generalized Boolean algebra generated by a distributive lattice, Indag. Math. 20 (1958), 547-553.
[GS 12] G. Grätzer and E. T. Schmidt, An associativity theorem for alternative rings, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), 259-264.
[GS 13] G. Grätzer and E. T. Schmidt, On a theorem of Gábor Szász, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1959), 255-258 (Hungarian).

1960

[GS 14] G. Grätzer and E. T. Schmidt, Über einfache Körpererweiterungen, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 283-285 (German).
[GS 15] G. Grätzer and E. T. Schmidt, On inaccessible and minimal congruence relations. I, Acta Sci. Math. (Szeged) 21 (1960), 337-342.
[GS 16] G. Grätzer and E. T. Schmidt, A note on a special type of fully invariant subgroups of Abelian groups, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 3-4 (1960/1961), 85-87.
[GS 17] G. Grätzer and E. T. Schmidt, On a problem of L. Fuchs concerning universal subgroups and universal homomorphic images of abelian groups, Indag. Math. 23 (1961), 253-255.
[GS 18] G. Grätzer and E. T. Schmidt, Standard ideals in lattices, Acta Math. Acad. Sci. Hungar. 12 (1961), 17-86.
[GS 19] G. Grätzer and E. T. Schmidt, On congruence lattices of lattices, Acta Math. Acad. Sci. Hungar. 13 (1962), 179-185.
[GS 20] G. Grätzer and E. T. Schmidt, Characterizations of congruence lattices of abstract algebras, Acta Sci. Math. (Szeged) 24 (1963), 34-59.

1990

[GS 21] R. Freese, G. Grätzer, and E. T. Schmidt, On complete congruence lattices of complete modular lattices, Internat. J. Algebra Comput. 1 (1991), 147-160.
[GS 22] E. Fried, G. Grätzer, and E. T. Schmidt, Multipasting of lattices, Algebra Universalis 30 (1993), 241-261.
[GS 23] G. Grätzer and E. T. Schmidt, On the congruence lattice of a Scott-domain, Algebra Universalis 30 (1993), 297-299.
[GS 24] G. Grätzer and E. T. Schmidt, "Complete-simple" distributive lattices, Proc. Amer. Math. Soc. 119 (1993), 63-69.
[GS 25] G. Grätzer and E. T. Schmidt, Another construction of complete-simple distributive lattices, Acta Sci. Math. (Szeged) 58 (1993), 115-126.
[GS 26] G. Grätzer, P. M. Johnson, and E. T. Schmidt, A representation of \mathfrak{m}-algebraic lattices, Algebra Universalis 32 (1994), 1-12.
[GS 27] G. Grätzer and E. T. Schmidt, Congruence lattices of function lattices, Order 11 (1994), 211-220.
[GS 28] G. Grätzer and E. T. Schmidt, Complete congruence lattices of complete distributive lattices, J. Algebra 171 (1995), 204-229.
[GS 29] G. Grätzer and E. T. Schmidt, Do we need complete-simple distributive lattices? Algebra Universalis 33 (1995), 140-141.
[GS 30] G. Grätzer and E. T. Schmidt, The Independence Theorem for automorphism groups and congruence lattices of finite lattices, Beiträge Algebra Geom. 36 (1995), 97-108.
[GS 31] G. Grätzer and E. T. Schmidt, A lattice construction and congruence-preserving extensions, Acta Math. Hungar. 66 (1995), 275-288.
[GS 32] G. Grätzer, H. Lakser, and E. T. Schmidt, Congruence lattices of small planar lattices, Proc. Amer. Math. Soc. 123 (1995), 2619-2623.
[GS 33] G. Grätzer and E. T. Schmidt, Congruence lattices of p-algebras, Algebra Universalis 33 (1995), 470-477.
[GS 34] G. Grätzer, H. Lakser, and E. T. Schmidt, On a result of Birkhoff, Period. Math. Hungar. 30 (1995), 183-188.
[GS 35] G. Grätzer and E. T. Schmidt, On isotone functions with the Substitution Property in distributive lattices, Order 12 (1995), 221-231.
[GS 36] G. Grätzer, H. Lakser, and E. T. Schmidt, Congruence representations of join-homomorphisms of distributive lattices: A short proof, Math. Slovaca 46 (1996), 363-369.
[GS 37] G. Grätzer and E. T. Schmidt, Complete congruence lattices of join-infinite distributive lattices, Algebra Universalis 37 (1997), 141-143.
[GS 38] G. Grätzer, H. Lakser, and E. T. Schmidt, Isotone maps as maps of congruences. I. Abstract maps, Acta Math. Hungar. 75 (1997), 105-135.
[GS 39] G. Grätzer, E. T. Schmidt, and D. Wang, A short proof of a theorem of Birkhoff, Algebra Universalis 37 (1997), 253-255.
[GS 40] G. Grätzer, H. Lakser, and E. T. Schmidt, Congruence lattices of finite semimodular lattices, Canad. Math. Bull. 41 (1998), 290-297.
[GS 41] G. Grätzer and E. T. Schmidt, Representations of join-homomorphisms of distributive lattices with doubly 2-distributive lattices, Acta Sci. Math. (Szeged) 64 (1998), 373-387.
[GS 42] G. Grätzer and E. T. Schmidt, Congruence-preserving extensions of finite lattices into sectionally complemented lattices, Proc. Amer. Math. Soc. 127 (1999), 1903-1915.
[GS 43] G. Grätzer and E. T. Schmidt, Sublattices and standard congruences, Mailbox, Algebra Universalis 41 (1999), 151-153.
[GS 44] G. Grätzer and E. T. Schmidt, On finite automorphism groups of simple arguesian lattices, Studia Sci. Math. Hungar. 35 (1999), 247-258.

