Fractal lattices I.*

by Gábor CZÉDLI (Szeged)

to honour the 70th birthday of Tibor Katriňák
at the conference in Tale (September, 2007)

*http://www.math.u-szeged.hu/~cedli/
Happy birthday!
Happy birthday!

Fractal = a geometric shape that is self-similar (at least approximately) to its arbitrarily small parts. In nature: snowflakes, system of blood vessels, broccoli, etc.
Fractal = a geometric shape that is self-similar (at least approximately) to its arbitrarily small parts. In nature: snowflakes, system of blood vessels, broccoli, etc. Above: Julia set. In what follows:
$F \cong [a, b]$; $QF \stackrel{01}{\rightarrow} [a, b] \stackrel{01}{\rightarrow} QF$; $SF \rightarrow [a, b]$; HCP

Def: Fractal (lattice): $\forall a < b \in L \quad L \cong [a, b]$.
Def: **Fractal** (lattice): \(\forall a < b \in L \quad L \cong [a, b] \).

Quasifractal: \(0, 1 \in L \) and \(\forall a < b \in L \exists L \rightarrow [a, b] \) and \([a, b] \rightarrow L\) 0–1-embeddings.
\(F \cong [a, b]; \quad QF \overset{01}{\rightarrow} [a, b] \overset{01}{\rightarrow} QF; \quad SF \rightarrow [a, b]; \quad \text{HCP} \)

Def: **Fractal** (lattice): \(\forall a < b \in L \quad L \cong [a, b] \).

Quasifractal: \(0, 1 \in L \) and \(\forall a < b \in L \exists L \rightarrow [a, b] \) and \([a, b] \rightarrow L \) 0–1-embeddings.

Semifractal: for all \(a < b \), \(\exists \) embedding \(\phi : L \rightarrow [a, b] \).
Def: Fractal (lattice): \(\forall a < b \in L \quad L \cong [a, b] \).

Quasifractal: \(0, 1 \in L \) and \(\forall a < b \in L \exists L \to [a, b] \) and \([a, b] \to L \) 0–1-embeddings.

Semifractal: for all \(a < b \), \(\exists \) embedding \(\phi : L \to [a, b] \).

\{fractals\} \subseteq \{quasifractals\} \subseteq \{semifractals\}
Def: Fractal (lattice): $\forall a < b \in L \quad L \cong [a, b]$.

Quasifractal: $0, 1 \in L$ and $\forall a < b \in L \exists L \rightarrow [a, b]$ and $[a, b] \rightarrow L$ 0–1-embeddings.

Semifractal: for all $a < b$, \exists embedding $\phi : L \rightarrow [a, b]$.

${\text{fractals}} \subseteq {\text{quasifractals}} \subseteq {\text{semifractals}}$

${\text{fractals}} \neq {\text{quasifractals}}$
\(F \cong [a, b] \); \(QF \overset{0\rightarrow 1}{\rightarrow} [a, b] \overset{0\rightarrow 1}{\rightarrow} QF \); \(SF \rightarrow [a, b] \); \(\text{HCP} \)

Def: *Fractal* (lattice): \(\forall a < b \in L \quad L \cong [a, b] \).

Quasifractal: \(0, 1 \in L \) and \(\forall a < b \in L \exists L \rightarrow [a, b] \) and \([a, b] \rightarrow L \) 0–1-embeddings.

Semifractal: for all \(a < b \), \(\exists \) embedding \(\phi : L \rightarrow [a, b] \).

\(\{\text{fractals}\} \subseteq \{\text{quasifractals}\} \subseteq \{\text{semifractals}\} \)

\(\{\text{fractals}\} \neq \{\text{quasifractals}\} \neq \{\text{semifractals}\} \)

Examples of fractals:
Def: Fractal (lattice): $\forall a < b \in L \quad L \cong [a, b]$.

Quasifractal: $0, 1 \in L$ and $\forall a < b \in L \exists L \rightarrow [a, b]$ and $[a, b] \rightarrow L$ 0–1-embeddings.

Semifractal: for all $a < b$, \exists embedding $\phi : L \rightarrow [a, b]$.

