The asymptotic number of ways to intersect two composition series

AAA83, Novi Sad, March 15-18, 2012

Gábor Czédli, László Ozsvárt, E. Tamás Schmidt, Balázs Udvari

14th March 2012
\[\tilde{H} = \{1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G\} \]
\[\tilde{K} = \{1 = K_0 \triangleleft K_1 \triangleleft \cdots \triangleleft K_m = G\} \]
The Jordan-Hölder theorem

C. Jordan (1870), O. Hölder (1889).

\[\vec{H} = \{ 1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G \} \]

\[\vec{K} = \{ 1 = K_0 \triangleleft K_1 \triangleleft \cdots \triangleleft K_m = G \} \]

G. Grätzer, J.B. Nation (2010): \(\exists \pi, \, H_i/H_{i-1} \not\cong K_{\pi(i)}/K_{\pi(i)-1} \)
The Jordan-Hölder theorem

C. Jordan (1870), O. Hölder (1889).

\[\mathcal{H} = \{1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G\} \]

\[\mathcal{K} = \{1 = K_0 \triangleleft K_1 \triangleleft \cdots \triangleleft K_m = G\} \]

G. Grätzer, J.B. Nation (2010): \(\exists \pi, H_i/H_{i-1} \downarrow K_{\pi(i)}/K_{\pi(i)-1} \)

G. Czédli, E.T. Schmidt (2011): \(\exists! \pi \) as above.

\text{subnormal} = \triangleleft^* \text{. SNSub}(G), \text{ a poset}

H. Wielandt 1939: if \(\exists \mathcal{H} \), then SNSub(G) is a sublattice of Sub(G). Not hard: then SNSub(G) is lower semimodular.
C. Jordan (1870), O. Hölder (1889).

\[\vec{H} = \{1 = H_0 \lhd H_1 \lhd \cdots \lhd H_n = G\} \]

\[\vec{K} = \{1 = K_0 \lhd K_1 \lhd \cdots \lhd K_m = G\} \]

G. Grätzer, J.B. Nation (2010): \(\exists \pi, H_i/H_{i-1} \searrow K_{\pi(i)}/K_{\pi(i)-1} \)

G. Czédli, E.T. Schmidt (2011): \(\exists! \pi \) as above.

subnormal = \(\lhd^* \). SNSub(\(G \)), a poset

H. Wielandt 1939: if \(\exists \vec{H} \), then SNSub(\(G \)) is a sublattice of Sub(\(G \)). Not hard: then SNSub(\(G \)) is lower semimodular.

Define \(\text{CSL}_G(\vec{H}, \vec{K}) := \{H_i \cap K_j : i, j \in \{0, \ldots, n\}\}; \subseteq \)
Fact: $\text{CSL}_G(\vec{H}, \vec{K})$ is a \cap-subsemilattice of $\text{NSub}(G)$, whence lower semimodular.
Fact: $\text{CSL}_G(\vec{H}, \vec{K})$ is a \cap-subsemilattice of $\text{NSub}(G)$, whence lower semimodular.

Q: how many such lattices are for a given length n?
Fact: \(\text{CSL}_G(\vec{H}, \vec{K}) \) is a \(\cap \)-subsemilattice of \(\text{NSub}(G) \), whence lower semimodular.

Q: how many such lattices are for a given length \(n \)?

O: \(\text{CSL}_G(\vec{H}, \vec{K}) \) is lower semimodular and meet-generated by two chains.
Fact: \(\text{CSL}_G(\vec{H}, \vec{K}) \) is a \(\cap \)-subsemilattice of \(\text{NSub}(G) \), whence lower semimodular.

Q: how many such lattices are for a given length \(n \)?

O: \(\text{CSL}_G(\vec{H}, \vec{K}) \) is lower semimodular and meet-generated by two chains.

Prop: Assume \(k = p_1 \ldots p_n \) and \(L \) is lower semimodular, meet-generated by two chains, and \(\text{length}(L) = n \). Then the cyclic \(C_k \) group of order \(k \) has \(\vec{H}, \vec{K} \) with \(L \cong \text{CSL}_{C_k}(\vec{H}, \vec{K}) \).
Fact: $\text{CSL}_G(\vec{H}, \vec{K})$ is a \(\cap\)-subsemilattice of $\text{NSub}(G)$, whence lower semimodular.

