Stabilitá dell'equilibrio superiore del pendolo

Laszlo Csizmadia

Istituto Bolyai, Universitá di Szeged

Attivitá di ricerca svolta in collaborazione con il Prof. Laszlo Hatvani

Politecnico di Bari, 03 novembre 2011

Pendolo semplice

э 03.11.2011 2 / 26

э

(日)

Pendolo semplice

 φ : l'angolo tra la direzione verticale e il filo del pendolo

$$mI\ddot{\varphi} = -mg\sin{\varphi} \quad \rightsquigarrow \quad I\ddot{\varphi} = -g\varphi$$

Equilibri

< □ > < □ > < □ > < □ > < □ > < □ >

Equilibri

• $(\varphi, \dot{\varphi}) = (0, 0)$ - stabile

・ロト ・ 日 ・ ・ ヨ ト ・

Equilibri

- $(\varphi, \dot{\varphi}) = (0, 0)$ stabile
- $(\varphi, \dot{\varphi}) = (\pi, 0)$ instabile

-∢ ∃ →

Pyotr Leonidovich Kapitsa, 1894-1984

Premio Nobel, Fisica, 1978.

Pyotr Leonidovich Kapitsa, 1894-1984

Premio Nobel, Fisica, 1978.

1911: "L'equilibrio superiore del pendolo é stabile se il punto di sospensione oscilla verticalmente con frequenza abbastanza alta."

L'accelerazione

$$T_1 > 0, T_2 > 0, A_1 > 0, A_2 > g, A_1 T_1 = A_2 T_2$$

$$a(t) = \left\{ egin{array}{cc} A_1, & {
m se} \ k(T_1+T_2) \leq t < (k+1)T_1 + kT_2; \ -A_2, & {
m se} \ (k+1)T_1 + kT_2 \leq t < (k+1)(T_1+T_2), \ k \in \mathbb{Z}_+ \end{array}
ight.$$

< □ > < □ > < □ > < □ > < □ > < □ >

L'accelerazione

$$T_1 > 0, \ T_2 > 0, \ A_1 > 0, \ A_2 > g, \ A_1 T_1 = A_2 T_2$$

$$a(t) = \left\{ egin{array}{cc} A_1, & {
m se} \ k(T_1+T_2) \leq t < (k+1)T_1 + kT_2; \ -A_2, & {
m se} \ (k+1)T_1 + kT_2 \leq t < (k+1)(T_1+T_2), \ k \in \mathbb{Z}_+ \end{array}
ight.$$

Periodo: $T = T_1 + T_2$

L. Csizmadia (Szeged)

э 5 / 26 03.11.2011

L'equazione del moto

$$x = \pi - \varphi \rightsquigarrow \ddot{x} = -\ddot{\varphi}; \sin x = \sin \varphi$$

・ロト ・ 戸 ・ ・ ヨ ・ ・

L'equazione del moto

$$x = \pi - \varphi \rightsquigarrow \ddot{x} = -\ddot{\varphi}; \ \sin x = \sin \varphi$$

Il modello del pendolo vibrato

$$\ddot{x} - \frac{g + a(t)}{l}x = 0$$

- *I*: la lunghezza del pendolo
- g: la costante gravitazionale
- x: l'angolo tra la direzione verticale e il filo del pendolo

• condizione sufficiente a garantire la stabilitá dell'equilibrio superiore

-

- condizione sufficiente a garantire la stabilitá dell'equilibrio superiore
- al caso classico $T_1 = T_2, \ A_1 = A_2$

→ ∃ →

Obiettivi

- condizione sufficiente a garantire la stabilitá dell'equilibrio superiore
- al caso classico $T_1 = T_2, \ A_1 = A_2$
- disegneremo una mappa globale della stabilita

Obiettivi

- condizione sufficiente a garantire la stabilitá dell'equilibrio superiore
- al caso classico $T_1 = T_2, \ A_1 = A_2$
- disegneremo una mappa globale della stabilita
- animazione