$\{\text{fractals}\} \subseteq \{\text{quasifractals}\} \subseteq \{\text{semifractals}\}$

$\{\text{fractals}\} \neq \{\text{quasifractals}\}$

Examples of fractals:

- bisimple rings (J. Hannah, W.D. Munn),
Def: **Fractal** (lattice): \(\forall a < b \in L \) \(L \cong [a, b] \).

Quasifractal: \(0, 1 \in L \) and \(\forall a < b \in L \) \(\exists L \rightarrow [a, b] \) and \([a, b] \rightarrow L \) 0–1-embeddings.

Semifractal: for all \(a < b \), \(\exists \) embedding \(\phi : L \rightarrow [a, b] \).

\[
\{\text{fractals}\} \subseteq \{\text{quasifractals}\} \subseteq \{\text{semifractals}\}
\]

\(\{\text{fractals}\} \neq \{\text{quasifractals}\} \)

Examples of fractals:

- bisimple rings (J. Hannah, W.D. Munn),
- \(1, 2 \) (neglected in the future),
- \(\{x \in \mathbb{Q} : 0 \leq x \leq 1\}, \leq \),
Def: **Fractal** (lattice): \(\forall a < b \in L \quad L \cong [a, b] \).

Quasifractal: \(0, 1 \in L \) and \(\forall a < b \in L \exists L \rightarrow [a, b] \) and \([a, b] \rightarrow L\) 0–1-embeddings.

Semifractal: for all \(a < b \), \(\exists \) embedding \(\phi : L \rightarrow [a, b] \).

\[\{\text{fractals}\} \subseteq \{\text{quasifractals}\} \subseteq \{\text{semifractals}\} \]

\(\{\text{fractals}\} \neq \{\text{quasifractals}\} \)

Examples of fractals:

- bisimple rings (J. Hannah, W.D. Munn),
- 1, 2 (neglected in the future),
- \(\{x \in \mathbb{Q} : 0 \leq x \leq 1\} \),
- the atomless countable boolean lattice.
Theorem 1. There are countably many lattice varieties such that each of them is generated by a countable fractal.
Theorem 1. There are countably many lattice varieties such that each of them is generated by a countable fractal.

Hint: Use a bit from von Neumann’s ideas.
Theorem 1. There are countably many lattice varieties such that each of them is generated by a countable fractal.

Hint: Use a bit from von Neumann’s ideas.

Better hint: Come to part II of my talk (somewhen later) or visit http://www.math.u-szeged.hu/~czedli/

Open problems:
Theorem 1. There are countably many lattice varieties such that each of them is generated by a countable fractal.

Hint: Use a bit from von Neumann’s ideas.

Better hint: Come to part II of my talk (somewhen later) or visit http://www.math.u-szeged.hu/~czedli/

Open problems: Are there more than countably many fractal generated varieties? Are they all modular? {all lattices} ?
There are continuously many lattice varieties such that each of them is not semifractal generated.

Key idea of the proof.
Theorem 2. There are continuously many lattice varieties such that each of them is not semifractal generated.

Key idea of the proof. Suppose L is a nondistributive semifractal and $\mathcal{V} = \text{HSP}\{L\}$. Then N_5 of M_3 is a sublattice of L. Suppose $N_5 \leq L$. ($M_3 \leq L$ would be more complicated).
\[F \cong [a, b]; \ QF \xrightarrow{0^1} [a, b] \xrightarrow{0^1} QF; \ SF \rightarrow [a, b]; \ HCP \]
\[F \cong [a, b]; \quad QF^{01} \rightarrow [a, b]^{01} \rightarrow QF; \quad SF \rightarrow [a, b]; \quad \text{HCP} \]
$F \equiv [a, b]; \ QF \xrightarrow{01} [a, b] \xrightarrow{01} QF; \ SF \rightarrow [a, b]; \ HCP$

(C) Czédli

13'}
\[F \cong [a, b]; \quad QF \xrightarrow{01} [a, b] \xrightarrow{01} QF; \quad SF \to [a, b]; \quad \text{HCP} \]
\(F \cong [a, b]; \) \(QF \overset{01}{\rightarrow} [a, b] \overset{01}{\rightarrow} QF; \) \(SF \rightarrow [a, b]; \) HCP