2000

[GS 45] G. Grätzer, H. Lakser, and E. T. Schmidt, Congruence representations of join-homomorphisms of finite distributive lattices: size and breadth, J. Austral. Math. Soc. Ser. A 68 (2000), 85-103.
[GS 46] G. Grätzer and E. T. Schmidt, Congruence-preserving extensions of finite lattices to semimodular lattices, Houston J. Math. 27 (2001), 1-9.
[GS 47] G. Grätzer and E. T. Schmidt, Regular congruence-preserving extensions of lattices, Algebra Universalis 46 (2001), 119-130.
[GS 48] G. Grätzer and E. T. Schmidt, Complete congruence representations with 2-distributive modular lattices, Acta Sci. Math. (Szeged) 67 (2001), 289-300.
[GS 49] G. Grätzer, H. Lakser, and E. T. Schmidt, Isotone maps as maps of congruences. II. Concrete maps, Acta Math. Hungar. 92 (2001), 253-258.
[GS 50] G. Grätzer and E. T. Schmidt, Congruences and Constructions, in The Concise Handbook of Algebra, Alexander V. Mikhalev and Günter F. Pilz, eds. Kluwer Academic Publishers, Dordrecht, 2002, pp 417-420. ISBN: 0-7923-7072-4
[GS 51] G. Grätzer, E.T. Schmidt, and K. Thomsen, Congruence lattices of uniform lattices, Houston J. Math. 29 (2003), 247-263.
[GS 52] G. Grätzer and E. T. Schmidt, Representing congruence lattices of lattices with partial unary operations as congruence lattices of lattices. I. Interval equivalence, J. Algebra. 269 (2003), 136-159.
[GS 53] G. Grätzer and E. T. Schmidt, On the Independence Theorem of related structures for modular (arguesian) lattices, Studia Sci. Math. Hungar. 40 (2003), 1-12.
[GS 54] G. Grätzer and E. T. Schmidt, Finite lattices with isoform congruences, Tatra Mt. Math. Publ. 27 (2003), 111-124.
[GS 55] G. Grätzer and E. T. Schmidt, Congruence class sizes in finite sectionally complemented lattices, Canad. Math. Bull. 47 (2004), 191-205.
[GS 56] G. Grätzer and E. T. Schmidt, Finite lattices and congruences. A survey, Algebra Universalis 52 (2004), 241-278.
[GS 57] G. Grätzer, R. W. Quackenbush, and E.T. Schmidt, Congruence-preserving extensions of finite lattices to isoform lattices, Acta Sci. Math. (Szeged) 70 (2004), 473-494.
[GS 58] G. Grätzer, M. Greenberg, and E. T. Schmidt, Representing congruence lattices of lattices with partial unary operations as congruence lattices of lattices. II. Interval ordering, J. Algebra. 286 (2005), 307-324.

2. Conference Proceedings

[GSP 1] G. Grätzer and E. T. Schmidt, Algebraic lattices as congruence lattices: The \mathfrak{m}-complete case, Lattice theory and its applications. In celebration of Garrett Birkhoff's 80th birthday. Papers from the symposium held at the Technische Hochschule Darmstadt, Darmstadt, June 1991. Edited by K. A. Baker and R. Wille. Research and Exposition in Mathematics, 23. Heldermann Verlag, Lemgo, 1995. viii+262 pp. ISBN 3-88538-223-7
[GSP 2] G. Grätzer, H. Lakser, and E. T. Schmidt, Restriction of standard congruences on lattices, Contributions to General Algebra, 10 (Klagenfurt, 1997), 167-175, Heyn, Klagenfurt, 1998.
[GSP 3] G. Grätzer and E. T. Schmidt, Some combinatorial aspects of congruence lattice representations, ORDAL '96 (Ottawa, ON), Theoret. Comput. Sci. 217 (1999), 291-300.

Grätzer minus Schmidt

1. Books

Mathematical Books

[GB 1] G. Grätzer, Universal Algebra, The University Series in Higher Mathematics. D. van Nostrand Co. Inc., Princeton, N.J., Toronto, Ont., London, 1968. xvi+368 pp.
[GB 2] G. Grätzer, Lattice Theory. First Concepts and Distributive Lattices. W. H. Freeman and Co., San Fransisco, Calif., 1971. xv+212 pp. Softcover edition, Dover Publications, 2008.
[GB 3] G. Grätzer, General Lattice Theory. Pure and Applied Mathematics 75, Academic Press, Inc. (Harcourt Brace Jovanovich, Publishers), New York-London; Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 52. Birkhäuser Verlag, Basel-Stuttgart; Akademie Verlag, Berlin, 1978. xiii+381 pp. ISBN: 0-12-295750-4
[GB 4] G. Grätzer, Universal Algebra, second edition. Springer-Verlag, New York-Heidelberg, 1979. xviii+581 pp. ISBN: 3-7643-5239-6
[GB 5] G. Grätzer, Obshchaya teoriya reshetok (Russian). Russian translation of General Lattice Theory. Translated from the English by A. D. Bol'bot, V. A. Gorbunov, and V.I. Tumanov. Translation edited and with a preface by D. M. Smirnov. "Mir", Moscow, 1982. 454 pp.
[GB 6] G. Grätzer, General Lattice Theory, second edition. new appendices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung, and R. Wille. Birkhäuser Verlag, Basel, 1998. xx+663 pp. ISBN: 0-12-295750-4; 3-7643-5239-6 Softcover edition, Birkhäuser Verlag, Basel-Boston-Berlin, 2003. ISBN: 3-7643-6996-5 Reprinted March, 2007.
[GB 7] G. Grätzer, The Congruences of a Finite Lattice, A Proof-by-Picture Approach. Birkhäuser Boston, 2006. xxiii+281 pp. ISBN: 0-8176-3224-7.

LATEX Books

[GB 8] G. Grätzer, Math into $T_{E} X$. A Simple Introduction to $\mathcal{A} \mathcal{M} \mathcal{S}$-LAT $T_{\mathrm{E} X}$. Birkhäuser Boston, Boston MA, 1993. xxix+296 pp. ISBN: 0-8176-3673-4; 3-7643-3673-4
[GB 9] G. Grätzer, The new standard IATEX. Personal TEX Inc. 1995.
[GB 10] G. Grätzer, Math into LATEX. An Introduction to LATEX and $\mathcal{A} \mathcal{M} \mathcal{S}$-LATEX. Birkhäuser Boston, Boston MA, 1995. xxvii+451 pp. Second printing, 1997. ISNB: 0-8176-3805-9; 3-7643-3805-9
[GB 11] G. Grätzer, First Steps in $\mathrm{IAT}_{\mathrm{E} X .}$ Birkhäuser Verlag, Boston, Springer-Verlag, New York, 1999. xx+131 pp. ISBN: 0-8176-4132-7
[GB 12] G. Grätzer, Math into IATEX, third edition. Birkhäuser Verlag, Boston, Springer-Verlag, New York, 2000. xl+584 pp. ISBN: 0-8176-4131-9; 3-7643-4131-9
[GB 13] G. Grätzer, Pervije Sagi v LaTeX'e. Mir Publisher, Moscow, 2000. (Russian)
[GB 14] G. Grätzer, PCTEX: Quick Start. Personal $T_{E} X$, Inc., Mill Valley CA, 2000. ISBN: 0-9631044-1-1
[GB 15] G. Grätzer, $\mathrm{PCT}_{\mathrm{E} X: ~ Q u i c k ~ S t a r t, ~ s e c o n d ~ e d i t i o n . ~ P e r s o n a l ~ T E X, ~ I n c ., ~ S a n ~ F r a n c i s c o ~}^{\text {I }}$ CA, 2003. ISBN: 0-9631044-2-X
[GB 16] G. Grätzer, More Math into IATEX, fourth edition. Springer-Verlag, New York, 2007. xxxiv+619 pp. ISBN:0387322892