Q: how many such lattices are for a given length \(n\)?

O: $\text{CSL}_G(\vec{H}, \vec{K})$ is lower semimodular and meet-generated by two chains.

Prop: Assume \(k = p_1 \ldots p_n\) and \(L\) is lower semimodular, meet-generated by two chains, and $\text{length}(L) = n$. Then the cyclic \(C_k\) group of order \(k\) has \vec{H}, \vec{K} with $L \cong \text{CSL}_{C_k}(\vec{H}, \vec{K})$.

Describes what we want to count.

By duality,
Fact: $\text{CSL}_G(\vec{H}, \vec{K})$ is a \cap-subsemilattice of $\text{NSub}(G)$, whence lower semimodular.

Q: how many such lattices are for a given length n?

O: $\text{CSL}_G(\vec{H}, \vec{K})$ is lower semimodular and meet-generated by two chains.

Prop: Assume $k = p_1 \ldots p_n$ and L is lower semimodular, meet-generated by two chains, and $\text{length}(L) = n$. Then the cyclic C_k group of order k has \vec{H}, \vec{K} with $L \cong \text{CSL}_{C_k}(\vec{H}, \vec{K})$.

Describes what we want to count.

By duality, it suffices to count slim (= join-generated by two chains) semimodular lattices of length n, asymptotically.

*http://www.math.u-szeged.hu/~czedli/
1. Describe these lattices (Cz-Sch) → permutations!

2. Count permutations (Cz-O-U).

P
1. Describe these lattices (Cz-Sch) → permutations!

2. Count permutations (Cz-O-U).

Part I: description by permutations.

Thm (Cz-Sch): Slim semimodular (planar) diagrams ↔ permutations.

Need: a pair of reciprocal bijections.

http://www.math.u-szeged.hu/~cedli/
$D \mapsto \pi$ by a **locomotive**. $\pi \mapsto D$ by quotient join-semilattice.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 5 & 6 & 4 & 3 & 8 & 7
\end{bmatrix}
\]

http://www.math.u-szeged.hu/~czedli/
Reflecting a segment \iff inverting the restriction of π

*http://www.math.u-szeged.hu/~czedli/
The segments of π are $\{1\}$, $\{2\}$, $\{3, 4, 5, 6\}$, $\{7, 8\}$.

*http://www.math.u-szeged.hu/~cedli/
Lemma: \(L(\pi) \cong L(\tau) \) iff \(\pi \) and \(\tau \) are “sectionally inverse or equal”, denoted by \(\pi \sim \tau \).

It suffices to determine \(|S_n/\sim| \), asymptotically.
\[A_0(n) := \{ \pi \in S_n : \pi = \pi^{-1} \} \].

\(j \): number of transpositions (2-cycles)

Choosing the set \(\{a_1, \ldots, a_{2j}\} \) of non-fixed elements:
$A_0(n) := \{ \pi \in S_n : \pi = \pi^{-1} \}$.

j: number of transpositions (2-cycles)

Choosing the set $\{a_1, \ldots, a_{2j}\}$ of non-fixed elements: $\binom{n}{2j}$ ways.

The image of a_1:
T**reatment for the involutions**

\[A_0(n) := \{ \pi \in S_n : \pi = \pi^{-1} \}. \]

\(j \): number of transpositions (2-cycles)

Choosing the set \(\{a_1, \ldots, a_{2j}\} \) of non-fixed elements: \(\binom{n}{2j} \) ways.

The image of \(a_1 \): \(2j - 1 \) ways.

\(\pi \)(first element distinct from \(a_1, a_{\pi(1)} \)):
A_0(n) := \{\pi \in S_n : \pi = \pi^{-1}\}.

\(j\): number of transpositions (2-cycles)

Choosing the set \(\{a_1, \ldots, a_{2j}\}\) of non-fixed elements: \(\binom{n}{2j}\) ways.

The image of \(a_1\): \(2j - 1\) ways.

\(\pi\)(first element distinct from \(a_1, a_{\pi(1)}\)): \(2j - 3\) ways. Etc. Hence
\[A_0(n) := \{ \pi \in S_n : \pi = \pi^{-1} \}. \]

\(j \): number of transpositions (2-cycles)

Choosing the set \(\{a_1, \ldots, a_{2j}\} \) of non-fixed elements: \(\binom{n}{2j} \) ways.