S.i. length not bounded. \(2^{\aleph_0} \) many varieties fails this. Q.e.d.
A lattice L is called M_3-simple if for each chain $x < y < z$ of L is a subset of an M_3 (sublattice). (I.e., there is an $M_3 \to L$, $0 \mapsto x$, $a \mapsto y$, $1 \mapsto z$ embedding.) Such a lattice is necessarily simple.
A lattice L is called M_3-simple if for each chain $x < y < z$ of L is a subset of an M_3 (sublattice). (I.e., there is an $M_3 \to L$, $0 \mapsto x$, $a \mapsto y$, $1 \mapsto z$ embedding.) Such a lattice is necessarily simple.

Theorem 3. If L is a lattice with $|L| \geq 3$ then L has a 0–1 embedding into an M_3-simple quasifractal. Moreover, . . .
A lattice L is called M_3-simple if for each chain $x < y < z$ of L is a subset of an M_3 (sublattice). (I.e., there is an $M_3 \to L$, $0 \mapsto x$, $a \mapsto y$, $1 \mapsto z$ embedding.) Such a lattice is necessarily simple.

Theorem 3. If L is a lattice with $|L| \geq 3$ then L has a 0–1 embedding into an M_3-simple quasifractal. Moreover, . . .

Easy:
A lattice L is called M_3-simple if for each chain $x < y < z$ of L is a subset of an M_3 (sublattice). (I.e., there is an $M_3 \to L$, $0 \mapsto x$, $a \mapsto y$, $1 \mapsto z$ embedding.) Such a lattice is necessarily simple.

Theorem 3. If L is a lattice with $|L| \geq 3$ then L has a 0–1 embedding into an M_3-simple quasifractal. Moreover, . . .

Easy: Insert L to each interval, then M_3 to each three-element chain, \aleph_0 steps; union. Q.e.d.
A lattice L is called M_3-simple if for each chain $x < y < z$ of L is a subset of an M_3 (sublattice). (I.e., there is an $M_3 \rightarrow L$, $0 \mapsto x$, $a \mapsto y$, $1 \mapsto z$ embedding.) Such a lattice is necessarily simple.

Theorem 3. If L is a lattice with $|L| \geq 3$ then L has a 0–1 embedding into an M_3-simple quasifractal. Moreover, . . .

Easy: Insert L to each interval, then M_3 to each three-element chain, \aleph_0 steps; union. Q.e.d. **Problem:** only „quasi”?
An application of quasifractals
$F \cong [a, b]$; $QF \overset{01}{\rightarrow} [a, b] \overset{01}{\rightarrow} QF$; $SF \rightarrow [a, b]$; HCP

Fried (1988): a class \mathcal{V} of lattices is called a **convexity** if it is closed w.r.t. the operators H, C (convex sublattices) and P.
Fried (1988): a class \mathcal{V} of lattices is called a **convexity** if it is closed w.r.t. the operators H, C (convex sublattices) and P. He proved: $\text{HCP} \mathcal{V}$. He asked:
Fried (1988): a class V of lattices is called a **convexity** if it is closed w.r.t. the operators H, C (convex sublattices) and P. He proved: HCPV. He asked: how many?
F ≅ [a, b]; QF 01 [a, b] 01 QF; SF → [a, b]; HCP

Fried (1988): a class \(\mathcal{V} \) of lattices is called a \textbf{convexity} if it is closed w.r.t. the operators \(H, C \) (convex sublattices) and \(P \). He proved: \(\text{HCP}\mathcal{V} \). He asked: how many? Jakubík (1992): „proper class many“. Jakubík (1992): \(\text{HCP}\{2\} \) is \textit{minimal convexity}.
F \cong [a, b]; \quad QF \overset{01}{\rightarrow} [a, b] \overset{01}{\rightarrow} QF; \quad SF \rightarrow [a, b]; \quad \text{HCP}

Fried (1988): a class \mathcal{V} of lattices is called a \textbf{convexity} if it is closed w.r.t. the operators \(H, C \) (convex sublattices) and \(P \). He proved: \(\text{HCP} \mathcal{V} \). He asked: how many? Jakubík (1992): „proper class many“.