Other Books

[GB 17] G. Grätzer, Elmesport egy esztendőre. Gondolat Kiadó, Budapest, 1959 (Hungarian).
[GB 18] G. Gratzer and T. Gratzer, FAST BASIC: Beyond TRS-80 BASIC. J. Wiley \& Sons, New York, 1982.
[GB 19] D. Clark and G. Gratzer, MAX Reference Manual. Sub Rosa Inc., Winnipeg, 1984.
[GB 20] D. Clark and G. Gratzer, Conversational MAX. Tutorial Manual. Sub Rosa Inc., Winnipeg, 1985.
[GB 21] S. Bursten, D. Clark, and G. Gratzer, Programming MAX. Tutorial Manual. Sub Rosa Inc., Winnipeg, 1986.
[GB 22] S. Bursten, G. Gratzer, and B. Melman, VP-Info, SR-Info. Reference Manual. Tutorial Manual. Sub Rosa Publishing Inc., Toronto, 1990.
[GB 23] G. Grätzer, Elmesport egy esztendőre, second edition. Nyitott Könyvmúhely, Budapest, 2008 (Hungarian). 238 pp. ISBN: 978-963-9725-36-2

2. Mathematical Articles

[G 1] G. Grätzer, Standard ideals, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1959), 81-97 (Hungarian).

1960

[G 2] G. Grätzer and M. Wonenburger, Some examples of complemented modular lattices, Canad. Math. Bull. 5 (1962), 111-121
[G 3] G. Grätzer, A characterization of neutral elements in lattices (Notes on lattice theory. I.), Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 191-192.
[G 4] G. Grätzer, On Boolean functions (Notes on lattice theory. II.), Rev. Math. Pures Appl. (Bucarest) 7 (1962), 693-697.
[G 5] G. Grätzer, A representation theorem for multi-algebras, Arch. Math. 13 (1962), 452-456.
[G6] G. Grätzer, A theorem on doubly transitive permutation groups with application to universal algebras, Fund. Math. 53 (1963), 25-41.
[G7] G. Grätzer, On the Jordan-Hölder theorem for universal algebras, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963), 397-406.
[G 8] G. Grätzer, A generalization of Stone's representation theorem for Boolean algebras, Duke Math. J. 30 (1963), 469-474.
[G 9] G. Grätzer, Free algebras over first order axiom systems, Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963), 193-199.
[G 10] G. Grätzer, On semi-discrete lattices whose congruence relations form a Boolean algebra, Acta Math. Acad. Sci. Hungar. 14 (1963), 441-445.
[G 11] G. Grätzer, Boolean functions on distributive lattices, Acta Math. Acad. Sci. Hungar. 15 (1964), 195-201.
[G 12] G. Grätzer, On the class of subdirect powers of a finite algebra, Acta Sci. Math. (Szeged) 25 (1964), 160-168.
[G13] G. Grätzer, On the family of certain subalgebras of a universal algebra, Indag. Math. 27 (1965), 790-802.
[G 14] O. Frink and G. Grätzer, The closed subalgebras of a topological algebra, Arch. Math. (Basel) 17 (1966), 154-158.
[G 15] G. Grätzer, Equational classes of lattices, Duke Math. J. 33 (1966), 613-622.
[G16] G. Grätzer, On a new notion of independence in universal algebras, Colloq. Math. 17 (1967), 225-234.
[G 17] G. Grätzer, On the endomorphism semigroup of simple algebras, Math. Ann. 170 (1967), 334-338.
[G 18] G. Grätzer, On coverings of universal algebras, Arch. Math. (Basel) 18 (1967), 113-117.
[G 19] M. I. Gould and G. Grätzer, Boolean extensions and normal subdirect powers of finite universal algebras, Math. Z. 99 (1967), 16-25.
[G 20] G. Grätzer, On the spectra of classes of algebras, Proc. Amer. Math. Soc. 18 (1967), 729-735.
[G 21] G. Grätzer and G. H. Wenzel, On the concept of congruence relation in partial algebras, Math. Scand. 20 (1967), 275-280.
[G 22] K.-H. Diener and G. Grätzer, A note on absolutely free algebras, Proc. Amer. Math. Soc. 18 (1967), 551-553.
[G23] G. Grätzer and W. A. Lampe, On subalgebra lattices of universal algebras, J. Algebra 7 (1967), 263-270.
[G 24] G. Grätzer, On polynomial algebras and free algebras, Canad. J. Math. 20 (1968), 575-581.
[G 25] G. Grätzer, On the existence of free structures over universal classes, Math. Nachr. 36 (1968), 135-140.
[G 26] G. Grätzer, Free Σ-structures, Trans. Amer. Math. Soc. 135 (1969), 517-542.
[G 27] C. C. Chen and G. Grätzer, Stone lattices. I. Construction theorems, Canad. J. Math. 21 (1969), 884-894.
[G 28] C. C. Chen and G. Grätzer, Stone lattices. II. Structure theorems, Canad. J. Math. 21 (1969), 895-903.
[G 29] C. C. Chen and G. Grätzer, On the construction of complemented lattices, J. Algebra 11 (1969), 56-63.
[G 30] G. Grätzer, Stone algebras form an equational class. Remarks on lattice theory. III.), J. Austral. Math. Soc. 9 (1969), 308-309.
[G 31] G. Grätzer and H. Lakser, Equationally compact semilattices, Colloq. Math. 20 (1969), 27-30.
[G 32] G. Grätzer and H. Lakser, Chain conditions in the distributive free product of lattices, Trans. Amer. Math. Soc. 144 (1969), 301-312.
[G 33] G. Grätzer, H. Lakser, and J. Płonka, Joins and direct products of equational classes, Canad. Math. Bull. 12 (1969), 741-744.