The image of \(a_1 \): \(2j - 1 \) ways.

\(\pi \)(first element distinct from \(a_1, a_{\pi(1)} \)): \(2j - 3 \) ways. Etc. Hence

\[
\frac{|A_0(n)|}{|S_n|} = \frac{1}{n!}
\]
\[A_0(n) := \{ \pi \in S_n : \pi = \pi^{-1} \} . \]

\(j \): number of transpositions (2-cycles)

Choosing the set \(\{ a_1, \ldots, a_{2j} \} \) of non-fixed elements: \(\binom{n}{2j} \) ways.

The image of \(a_1 \): \(2j - 1 \) ways.

\(\pi \) (first element distinct from \(a_1, a_{\pi(1)} \)): \(2j - 3 \) ways. Etc. Hence

\[
\frac{|A_0(n)|}{|S_n|} = \frac{1}{n!} \sum_{j=1}^{\lfloor n/2 \rfloor} \binom{n}{2j} (2j - 1)(2j - 3)(2j - 5) \ldots =
\]
$A_0(n) := \{\pi \in S_n : \pi = \pi^{-1}\}$.

j: number of transpositions (2-cycles)

Choosing the set $\{a_1, \ldots, a_{2j}\}$ of non-fixed elements: $\binom{n}{2j}$ ways.

The image of a_1: $2j - 1$ ways.

π (first element distinct from $a_1, a_{\pi(1)}$): $2j - 3$ ways. Etc. Hence

$$\frac{|A_0(n)|}{|S_n|} = \frac{1}{n!} \sum_{j=1}^{\lfloor n/2 \rfloor} \left(\frac{n}{2j}\right) (2j - 1)(2j - 3)(2j - 5) \ldots =$$

$$\frac{1}{n!} \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{n!}{(n-2j)! \cdot (2j)!} \cdot \frac{(2j)!}{2j \cdot j!} =$$
Treatment for the involutions

\(A_0(n) := \{ \pi \in S_n : \pi = \pi^{-1} \} \).

\(j \): number of transpositions (2-cycles)

Choosing the set \(\{a_1, \ldots, a_{2j}\} \) of non-fixed elements: \(\binom{n}{2j} \) ways.

The image of \(a_1 \): \(2j - 1 \) ways.

\(\pi \) (first element distinct from \(a_1, a_{\pi(1)} \)): \(2j - 3 \) ways. Etc. Hence

\[
\frac{|A_0(n)|}{|S_n|} = \frac{1}{n!} \sum_{j=1}^{\lfloor n/2 \rfloor} \binom{n}{2j}(2j-1)(2j-3)(2j-5)\ldots = \\
\frac{1}{n!} \sum_{j=1}^{\lfloor n/2 \rfloor} \frac{n!}{(n-2j)!} \cdot \frac{(2j)!}{2^{2j} \cdot j!} = \\
\sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor+1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \Sigma' + \Sigma''.
\]

*http://www.math.u-szeged.hu/~cedli/
\[\frac{|A_0(n)|}{n!} = \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor + 1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \sum' + \sum''. \]

In \(\sum' \),
\[\frac{|A_0(n)|}{n!} = \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor + 1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \sum' + \sum'' . \]

In \(\sum' \), each denominator is at least \((n - 2\lfloor n/4 \rfloor)! \geq \lfloor n/2 \rfloor!\), and there are fewer than \(n \) summands. Hence \(\sum' \leq n \cdot (\lfloor n/2 \rfloor!)^{-1} \to 0 \).

In \(\sum'' \),
\[\frac{|A_0(n)|}{n!} = \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor + 1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \sum' + \sum'' . \]

In \(\sum' \), each denominator is at least \((n - 2\lfloor n/4 \rfloor)! \geq \lfloor n/2 \rfloor!\), and there are fewer than \(n \) summands. Hence \(\sum' \leq n \cdot (\lfloor n/2 \rfloor!)^{-1} \to 0 \).

In \(\sum'' \), each denominator is at least \(2^{n/4} \) and there are fewer than \(n \) summands, so \(\sum'' \leq n \cdot 2^{-n/4} \to 0 \).
\[
\frac{|A_0(n)|}{n!} = \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)!2^j j!} + \sum_{j=\lfloor n/4 \rfloor+1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)!2^j j!} = \Sigma' + \Sigma''.
\]

In \(\Sigma'\), each denominator is at least \((n - 2\lfloor n/4 \rfloor)! \geq \lfloor n/2 \rfloor!\), and there are fewer than \(n\) summands. Hence \(\Sigma' \leq n \cdot (\lfloor n/2 \rfloor!)^{-1} \to 0\).