Jakubík (1992): \(\text{HCP}\{2\} \) is \textit{minimal convexity}.

\textbf{Jakubík's problem:} Is this \(\text{HCP}\{2\} \) the only minimal convexity?

\textit{First ideas:}
F \cong [a, b]; \ QF \xrightarrow{01} [a, b] \xrightarrow{01} QF; \ SF \rightarrow [a, b]; \ HCP

Fried (1988): a class \(\mathcal{V} \) of lattices is called a **convexity** if it is closed w.r.t. the operators \(H, C \) (convex sublattices) and \(P \). He proved: HCP\(\mathcal{V} \). He asked: how many? Jakubík (1992): „proper class many”. Jakubík (1992): HCP\{2\} is **minimal convexity**.

Jakubík’s problem: Is this HCP\{2\} the only minimal convexity?

First ideas: each nontrivial *variety* includes HSP\{2\} (which is larger than HCP\{2\}). Hence each (nontrivial) lattice *variety* includes a minimal subvariety.
$F \cong [a, b];\ QF^0 \to [a, b]^0 \to QF;\ SF \to [a, b];\ \text{HCP}$

Fried (1988): a class \mathcal{V} of lattices is called a **convexity** if it is closed w.r.t. the operators \mathbf{H}, \mathbf{C} (convex sublattices) and \mathbf{P}. He proved: $\text{HCP}\mathcal{V}$. He asked: how many? Jakubík (1992): „proper class many”. Jakubík (1992): $\text{HCP}\{2\}$ is **minimal convexity**.

Jakubík’s problem: Is this $\text{HCP}\{2\}$ the only minimal convexity?

First ideas: each nontrivial variety includes $\text{HSP}\{2\}$ (which is larger than $\text{HCP}\{2\}$). Hence each (nontrivial) lattice variety includes a minimal subvariety.

Now, if \mathcal{V} is a convexity and some $L \in \mathcal{V}$ has a nontrivial distributive interval (e.g., $a \prec b$) then $\text{HCP}\{2\}$ is included in \mathcal{V}.
F \cong [a, b]; \quad QF \xrightarrow{01} [a, b] \xrightarrow{01} QF; \quad SF \rightarrow [a, b]; \quad \text{HCP}

Fried (1988): a class \(\mathcal{V} \) of lattices is called a **convexity** if it is closed w.r.t. the operators \(H, C \) (convex sublattices) and \(P \). He proved: \(\text{HCP} \mathcal{V} \). He asked: how many? Jakubík (1992): „proper class many”. Jakubík (1992): \(\text{HCP}\{2\} \) is *minimal convexity*.

Jakubík’s problem: Is this \(\text{HCP}\{2\} \) the only minimal convexity?

First ideas: each nontrivial variety includes \(\text{HSP}\{2\} \) (which is larger than \(\text{HCP}\{2\} \)). Hence each (nontrivial) lattice variety includes a minimal subvariety.

Now, if \(\mathcal{V} \) is a *convexity* and some \(L \in \mathcal{V} \) has a nontrivial distributive interval (e.g., \(a \prec b \)) then \(\text{HCP}\{2\} \) is included in \(\mathcal{V} \).

J. Lihová: \(\text{HCP}\{2\} \subseteq \mathcal{V} \) in many other cases.
Theorem 4. (Partial answer to Jakubík’s problem.) If L is an M_3-simple quasifractal then the convexity $\mathcal{V} := \text{HCP}\{L\}$ includes no minimal subconvexity.

Note that such an L exists by Thm. 3.

Proof.
Lemma.
Lemma. Each subd. irr. $L' \in \mathcal{V} =$
Lemma. Each subd. irr. \(L' \in \mathcal{V} = \text{HCP}\{L\} \) is again an \(M_3\)-simple quasifractal and \(|L'| \geq |L| \).
Lemma. Each subd.i.r. $L' \in \mathcal{V} = \text{HCP}\{L\}$ is again an M_3-simple quasifractal and $|L'| \geq |L|$.