1970

[G 34] G. Grätzer, H. Lakser, and C. R. Platt, Free products of lattices, Fund. Math. 69 (1970), 233-240.
[G 35] G. Grätzer, Two Mal'cev type theorems in universal algebra, J. Combinatorial Theory 8 (1970), 334-342.
[G 36] G. Grätzer, J. Płonka, and A. Sekanina, On the number of polynomials of a universal algebra. I, Colloq. Math. 22 (1970), 9-11.
[G 37] G. Grätzer and J. Płonka, On the number of polynomials of a universal algebra. II, Colloq. Math. 22 (1970), 13-19.
[G 38] G. Grätzer and B. Wolk, Finite projective distributive lattices, Canad. Math. Bull. 13 (1970), 139-140.
[G 39] G. Grätzer and J. Płonka, A characterization of semilattices, Colloq. Math. 22 (1970), 21-24 (errata insert).
[G 40] G. Grätzer and J. Płonka, On the number of polynomials of an idempotent algebra. I, Pacific J. Math. 32 (1970), 697-709.
[G 41] G. Grätzer and J. Sichler, On the endomorphism semigroup (and category) of bounded lattices, Pacific J. Math. 35 (1970), 639-647.
[G42] R. Balbes and G. Grätzer, Injective and projective Stone algebras, Duke Math. J. 38 (1971), 339-347.
[G43] G. Grätzer and R. Padmanabhan, On idempotent, commutative, and non-associative groupoids, Proc. Amer. Math. Soc. 28 (1971), 75-80.
[G 44] G. Grätzer and H. Lakser, The structure of pseudocomplemented distributive lattices. II. Congruence extension and amalgamation, Trans. Amer. Math. Soc. 156 (1971), 343-358.
[G 45] G. Grätzer, A reduced free product of lattices, Fund. Math. 73 (1971/72), 21-27.
[G46] G. Grätzer and H. Lakser, The structure of pseudocomplemented distributive lattices. III. Injectives and absolute subretracts, Trans. Amer. Math. Soc. 169 (1972), 475-487.
[G 47] G. Grätzer, K. M. Koh, and M. Makkai, On the lattice of subalgebras of a Boolean algebra, Proc. Amer. Math. Soc. 36 (1972), 87-92.
[G 48] G. Grätzer and H. Lakser, Two observations on the congruence extension property, Proc. Amer. Math. Soc. 35 (1972), 63-64.
[G 49] G. Grätzer and H. Lakser, A note on the implicational class generated by a class of structures, Canad. Math. Bull. 16 (1973), 603-605.
[G 50] G. Grätzer and J. Płonka, On the number of polynomials of an idempotent algebra. II, Pacific J. Math. 47 (1973), 99-113.
[G 51] E. Fried and G. Grätzer, A nonassociative extension of the class of distributive lattices, Pacific J. Math. 49 (1973), 59-78.
[G 52] G. Grätzer, B. Jónsson, and H. Lakser, The Amalgamation Property in equational classes of modular lattices, Pacific J. Math. 45 (1973), 507-524.
[G53] E. Fried and G. Grätzer, Some examples of weakly associative lattices, Colloq. Math 27 (1973), 215-221.
[G 54] G. Grätzer and J. Sichler, Agassiz sums of algebras, Colloq. Math. 30 (1974), 57-59.
[G 55] G. Grätzer and J. Sichler, Free products of Hopfian lattices, Collection of articles dedicated to the memory of Hanna Neumann, VI. Austral. J. Math. 17 (1974), 234-245.
[G 56] G. Grätzer and H. Lakser, Free-lattice like sublattices of free products of lattices, Proc. Amer. Math. Soc. 44 (1974), 43-45.
[G57] G. Grätzer, A property of transferable lattices, Proc. Amer. Math. Soc. 43 (1974), 269-271.
[G 58] G. Grätzer and J. Sichler, On generating free products of lattices, Proc. Amer. Math. Soc. 46 (1974), 9-14.
[G 59] G. Grätzer and J. Sichler, Free decompositions of a lattice, Canad. J. Math. 27 (1975), 276-285.
[G60] H. Gaskill, G. Grätzer, and C. R. Platt, Sharply transferable lattices, Canad. J. Math. 27 (1975), 1246-1262.
[G61] E. Fried and G. Grätzer, Partial and free weakly associative lattices, Houston J. Math. 2 (1976), 501-512.
[G62] G. Grätzer and D. Kelly, When is the free product of lattices complete? Proc. Amer. Math. Soc. 66 (1977), 6-8.
[G63] G. Grätzer and D. Kelly, A normal form theorem for lattices completely generated by a subset, Proc. Amer. Math. Soc. 67(1977), 215-218.
[G64] G. Grätzer and R. Padmanabhan, Symmetric difference in abelian groups, Pacific J. Math. 74 (1978), 339-347.
[G 65] G. Grätzer and H. Lakser, A variety of lattices whose quasivarieties are varieties, Algebra Universalis 8 (1978), 135-136.
[G66] M.E. Adams and G. Grätzer, Free products of residually finite lattices are residually finite, Algebra Universalis 8 (1978), 262-263.
[G67] J. Berman and G. Grätzer, Uniform representations of congruence schemes, Pacific J. Math. 76 (1978), 301-311.
[G68] G. Grätzer and C. R. Platt, Two embedding theorems for lattices, Proc. Amer. Math. Soc. 69 (1978), 21-24.
[G69] E. Fried and G. Grätzer, On automorphisms of the subalgebra lattice induced by automorphisms of the algebra, Acta Sci. Math. (Szeged) 40 (1978), 49-52.
[G70] G. Grätzer and H. Lakser, The lattice of quasivarieties of lattices, Algebra Universalis 9 (1979), 102-115.
[G71] G. Grätzer, A. Hajnal, and D. Kelly, Chain conditions in free products of lattices with infinitary operations, Pacific J. Math. 83 (1979), 107-115.
[G72] G. Grätzer, C. R. Platt, and B. Sands, Embedding lattices into lattice of ideals, Pacific J. Math. 85 (1979), 65-75.