In \(\Sigma''\), each denominator is at least \(2^{n/4}\) and there are fewer than \(n\) summands, so \(\Sigma'' \leq n \cdot 2^{-n/4} \to 0\). Thus,

\[
\lim_{n \to \infty} \frac{|A_0(n)|}{n!} = 0.
\]

So, involutions can be disregarded.
\[
\frac{|A_0(n)|}{n!} = \sum_{j=1}^{\lfloor n/4 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} + \sum_{j=\lfloor n/4 \rfloor + 1}^{\lfloor n/2 \rfloor} \frac{1}{(n-2j)! \cdot 2^j \cdot j!} = \sum' + \sum''.
\]

In \(\sum'\), each denominator is at least \((n - 2\lfloor n/4 \rfloor)! \geq \lfloor n/2 \rfloor!\), and there are fewer than \(n\) summands. Hence \(\sum' \leq n \cdot (\lfloor n/2 \rfloor!)^{-1} \to 0\).

In \(\sum''\), each denominator is at least \(2^{n/4}\) and there are fewer than \(n\) summands, so \(\sum'' \leq n \cdot 2^{-n/4} \to 0\). Thus,

\[
\lim_{n \to \infty} n! \frac{|A_0(n)|}{n!} = 0.
\]

So, involutions can be disregarded.

Large segment: consists of at least 3 elements.

*http://www.math.u-szeged.hu/~czedli/
If π has exactly k segments onto which the restriction of π is NOT an involution,
If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim-block of π is 2^k-element. Let $A_k(n)$ be the set of all these π.
If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim-block of π is 2^k-element. Let $A_k(n)$ be the set of all these π. $A_0(n)$ is as before.

$S_n =$
If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim-block of π is 2^k-element. Let $A_k(n)$ be the set of all these π. $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \cdots = A_0(n) \cup A_1(n) \cup B(n).$$

(1)

The number of \sim-blocks is
If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim-block of π is 2^k-element. Let $A_k(n)$ be the set of all these π. $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \cdots = A_0(n) \cup A_1(n) \cup B(n). \quad (1)$$

The number of \sim-blocks is:

$$S_n |/\sim|/n! = \frac{|A_0(n)|}{n!} +$$
If \(\pi \) has exactly \(k \) segments onto which the restriction of \(\pi \) is NOT an involution, then the \(\sim \)-block of \(\pi \) is \(2^k \)-element. Let \(A_k(n) \) be the set of all these \(\pi \). \(A_0(n) \) is as before.

\[
S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \cdots = A_0(n) \cup A_1(n) \cup B(n). \tag{1}
\]

The number of \(\sim \)-blocks is:

\[
S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} +
\]
If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim-block of π is 2^k-element. Let $A_k(n)$ be the set of all these π. $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \cdots = A_0(n) \cup A_1(n) \cup B(n). \quad (1)$$

The number of \sim-blocks is:

$$S_n \mid \sim \mid \frac{n!}{n!} + \frac{|A_1(n)|}{2n!} + \frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} + \cdots. \quad (2)$$

We already know that $|A_0(n)|/n! \to 0$.
If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim-block of π is 2^k-element. Let $A_k(n)$ be the set of all these π. $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \cdots = A_0(n) \cup A_1(n) \cup B(n).$$ \hspace{1cm} (1)

The number of \sim-blocks is:

$$S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} + \cdots. \hspace{1cm} (2)$$

We already know that $|A_0(n)|/n! \to 0$. We are going to show that $|B(n)/n!| \to 0$.
If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim-block of π is 2^k-element. Let $A_k(n)$ be the set of all these π. $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \cdots = A_0(n) \cup A_1(n) \cup B(n). \quad (1)$$

The number of \sim-blocks is:

$$S_n/|\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} \cup \cdots. \quad (2)$$

We already know that $|A_0(n)|/n! \to 0$. We are going to show that $|B(n)/n!| \to 0$. Then, since this majorizes the tail, tail $\to 0$. From
If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim-block of π is 2^k-element. Let $A_k(n)$ be the set of all these π. $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \cdots = A_0(n) \cup A_1(n) \cup B(n).$$ \hspace{1cm} (1)$$