Proof of the Lemma. $L' \in \text{HCP}\{L\} = \text{Lihová}$
Lemma. Each subd. irr. $L' \in \mathcal{V} = \text{HCP}\{L\}$ is again an M_3-simple quasifractal and $|L'| \geq |L|$.

Proof of the Lemma. $L' \in \text{HCP}\{L\} = \text{Lihová} \ P_s \text{HCP}_u \{L\}$.
Lemma. Each subd.irr. \(L' \in V = \text{HCP}\{L\} \) is again an \(M_3 \)-simple quasifractal and \(|L'| \geq |L| \).

Proof of the Lemma. \(L' \in \text{HCP}\{L\} = \text{Lihová PsHCPu}\{L\} \). So \(L' \in \text{HCPu}\{L\} \).
Lemma. Each subd.irr. \(L' \in \mathcal{V} = \text{HCP}\{L\} \) is again an \(M_3 \)-simple quasifractal and \(|L'| \geq |L| \).

Proof of the Lemma. \(L' \in \text{HCP}\{L\} = \text{Lihová} \ P_{sHCP_u}\{L\} \). So \(L' \in \text{HCP}_u\{L\} \). Now \(P_u \) preserves the red properties (by Łoś' thm.), so does \(C \) (by def's), and \(H \) does nothing. Q.e.d.
Lemma. Each subd.irr. \(L' \in \mathcal{V} = \text{HCP}\{L\} \) is again an \(M_3 \)-simple quasifractal and \(|L'| \geq |L| \).

Proof of the Lemma. \(L' \in \text{HCP}\{L\} = \text{Lihová} \quad \text{P}_s \text{HCP}_u\{L\} \). So \(L' \in \text{HCP}_u\{L\} \). Now \(\text{P}_u \) preserves the red properties (by Łoś' thm.), so does \(\text{C} \) (by def's), and \(\text{H} \) does nothing. Q.e.d.

Proof. Suppose \(\mathcal{W} \subseteq \mathcal{V} \) is minimal.
Lemma. Each subd.irr. $L' \in \mathcal{V} = \text{HCP}\{L\}$ is again an M_3-simple quasifractal and $|L'| \geq |L|$.

Proof of the Lemma. $L' \in \text{HCP}\{L\} = \text{Lihová P}_{s}\text{HCP}_u\{L\}$. So $L' \in \text{HCP}_u\{L\}$. Now P_u preserves the red properties (by Łoś’ thm.), so does C (by def’s), and H does nothing. Q.e.d.

Proof. Suppose $\mathcal{W} \subseteq \mathcal{V}$ is minimal. Choose a subd.irr. $L' \in \mathcal{W}$ and an ultrapower M of L' with $|M| > |L'|$.
Lemma. Each subd. irr. $L' \in \mathcal{V} = \text{HCP}\{L\}$ is again an M_3-simple quasifractal and $|L'| \geq |L|$.

Proof of the Lemma. $L' \in \text{HCP}\{L\} = \text{Lihová HCP}_{u}\{L\}$. So $L' \in \text{HCP}_{u}\{L\}$. Now P_u preserves the red properties (by Łoś’ thm.), so does C (by def’s), and H does nothing. Q.e.d.

Proof. Suppose $\mathcal{W} \subseteq \mathcal{V}$ is minimal. Choose a subd. irr. $L' \in \mathcal{W}$ and an ultrapower M of L' with $|M| > |L'|$. Lemma $\Rightarrow L'$ has the red properties, the ultrapower preserves the red properties, so
Lemma. Each subd.irr. $L' \in \mathcal{V} = \text{HCP}\{L\}$ is again an M_3-simple quasifractal and $|L'| \geq |L|$.

Proof of the Lemma. $L' \in \text{HCP}\{L\} = \text{Lihová P}_s \text{HCP}_u\{L\}$. So $L' \in \text{HCP}_u\{L\}$. Now P_u preserves the red properties (by Łoś' thm.), so does C (by def's), and H does nothing. Q.e.d.