1980
[G73] E. Fried, G. Grätzer, and R. W. Quackenbush, The equational class generated by weakly associative lattices with the unique bound property, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 22-23 (1979/80), 205-211.
[G 74] G. Grätzer and C. R. Platt, A characterization of sharply transferable lattices, Canad. J. Math. 32 (1980), 145-154.
[G75] E. Fried, G. Grätzer, and R. W. Quackenbush, Uniform congruence schemes, Algebra Universalis 10 (1980), 176-188.
[G76] G. V. Cormack and G. Grätzer, Using directed graphs for text compression, C. R. Math. Rep. Acad. Sci. Canada 2 (1980), 193-198.
[G77] G. Grätzer and A. P. Huhn, A note on finitely presented lattices, C. R. Math. Rep. Acad. Sci. Canada 2 (1980), 291-296.
[G78] E. Graczyńska and G. Grätzer, On double systems of lattices, Demonstratio Math. 13 (1980), 743-747.
[G79] G. Grätzer, H. Lakser, and R. W. Quackenbush, On the lattice of quasivarieties of distributive lattices with pseudocomplementation, Acta Sci. Math. (Szeged) 42 (1980), 257-263.
[G 80] G. Grätzer, General Lattice Theory: 1979 Problem Update, Algebra Universalis 11 (1980), 396-402.
[G 81] G. Grätzer and D. Kelly, On a special type of subdirectly irreducible lattice with an application to products of varieties, C. R. Math. Rep. Acad. Sci. Canada 2 (1980/81), 43-48.
[G 82] G. Grätzer, A. P. Huhn, and H. Lakser, On the structure of finitely presented lattices, Canad. J. Math. 33 (1981), 404-411.
[G 83] G. Grätzer, H. Lakser, and R. W. Quackenbush, The structure of tensor products of semilattices with zero, Trans. Amer. Math. Soc. 267 (1981), 503-515.
[G 84] G. Grätzer and A.P. Huhn, Amalgamated free product of lattices. I. The common refinement property, Acta Sci. Math. (Szeged) 44 (1982), 53-66.
[G 85] G. Grätzer and A.P. Huhn, Amalgamated free product of lattices. II. Generating sets, Studia Sci. Math. Hungar. 16 (1981), 141-148.
[G 86] G. Grätzer and D. Kelly, Free m-products of lattices. I, Colloq. Math. 48 (1984), 181-192.
[G 87] G. Grätzer and A.P. Huhn, Amalgamated free product of lattices. III. Free generating sets, Acta Sci. Math. (Szeged) 47 (1984), 265-275.
[G 88] G. Grätzer and S. Whitney, Infinitary varieties of structures closed under the formation of complex structures, Colloq. Math. 48 (1984), 1-5.
[G 89] G. Grätzer and D. Kelly, The free \mathfrak{m}-lattice on the poset H, Order 1 (1984), 47-65.
[G 90] E. Fried and G. Grätzer, Classes of congruence lattices in filtral varieties, Studia Sci. Math. Hungar. 19 (1984), 259-264.
[G 91] G. Grätzer and D. Kelly, A technique to generate \mathfrak{m}-ary free lattices from finitary ones, Canad. J. Math. 37 (1985), 324-336.
[G 92] G. Grätzer and D. Kelly, Products of lattice varieties, Algebra Universalis 21 (1985), 33-45.
[G 93] G. Grätzer and D. Kelly, Free m-products of lattices. II, Colloq. Math. 50 (1986), 155-166.
[G 94] J. Berman, G. Grätzer, and C. R. Platt, Extending algebras to model congruence schemes, Canad. J. Math. 38 (1986), 257-276.
[G 95] G. Grätzer and H. Lakser, Homomorphisms of distributive lattices as restrictions of congruences, Canad. J. Math. 38 (1986), 1122-1134.
[G 96] G. Grätzer and E. W. Kiss, A construction of semimodular lattices, Order 2 (1986), 351-365.
[G 97] G. Grätzer, Birkhoff's Representation Theorem is equivalent to the Axiom of Choice, Algebra Universalis 23 (1986), 58-60.
[G 98] G. Grätzer, The Amalgamation Property in lattice theory, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), 273-289.
[G 99] G. Grätzer and D. Kelly, The lattice variety D ○ D, Acta Sci. Math. (Szeged) 51 (1987), 73-80. Addendum, 52 (1988), 465.
[G 100] G. Grätzer and D. Kelly, Subdirectly irreducible members of products of lattice varieties, Proc. Amer. Math Soc. 102 (1988), 483-489.
[G 101] G. Grätzer and H. Lakser, Identities for globals (complex algebras) of algebras, Colloq. Math. 56 (1988), 19-29.
[G 102] E. Fried and G. Grätzer, Pasting infinite lattices, J. Austral. Math. Soc. Ser. A 47 (1989), 1-21.
[G 103] G. Grätzer and G. H. Wenzel, Tolerances, covering systems, and the Axiom of Choice, Arch. Math. (Brno) 25 (1989), 27-34.
[G 104] E. Fried and G. Grätzer, Pasting and modular lattices, Proc. Amer. Math. Soc. 106 (1989), 885-890.
[G 105] G. Grätzer and H. Lakser, Congruence lattices, automorphism groups of finite lattices and planarity, C. R. Math. Rep. Acad. Sci. Canada 11 (1989), 137-142. Addendum, 11 (1989), 261.
[G 106] G. Grätzer, On the complete congruence lattice of a complete lattice with an application to universal algebra, C. R. Math. Rep. Acad. Sci. Canada 11 (1989), 105-108.

1990

[G 107] G. Grätzer, A "lattice theoretic" proof of the independence of the automorphism group, the congruence lattice, and subalgebra lattice of an infinitary algebra, Algebra Universalis 27 (1990), 466-473.
[G 108] E. Fried and G. Grätzer, Generalized congruences and products of lattice varieties, Acta Sci. Math. (Szeged) 54 (1990), 21-36.
[G 109] E. Fried and G. Grätzer, Notes on tolerance relations of lattices: A conjecture of R.N. McKenzie, J. Pure Appl. Algebra 68 (1990), 127-134.
[G 110] G. Grätzer, On the congruence lattice of a lattice, The Dilworth Theorems, 460-464, Contemp. Mathematicians, Birkhäuser, Boston, MA, 1990.
[G 111] E. Fried and G. Grätzer, Strong amalgamation of distributive lattices, J. Algebra 128 (1990), 446-455.
[G 112] G. Grätzer and G. H. Wenzel, Notes on tolerance relations of lattices, Acta Sci. Math. (Szeged) 54 (1990), 229-240.
[G113] E. Fried, G. Grätzer, and H. Lakser, Projective geometries as cover preserving sublattices, Algebra Universalis 27 (1990), 270-278.
[G 114] E. Fried and G. Grätzer, The Unique Amalgamation Property for lattices, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 33 (1990), 167-176. (Correction: 35 (1992), 271.)
[G 115] G. Grätzer and H. Lakser, On complete congruence lattices of complete lattices, Trans. Amer. Math. Soc. 327 (1991), 385-405.
[G116] G. Grätzer, H. Lakser, and B. Wolk, On the lattice of complete congruences of a complete lattice: On a result of K. Reuter and R. Wille, Acta Sci. Math. (Szeged) 55 (1991), 3-8.
[G 117] G. Grätzer and H. Lakser, On congruence lattices of \mathfrak{m}-complete lattices, J. Austral. Math. Soc. Ser. A 52 (1992), 57-87.
[G 118] G. Grätzer and H. Lakser, Congruence lattices of planar lattices, Acta Math. Hungar. 60 (1992), 251-268.
[G 119] G. Grätzer, A. Kisielewicz, and B. Wolk, An equational basis in four variables for the three-element tournament, Colloq. Math. 63 (1992), 41-44.
[G120] E. Fried and G. Grätzer, Unique Envelope Property, Studia Sci. Math. Hungar. 27 (1992), 183-187.
[G 121] G. Grätzer and H. Lakser, Homomorphisms of distributive lattices as restrictions of congruences. II. Planarity and automorphisms, Canad. J. Math. 46 (1994), 3-54.
[G 122] G. Grätzer, I. Rival, and N. Zaguia, Small representations of finite distributive lattices as congruence lattices, Proc. Amer. Math. Soc. 123 (1995), 1959-1961. Correction: 126 (1998), 2509-2510.
[G 123] M. Davidson and G. Grätzer, A note on coalitions, Acta Sci. Math. (Szeged) 61 (1995), 33-34.
[G 124] G. Grätzer and D. Wang, A lower bound for congruence representations, Order 14 (1997), 67-74.
[G 125] G. Grätzer and A. Hajnal, On isotone maps on a countable lattice, Mailbox, Algebra Universalis 41 (1999), 85-86.
[G 126] G. Grätzer and F. Wehrung, Proper congruence-preserving extensions of lattices, Acta Math. Hungar. 85 (1999), 175-185.
[G 127] G. Grätzer and F. Wehrung, A new lattice construction: the box product, J. Algebra 221 (1999), 315-344.
[G 128] G. Grätzer and F. Wehrung, The $M_{3}[G]$ construction and n-modularity, Algebra Universalis 41 (1999), 87-114.
[G 129] G. Grätzer and F. Wehrung, Tensor products and transferability of semilattices, Canad. J. Math. 51 (1999), 792-815.
[G 130] G. Grätzer and F. Wehrung, Flat semilattices, Colloq. Math. 79 (1999), 185-191.