The number of \sim-blocks is:

$$S_n/|\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} + \cdots \hspace{1cm} \text{tail}$$ \hspace{1cm} (2)

We already know that $|A_0(n)|/n! \to 0$. We are going to show that $|B(n)/n!| \to 0$. Then, since this majorizes the tail, tail $\to 0$. From $|A_0(n)|/n! \to 0$, we have $|B(n)/n!| \to 0$. Therefore, the number of \sim-blocks $S_n/|\sim|/n! \to 0$.
If \(\pi \) has exactly \(k \) segments onto which the restriction of \(\pi \) is NOT an involution, then the \(\sim \)-block of \(\pi \) is \(2^k \)-element. Let \(A_k(n) \) be the set of all these \(\pi \). \(A_0(n) \) is as before.

\[
S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \cdots = A_0(n) \cup A_1(n) \cup B(n). \tag{1}
\]

The number of \(\sim \)-blocks is:

\[
S_n|/\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} + \cdots. \tag{2}
\]

We already know that \(|A_0(n)|/n! \to 0 \). We are going to show that \(|B(n)/n!| \to 0 \). Then, since this majorizes the tail, \(\text{tail} \to 0 \). From \(|A_0(n)|/n! \to 0 \), \(|B(n)/n!| \to 0 \), and
If π has exactly k segments onto which the restriction of π is NOT an involution, then the \sim-block of π is 2^k-element. Let $A_k(n)$ be the set of all these π. $A_0(n)$ is as before.

$$S_n = A_0(n) \cup A_1(n) \cup A_2(n) \cup A_3(n) \cup \cdots = A_0(n) \cup A_1(n) \cup B(n).$$ (1)

The number of \sim-blocks is:

$$S_n/|\sim|/n! = \frac{|A_0(n)|}{n!} + \frac{|A_1(n)|}{2n!} + \frac{|A_2(n)|}{4n!} + \frac{|A_3(n)|}{8n!} + \cdots.$$

(2)

We already know that $|A_0(n)|/n! \to 0$. We are going to show that $|B(n)/n!| \to 0$. Then, since this majorizes the tail, tail $\to 0$. From $|A_0(n)|/n! \to 0$, $|B(n)/n!| \to 0$, and (1) we obtain $|A_1(n)/n!| \to 1$. Hence $|A_1(n)/(2n!)| \to 1/2$. Finally, $|A_0(n)/n! \to 0$, tail $\to 0$, and $|A_1(n)/(2n!)| \to 1/2$ give the desired $|S_n/\sim|/n! \to 1/2$.

*http://www.math.u-szeged.hu/~czedli/
Suppose $\pi \in B(n)$. Then there are at least two large π-segments.
Suppose \(\pi \in B(n) \). Then there are at least two large \(\pi \)-segments. We define the **pivot element** \(p(\pi) \) of \(\pi \) as the greatest element of the leftmost large \(\pi \)-segment.
Suppose $\pi \in B(n)$. Then there are at least two large π-segments. We define the pivot element $p(\pi)$ of π as the greatest element of the leftmost large π-segment. Then $3 \leq p(\pi) \leq n - 3$ since there are at least two large π-segments.
Suppose $\pi \in B(n)$. Then there are at least two large π-segments. We define the **pivot element** $p(\pi)$ of π as the greatest element of the leftmost large π-segment. Then $3 \leq p(\pi) \leq n - 3$ since there are at least two large π-segments.

Both the intervals $[1, p(\pi)] = \{1, \ldots, p(\pi)\}$ and $[p(\pi) + 1, n]$ are unions of π-segments, whence both are closed with respect to π. Hence if we denote the restrictions of π to these intervals by $\lambda = \pi|_{[1, p(\pi)]}$ and $\rho = \pi|_{[p(\pi) + 1, n]}$, then π is determined by λ and ρ.
Suppose $\pi \in B(n)$. Then there are at least two large π-segments. We define the pivot element $p(\pi)$ of π as the greatest element of the leftmost large π-segment. Then $3 \leq p(\pi) \leq n - 3$ since there are at least two large π-segments.