Proof. Suppose $\mathcal{W} \subseteq \mathcal{V}$ is minimal. Choose a subd.irr. $L' \in \mathcal{W}$ and an ultrapower M of L' with $|M| > |L'|$. Lemma $\Rightarrow L'$ has the red properties, the ultrapower preserves the red properties, so M is an M_3-simple quasifractal, $|M| > |L'|$ and $M \in \mathcal{W}$.
Lemma. Each subd. irr. $L' \in \mathcal{V} = \text{HCP}\{L\}$ is again an M_3-simple quasifractal and $|L'| \geq |L|$.

Proof of the Lemma. $L' \in \text{HCP}\{L\} = \text{Lihová P}_s\text{HCP}_u\{L\}$. So $L' \in \text{HCP}_u\{L\}$. Now P_u preserves the red properties (by Łoś' thm.), so does C (by def's), and H does nothing. Q.e.d.

Proof. Suppose $\mathcal{W} \subseteq \mathcal{V}$ is minimal. Choose a subd. irr. $L' \in \mathcal{W}$ and an ultrapower M of L' with $|M| > |L'|$. Lemma \Rightarrow L' has the red properties, the ultrapower preserves the red properties, so M is an M_3-simple quasifractal, $|M| > |L'|$ and $M \in \mathcal{W}$.

Finally, if $L' \in \text{HCP}\{M\}$ then L
Lemma. Each subd.irr. \(L' \in \mathcal{V} = \text{HCP}\{L\} \) is again an \(M_3\)-simple quasifractal and \(|L'| \geq |L| \).

Proof of the Lemma. \(L' \in \text{HCP}\{L\} = \text{Liho}vá \text{ P}_s \text{HCP}_u\{L\} \). So \(L' \in \text{HCP}_u\{L\} \). Now \(\text{P}_u \) preserves the red properties (by \(\text{Loš'} \) thm.), so does \(\text{C} \) (by def’s), and \(\text{H} \) does nothing. Q.e.d.

Proof. Suppose \(\mathcal{W} \subseteq \mathcal{V} \) is minimal. Choose a subd.irr. \(L' \in \mathcal{W} \) and an ultrapower \(M \) of \(L' \) with \(|M| > |L'| \). Lemma \(\Rightarrow L' \) has the red properties, the ultrapower preserves the red properties, so \(M \) is an \(M_3\)-simple quasifractal, \(|M| > |L'| \) and \(M \in \mathcal{W} \).

Finally, if \(L' \in \text{HCP}\{M\} \) then Lemma (with \(M \) in place of \(L \) \(\Rightarrow \)
Lemma. Each subd. irr. $L' \in \mathcal{V} = \text{HCP}\{L\}$ is again an M_3-simple quasifractal and $|L'| \geq |L|$.

Proof of the Lemma. $L' \in \text{HCP}\{L\} = \text{Lihová P}_s\text{HCP}_u\{L\}$. So $L' \in \text{HCP}_u\{L\}$. Now P_u preserves the red properties (by Łoś' thm.), so does C (by def's), and H does nothing. Q.e.d.

Proof. Suppose $\mathcal{W} \subseteq \mathcal{V}$ is minimal. Choose a subd. irr. $L' \in \mathcal{W}$ and an ultrapower M of L' with $|M| > |L'|$. Lemma $\Rightarrow L'$ has the red properties, the ultrapower preserves the red properties, so M is an M_3-simple quasifractal, $|M| > |L'|$ and $M \in \mathcal{W}$.

Finally, if $L' \in \text{HCP}\{M\}$ then Lemma (with M in place of L) $\Rightarrow |L'| \geq |M|$, a
Lemma. Each subd. irr. \(L' \in \mathcal{V} = \text{HCP}\{L\} \) is again an \(M_3\)-simple quasifractal and \(|L'| \geq |L| \).

Proof of the Lemma. \(L' \in \text{HCP}\{L\} = \text{Lihová } P_s \text{HCP}_u \{L\} \). So \(L' \in \text{HCP}_u \{L\} \). Now \(P_u \) preserves the red properties (by Łoś' thm.), so does \(C \) (by def's), and \(H \) does nothing. Q.e.d.