2000

[G 131] G. Grätzer, H. Lakser, and F. Wehrung, Congruence amalgamation of lattices, Acta Sci. Math. (Szeged) 66 (2000), 3-22.
[G 132] G. Grätzer and J. Sichler, On the endomorphism monoids of (uniquely) complemented lattices, Trans. Amer. Math. Soc. 352 (2000), 2429-2444.
[G 133] G. Grätzer and F. Wehrung, Tensor products of lattices with zero, revisited, J. Pure Appl. Algebra 147 (2000), 273-301.
[G 134] G. Grätzer and F. Wehrung, The Strong Independence Theorem for automorphism groups and congruence lattices of arbitrary lattices, Adv. in Appl. Math. 24 (2000), 181-221.
[G 135] G. Grätzer, Hálóelméleti Függetlenségi Tételek. Székfoglaló előadás (Independence results in lattice theory. Inaugural lecture at the Hungarian Academy of Sciences), in Székfoglalók, Akadémiai Mühely 3 (1995-1998), 2001, pp. 1-8. (Hungarian)
[G 136] G. Grätzer and F. Wehrung, A survey of tensor products and related constructions in two lectures, Algebra Universalis 45 (2001), 117-134.
[G 137] G. Grätzer, Varieties of Lattices, in The Concise Handbook of Algebra, Alexander V. Mikhalev and Günter F. Pilz, eds. Kluwer Academic Publishers, Dordrecht, 2002, pp. 442-446. ISBN: 0-7923-7072-4
[G 138] G. Grätzer and M. Greenberg, Lattice tensor products. I. Coordinatization, Acta Math. Hungar. 95 (4) (2002), 265-283.
[G 139] G. Grätzer and M. Greenberg, Lattice tensor products. II. Ideal lattices, Acta Math. Hungar. 97 (2002), 193-198.
[G140] G. Grätzer and M. Greenberg, Lattice tensor products. III. Congruences, Acta Math. Hungar. 98 (2003), 167-173.
[G 141] G. Grätzer and F. Wehrung, On the number of join-irreducibles in a congruence representation of a finite distributive lattice, Algebra Universalis 49 (2003), 165-178.
[G 142] G. Grätzer and M. Greenberg, Lattice tensor products. IV. Infinite lattices, Acta Math. Hungar. 103 (2004), 71-84.
[G143] G. Grätzer and H. Lakser, Freely adjoining a relative complement to a lattice. Algebra Universalis 53 (2005), 189-210.
[G 144] G. Grätzer and David Kelly, A new lattice construction, Algebra Universalis 53 (2005), 253-265.
[G 145] G. Grätzer and H. Lakser, Notes on sectionally complemented lattices. I. Characterizing the 1960 sectional complement. Acta Math. Hungar. 108 (2005), 115-125.
[G 146] G. Grätzer and H. Lakser, Notes on sectionally complemented lattices. II. Generalizing the 1960 sectional complement with an application to congruence restrictions. Acta Math. Hungar. 108 (2005), 251-258.
[G147] G. Grätzer, H. Lakser, and M. Roddy, Notes on sectionally complemented lattices. III. The general problem. Acta Math. Hungar. 108 (2005), 325-334.
[G 148] G. Grätzer and H. Lakser, Freely adjoining a complement to a lattice. Math. Slovaca. 56 (2006), 93-104.
[G 149] G. Grätzer and H. Lakser, Subdirectly irreducible modular lattices of width at most 4. Acta Sci. Math. (Szeged) 73 (2007), 3-30.
[G150] G. Grätzer and M. Roddy, Notes on sectionally complemented lattices. IV. How far does the Atom Lemma go? Acta Math. Hungar. 117 (2007), 41-60.
[G151] G. Grätzer, Two problems that shaped a century of lattice theory. Notices Amer. Math. Soc. 54 (2007), 696-707.
[G 152] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. I. Construction. Acta Sci. Math. (Szeged) 73 (2007), 445-462.
[G 153] G. Grätzer and E. Knapp, A note on planar semimodular lattices. Algebra Universalis 58 (2008), 497-499.
[G 154] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. II. Congruences. Acta Sci. Math. (Szeged) 74 (2008), 23-36.
[G 155] G. Grätzer and E. Knapp, Notes on planar semimodular lattices. III. Congruences of rectangular lattices. Acta Sci. Math. (Szeged) 74 (2008).
[G156] G. Grätzer and David Kelly, Which freely generated lattices contain F(3)? Algebra Universalis 59 (2008).