Both the intervals $[1, p(\pi)] = \{1, \ldots, p(\pi)\}$ and $[p(\pi) + 1, n]$ are unions of π-segments, whence both are closed with respect to π. Hence if we denote the restrictions of π to these intervals by $\lambda = \pi|_{[1, p(\pi)]}$ and $\rho = \pi|_{[p(\pi) + 1, n]}$, then π is determined by λ and ρ.

Since $\lambda \in S_{p(\pi)}$, there are at most $p(\pi)!$ many such λ. (In fact, there are much fewer.) Similarly, there are at most $(n - p(\pi))!$ many ρ.

*http://www.math.u-szeged.hu/~czedli/
Taking the well-known fact
\[\binom{n}{3} \leq \binom{n}{4} \leq \cdots \leq \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lfloor n/2 \rfloor} \geq \binom{n}{\lceil n/2 \rceil + 1} \geq \cdots \geq \binom{n}{n-3} \]
at \leq^* into account and counting the permutations according to their pivot elements, we obtain:

\[\frac{|B(n)|}{n!} \leq \frac{1}{n!} \sum_{k=3}^{n-3} k! \cdot (n-k)! = \]
Taking the well-known fact
\[
\binom{n}{3} \leq \binom{n}{4} \leq \cdots \leq \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lfloor n/2 \rfloor} \geq \binom{n}{\lfloor n/2 \rfloor + 1} \geq \cdots \geq \binom{n}{n-3}
\]
at \leq^* \text{ into account and counting the permutations according to their pivot elements, we obtain:}

\[
\frac{|B(n)|}{n!} \leq \frac{1}{n!} \sum_{k=3}^{n-3} k! \cdot (n-k)! = \sum_{k=3}^{n-3} \frac{k! \cdot (n-k)!}{n!} =
\]
Taking the well-known fact
\[\binom{n}{3} \leq \binom{n}{4} \leq \cdots \leq \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lceil n/2 \rceil} \geq \binom{n}{\lceil n/2 \rceil + 1} \geq \cdots \geq \binom{n}{n-3} \]
at \leq^* into account and counting the permutations according to their pivot elements, we obtain:

\[
\frac{|B(n)|}{n!} \leq \frac{1}{n!} \sum_{k=3}^{n-3} k! \cdot (n-k)! = \sum_{k=3}^{n-3} \frac{k! \cdot (n-k)!}{n!} = \sum_{k=3}^{n-3} \binom{n}{k}^{-1}
\]
Taking the well-known fact

\[\binom{n}{3} \leq \binom{n}{4} \leq \cdots \leq \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lfloor n/2 \rfloor + 1} \geq \cdots \geq \binom{n}{n-3} \]

at \(\leq^* \) into account and counting the permutations according to their pivot elements, we obtain:

\[
\frac{|B(n)|}{n!} \leq \frac{1}{n!} \sum_{k=3}^{n-3} k! \cdot (n-k)! = \sum_{k=3}^{n-3} \frac{k! \cdot (n-k)!}{n!} = \sum_{k=3}^{n-3} \left(\frac{n}{k} \right)^{-1}
\]

\[
\leq^* \sum_{k=3}^{n-3} \left(\frac{n}{3} \right)^{-1} \leq n \cdot \frac{6}{n(n-1)(n-2)} \to 0.
\]
Taking the well-known fact
\[
\binom{n}{3} \leq \binom{n}{4} \leq \cdots \leq \binom{n}{\lfloor n/2 \rfloor} = \binom{n}{\lfloor n/2 \rfloor} \geq \binom{n}{\lfloor n/2 \rfloor + 1} \geq \cdots \geq \binom{n}{n-3} = \binom{n}{\lceil n/2 \rceil} \geq \binom{n}{\lceil n/2 \rceil + 1} \geq \cdots \geq \binom{n}{n-3}
\]
at \leq^* into account and counting the permutations according to their pivot elements, we obtain:

\[
\frac{|B(n)|}{n!} \leq \frac{1}{n!} \sum_{k=3}^{n-3} \frac{k! \cdot (n-k)!}{n!} = \sum_{k=3}^{n-3} \frac{k! \cdot (n-k)!}{n!} = \sum_{k=3}^{n-3} \binom{n}{k}^{-1}
\]

\[
\leq^* \sum_{k=3}^{n-3} \binom{n}{3}^{-1} \leq n \cdot \frac{6}{n(n-1)(n-2)} \to 0. \quad \text{Q.E.D.}
\]

*http://www.math.u-szeged.hu/~cedli/