Proof. Suppose \(\mathcal{W} \subseteq \mathcal{V} \) is minimal. Choose a subd. irr. \(L' \in \mathcal{W} \) and an ultrapower \(M \) of \(L' \) with \(|M| > |L'| \). Lemma \(\Rightarrow L' \) has the red properties, the ultrapower preserves the red properties, so \(M \) is an \(M_3\)-simple quasifractal, \(|M| > |L'| \) and \(M \in \mathcal{W} \).

Finally, if \(L' \in \text{HCP}\{M\} \) then Lemma (with \(M \) in place of \(L \) \(\Rightarrow |L'| \geq |M| \), a contradiction. H
Lemma. Each subd.irr. $L' \in \mathcal{V} = \text{HCP}\{L\}$ is again an M_3-simple quasifractal and $|L'| \geq |L|$.

Proof of the Lemma. $L' \in \text{HCP}\{L\} = \text{Lihová } \text{PsHCP}_u\{L\}$. So $L' \in \text{HCP}_u\{L\}$. Now Pu preserves the red properties (by Łoś' thm.), so does C (by def's), and H does nothing. Q.e.d.

Proof. Suppose $\mathcal{W} \subseteq \mathcal{V}$ is minimal. Choose a subd.irr. $L' \in \mathcal{W}$ and an ultrapower M of L' with $|M| > |L'|$. Lemma \Rightarrow L' has the red properties, the ultrapower preserves the red properties, so M is an M_3-simple quasifractal, $|M| > |L'|$ and $M \in \mathcal{W}$.

Finally, if $L' \in \text{HCP}\{M\}$ then Lemma (with M in place of L) \Rightarrow $|L'| \geq |M|$, a contradiction. Hence $\text{HCP}\{M\} \subset \mathcal{W}$.
Lemma. Each subd. irr. \(L' \in \mathcal{V} = \text{HCP}\{L\} \) is again an \(M_3\)-simple quasifractal and \(|L'| \geq |L| \).

Proof of the Lemma. \(L' \in \text{HCP}\{L\} = \text{Lihová PsHCP}_u\{L\} \). So \(L' \in \text{HCP}_u\{L\} \). Now \(P_u \) preserves the red properties (by Ľoš’ thm.), so does \(C \) (by def’s), and \(H \) does nothing. Q.e.d.

Proof. Suppose \(\mathcal{W} \subseteq \mathcal{V} \) is minimal. Choose a subd. irr. \(L' \in \mathcal{W} \) and an ultrapower \(M \) of \(L' \) with \(|M| > |L'| \). Lemma \(\Rightarrow \) \(L' \) has the red properties, the ultrapower preserves the red properties, so \(M \) is an \(M_3\)-simple quasifractal, \(|M| > |L'| \) and \(M \in \mathcal{W} \).

Finally, if \(L' \in \text{HCP}\{M\} \) then Lemma (with \(M \) in place of \(L \)) \(\Rightarrow \) \(|L'| \geq |M| \), a contradiction. Hence \(\text{HCP}\{M\} \subset \mathcal{W} \) shows that \(\mathcal{W} \) is not minimal. Q.e.d.
\(F \cong [a, b]; \ QF \xrightarrow{01} [a, b] \xrightarrow{01} QF; \ SF \rightarrow [a, b]; \ HCP \)

http://www.math.u-szeged.hu/~czedli/
$F \cong [a, b];\ QF \xrightarrow{01} [a, b] \xrightarrow{01} QF;\ SF \rightarrow [a, b];\ HCP$

http://www.math.u-szeged.hu/~czedli/
$F \cong [a, b]; \ QF \overset{01}{\rightarrow} [a, b] \overset{01}{\rightarrow} QF; \ SF \rightarrow [a, b]; \ HCP$

http://www.math.u-szeged.hu/~czedli/

Th
Thank you, Miroslav, for organizing this Summer School so well!

http://www.math.u-szeged.hu/~czedli/