3. Conference Proceedings

[GP 1] G. Grätzer, Composition of functions, 1970 Proc. Conf. on Universal Algebra (Queen's Univ., Kingston, Ont., 1969), pp. 1-106, Queen's Univ., Kingston, Ont.
[GP 2] G. Grätzer, Universal Algebra, 1970 Trends in Lattice Theory (Sympos., U.S. Naval Academy, Annapolis, Md., 1966), pp. 173-210 Van Nostrand Reinhold, New York.
[GP 3] G. Grätzer, Free products and reduced free products of lattices, Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973), pp. 539-563. Dept. Math., Univ. Houston, Houston, Tex., 1973.
[GP 4] G. Grätzer and D. Kelly, A survey of products of lattice varieties, in Colloquia Mathematica Societatis János Bolyai. 33. Contributions to Lattice Theory. Szeged (Hungary), 1980, 457-472.
[GP 5] G. Grätzer, Universal algebra and lattice theory: A story and three research problems, Universal algebra and its links with logic, algebra, combinatorics and computer science (Darmstadt, 1983), 1-13, R \& E Res. Exp. Math., 4, Heldermann, Berlin, 1984.
[GP 6] G. Grätzer and D. Kelly, The construction of some free \mathfrak{m}-lattices on posets, Orders: description and roles (L'Arbresle, 1982), pp.103-117, North-Holland Math. Stud., 99, North-Holland, Amsterdam-New York, 1984.
[GP 7] G. Grätzer, The complete congruence lattice of a complete lattice, Lattices, semigroups, and universal algebra. Proceedings of the International Conference held at the University of Lisbon, Lisbon, June 20-24, 1988. Edited by Jorge Almeida, Gabriela Bordalo and Philip Dwinger, pp. 81-87. Plenum Press, New York, 1990.
[GP 8] G. Grätzer and A. Kisielewicz, A survey of some open problems on p_{n}-sequences and free spectra of algebras and varieties, Universal algebra and quasigroup theory (Jadwisin, 1989), 57-88, Res. Exp. Math., 19, Heldermann, Berlin, 1992.
[GP 9] G. Grätzer, Congruence Lattices 101, ORDAL '96 (Ottawa, ON), Theoret. Comput. Sci. 217 (1999), 279-289.

4. $\mathrm{HT}_{\mathrm{E}} \mathrm{X}$ Articles

[GL 1] G. Grätzer, $\mathcal{A} \mathcal{M} \mathcal{S}$ - $E^{A} T_{E} X$, Notices Amer. Math. Soc. 40 (1993), 148-150.
[GL 2] G. Grätzer, Advances in $T_{E} X$ implementations. I. PostScript fonts, Notices Amer. Math. Soc. 40 (1993), 834-838.
[GL 3] G. Grätzer, Advances in $T_{E} X$ implementations. II. Integrated environments, Notices Amer. Math. Soc. 41 (1994), 106-111.
[GL 4] G. Grätzer, Advances in $T_{E} X$ implementations. III. A new version of $L A T E X$, finally, Notices Amer. Math. Soc. 41 (1994), 611-615.
[GL 5] G. Grätzer, Advances in $T_{E} X$. IV. Header and footer control in $L^{A} T_{E} X$, Notices Amer. Math. Soc. 41 (1994), 772-777.
[GL 6] G. Grätzer, Advances in $T_{E} X$. V. Using text fonts in the new standard $L^{A} T_{E} X$, Notices Amer. Math. Soc. 41 (1994), 927-929.
[GL 7] G. Grätzer, Advances in $T_{E} X$. VI. Using math fonts in the new standard $L_{A} T_{E} X$, Notices Amer. Math. Soc. 41 (1994), 1164-1165.
[GL 8] G. Grätzer, Turbulent transition, TUGboat 21 (2001), 111-113.
[GL 9] G. Grätzer, Publishing legacy documents on the Web, TUGboat 22 (2001), 74-77.

5. Miscellaneous Articles

[GM 1] G. Grätzer, In Memoriam Professor A. Rényi, Canad. Math. Soc. Notes 2 (1970), 6.
[GM 2] G. Grätzer, Review of "Categories of algebraic systems" by Mario Petrich and "Mal'cev varieties" by Jonathan D. H. Smith, Bull. Amer. Math. Soc. 84 (1970), 1339-1344.
[GM 3] G. Grätzer, Review of "Ordered Sets. Edited by I. Rival. D. Reidel Company", Order 1 (1984), 98-102.
[GM 4] G. Grätzer, In Memoriam András Huhn, Algebra Universalis 23 (1986), 1-4.
[GM 5] G. Grätzer, Review of "Lattices with Unique Complements" by V. N. Saliŭ, Translations of Mathematical Monographs, Volume 69, American Mathematical Society, Bull. Amer. Math. Soc. 22 (1990), 318-324.

Schmidt minus Grätzer

1. Mathematical Books

[SB 1] E. T. Schmidt, Kongruenzrelationen algebraischer Strukturen, Mathematische Forschungsberichte, XXV VEB Deutscher Verlag der Wissenschaften, Berlin 1969. 108 pp.
[SB 2] E. T. Schmidt, A Survey on Congruence Lattice Representations, Teubner-Texte zur Mathematik, 42. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1982. 115 pp.

2. Mathematical Articles

[S 1] E. T. Schmidt, On congruence lattices of algebraic structures, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 9 (1959), 163-174 (Hungarian).

1960

[S2] E. T. Schmidt, Über die Kongruenzverbände der Verbände, Publ. Math. Debrecen 9 (1962), 243-256.
[S 3] E. T. Schmidt, Universalen Algebren mit gegebenen Automorphismengruppen und Unteralgebrenverbänden, Acta Sci. Math. 24 (1963), 251-254.
[S 4] E. T. Schmidt, Universalen Algebren mit gegebenen Automorphismengruppen und Kongruenzverbänden, Acta Sci. Math. (Szeged) 15 (1964), 37-45.
[S 5] E. T. Schmidt, Remark on a paper of M. F. Janovitz, Acta Math. Acad. Sci. Hungar. 16 (1965), 289.
[S 6] E. T. Schmidt, On the definitions of homorphism kernels of lattices, Mat. Nachr. 33 (1967), 25-30.
[S 7] E. T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, Math. Casopis 18 (1968), 3-20.

1970

[S 8] E.T. Schmidt, Congruence relations related to a given automorphism group of a Boolean Lattice, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 29 (1970), 269-272.
[S 9] E. T. Schmidt, Eine Verallgemeinerung des Satzes von Schmidt-Ore, Publ. Math. Debrecen 17 (1970), 283-287.
[S 10] E. T. Schmidt, Über regulare Mannigfaltigkeiten, Acta Sci. Math. (Szeged) 31 (1970), 195-201.
[S 11] B. Csákány and E. T. Schmidt, Translations of regular algebras, Acta Sci. Math. (Szeged) 31 (1970), 157-160.
[S 12] E. T. Schmidt, Unabähngikeitrelationen in Halbverbänden, Periodica Math. Hungar. 1 (1971), 45-52.
[S 13] E. T. Schmidt, On n-permutable equational classes, Acta Sci. Math. (Szeged) 33 (1972), 29-30.
[S 14] E. T. Schmidt, Every finite distributive lattice is the congruence lattice of a modular lattice, Algebra Universalis 4 (1974), 49-57.
[S 15] E. T. Schmidt, A remark on lattice varieties defined by partial lattices, Studia Sci. Math. Hungar. 18 (1974), 195-198.
[S 16] E. T. Schmidt, Über die Kongruenzrelationen der modularen Verbände, Beiträge Algebra Geom. 3 (1974), 59-68.
[S 17] E. T. Schmidt, On the length of the congruence lattice of a lattice, Algebra Universalis 5 (1975), 98-100.
[S 18] E. T. Schmidt, On finitely generated simple modular lattices, Periodica Math. Hungar. 6 (1975), 213-216.
[S 19] E. Fried and E. T. Schmidt, Standard sublattices, Algebra Universalis 5 (1975), 203-211.
[S 20] E. T. Schmidt, On the variety generated by all modular lattices of breadth two, Houston J. Math. 2 (1976), 415-418.
[S 21] E. T. Schmidt, Remarks of finitely projected modular lattice, Acta Sci. Math. (Szeged) 41 (1979), 187-190.
[S 22] E.T. Schmidt, Remark on generalized function lattices, Acta Math. Acad. Sci. Hungar. 34 (1979), 337-339.
[S 23] E. T. Schmidt, Remark on compatible and order-preserving function on lattices, Studia Sci. Math. Hungar. 14 (1979), 139-144.

1980

[S24] E. T. Schmidt, On finitely projected modular lattices, Acta Math. Acad. Sci. Hungar. 38 (1981), 45-51.
[S 25] E.T. Schmidt, The ideal lattice of a distributive lattice with 0 is the congruence lattices of a lattice, Acta Sci. Math. (Szeged) 43 (1981), 153-168.
[S 26] E. T. Schmidt, Remarks on dependence relations in relational database models, Alkalmazott Matematikai Lapok 8 (1982), 177-182.
[S 27] E. T. Schmidt and R. Wille, Note on compatible operations of modular lattices, Algebra Universalis 16 (1983), 395-397.
[S 28] E. T. Schmidt, Congruence lattices of complemented modular lattices, Algebra Universalis 18 (1984), 386-395.
[S 29] G. Czédli, A. Huhn, and E. T. Schmidt, Weakly independent subsets in lattices, Algebra Universalis 20 (1985), 194-196.
[S 30] K. Kaarli, L. Márki, and E. T. Schmidt, Affin complete semilattices, Monat. Math. 99 (1985), 297-309.
[S 31] E. T. Schmidt, Homomorphism of distributive lattices as restriction of congruences, Acta Sci. Math. (Szeged), 51 (1987), 209-215.
[S 32] E. T. Schmidt, On locally order-polynomially complete modular lattices, Acta Math. Acad. Sci., Hungar. 19 (1988), 481-486.
[S 33] E. T. Schmidt, On a representation of distributive lattices, Periodica Math. Hungar. 19 (1988), 25-31.

1990

[S 34] E. T. Schmidt, Pasting and semimodular lattices, Algebra Universalis 27 (1990), 595-596.
[S 35] E. T. Schmidt, Cover-preserving embedding, Periodica Math. Hungar. 23 (1991), 17-24.
[S 36] E. T. Schmidt, Congruence lattices of modular lattices, Publicationes Mathematice 43 (1993), 129-134.
[S 37] E. Fried and E. T. Schmidt, Cover-preserving embedding of modular lattices, Periodica Math. Hungar. 28 (1994), 73-77.
[S 38] E. T. Schmidt, Homomorphisms of distributive lattices as restriction of congruences: the planar case, Studia Sci. Math. Hungar. 30 (1995), 283-287.
[S 39] E. T. Schmidt, On finite automorphism groups of simple arguesian lattices, Publ. Math. Debrecen 53 (1998), 383-387.

2000

[S 40] G. Czédli and E. T. Schmidt, How to derive finite semimodular lattices from distributive lattices?, Acta Math. Hungar.

3. Conference Proceedings

[SP 1] E. T. Schmidt, Lattices generated by partial lattices, Proceedings of Coll. Math, Szeged. Lattice Theory 14 (1974), 343-353.
[SP 2] E. T. Schmidt, On the Characterization of the congruence lattices of lattices, Proceedings Lattice Theory Conference, Ulm, (1974), 162-179.
[SP 3] E. T. Schmidt, On splitting modular lattices, Proceedings of the Univesal Algebra Conference Esztergom (1977), 697-703.
[SP 4] E. T. Schmidt, Starre Quotienten in modularen Verbänden, Proceedings of the Klagenfurt Conference (1978), 331-339.
[SP 5] E. Fried, G. E. Hansoul, E. T. Schmidt, and J. Varlet, Perfect distributive lattices, Proceedings of the Vienna-Conference (1984), 125-142.
[SP 6] E. T. Schmidt, Polynomial automorphisms of lattices, Proceedings of the Vienna Conference, 1988, 233-240.

4. Miscellaneous Articles

[SM 1] E. T. Schmidt, Meditation on an algebra textbook for school, Matematikai Lapok 23 (1972), 349-354 (Hungarian).
[SM 2] E. T. Schmidt, A tribute to András Huhn, Order 2 (1986), 331-333.
[SM 3] E. T. Schmidt, A survey of the Hungarian algebraic research, Matematikai Lapok 24 (1973), 191-200 (Hungarian).
[SM 4] E. T. Schmidt, On the algebraic work of József Kürschák, Matematikai Lapok 34 (1983/87), 247-248 (Hungarian).
[SM 5] E. T. Schmidt, Ervin Fried is 60 years old, Matematikai Lapok 34 (1983/87), 249-252, (Hungarian).
[SM 6] G. Czédli and E. T. Schmidt, Concept lattices, Polygon IV/2 (1994), 27-46 (Hungarian).
[SM 7] E. T. Schmidt, The new Mathematical Institute of the Technical University, Jövő Mérnöke 18 (1996) (Hungarian).
[SM 8] E. T. Schmidt, The history of algebra and mathematical logic in the Mathematical Institute, MTA Közgyűlési Előadások (2002), 123-126 (Hungarian).
[SM 9] E. T. Schmidt, Richard Wiegandt Septuagenarian, Math. Pannonica 13/2 (2002), 149-157.
[SM 10] E. T. Schmidt, Why did I become a mathmatician? TYPOTEX Kiadó, Budapest (2003), 225-226 (Hungarian).
[SM 11] E. T. Schmidt, Geometric spaces from an algebraic aspect, Középiskolai Matematikai Lapok 54 (2004), 199-206. (Hungarian).

[^0]: ${ }^{1}$ A solution of Dilworth's congruence lattice problem, Adv. Math. 216 (2007), 610-625