Definizioni

$$\dot{x} = A(t)x, \ A \in M(2,\mathbb{R}), \ A(t+T) = A(t), \ \mathrm{Tr} \, \mathrm{A} = 0$$

・ロト ・聞ト ・ヨト ・ヨト

Definizioni

$$\dot{x} = A(t)x, \ A \in M(2,\mathbb{R}), \ A(t+T) = A(t), \ \mathrm{Tr} \, \mathrm{A} = 0$$

Definizione

Un sistema lineare, $\dot{x} = A(t)x$, é detto stabile se tutte le soluzioni sono limitate in $[0; +\infty)$.

イロト イポト イヨト イヨト

Definizioni

$$\dot{x} = A(t)x, \ A \in M(2,\mathbb{R}), \ A(t+T) = A(t), \ \mathrm{Tr} \, \mathrm{A} = 0$$

Definizione

Un sistema lineare, $\dot{x} = A(t)x$, é detto stabile se tutte le soluzioni sono limitate in $[0; +\infty)$.

Definizione

Un sistema lineare é detto stabile forte quando é stabile ed esiste $\varepsilon > 0$ tale che l'equazione $\dot{x} = B(t)x$ sia stabile supposto che $|B(t) - A(t)| < \varepsilon$ per ogni $t \ge 0$.

Condizione

X(t): matrice fondamentale X(0) = I, X(T) = C: matrice di monodromia

< ロ > < 同 > < 回 > < 回 > < 回

Condizione

X(t): matrice fondamentale X(0) = I, X(T) = C: matrice di monodromia

Teorema

Una matrice C con det C = 1 fa ruotare tutti i vettori in \mathbb{R}^2 di un angolo $\alpha \neq 0 \pmod{\pi}$ se e solo se il sistema lineare é stabile forte.

Stabilitá forte $\Leftrightarrow \quad \alpha \not\equiv 0 \pmod{\pi}$

Condizione

X(t): matrice fondamentale X(0) = I, X(T) = C: matrice di monodromia

Teorema

Una matrice C con det C = 1 fa ruotare tutti i vettori in \mathbb{R}^2 di un angolo $\alpha \not\equiv 0 \pmod{\pi}$ se e solo se il sistema lineare é stabile forte.

Stabilitá forte $\Leftrightarrow \quad \alpha \not\equiv 0 \pmod{\pi}$

In particolare: Stabilitá forte \Leftrightarrow $-\pi < \alpha < 0$

$$\ddot{x} - rac{g + a(t)}{l}x = 0$$

 $a(t) = \left\{egin{array}{c} A_1, & ext{se } 0 \leq t < T_1; \ -A_2, & ext{se } T_1 \leq t < T_1 + T_2 = T \end{array}
ight.$

 →
 ≥
 >

 03.11.2011
 10 / 26

(日) (日) (日) (日) (日)

$$\ddot{x} - \frac{g + a(t)}{l}x = 0$$

$$a(t) = \begin{cases} A_1, & \text{se } 0 \le t < T_1; \\ -A_2, & \text{se } T_1 \le t < T_1 + T_2 = T \end{cases}$$

(H)
$$\ddot{x} - \frac{g + A_1}{l}x = 0$$

 $0 < \pm < T$

03.11.2011 10 / 26

æ

・ロト ・個ト ・モト ・モト

$$\ddot{x} - \frac{g + a(t)}{l}x = 0$$

$$a(t) = \begin{cases} A_1, & \text{se } 0 \le t < T_1; \\ -A_2, & \text{se } T_1 \le t < T_1 + T_2 = T \end{cases}$$

$$0 \le t < T_1 \qquad \qquad T_1 \le t < T_1 + T_2$$
(H)
$$\ddot{x} - \frac{g + A_1}{l}x = 0 \qquad (E) \qquad \ddot{x} + \frac{A_2 - g}{l}x = 0$$

03.11.2011 10 / 26

æ

< □ > < □ > < □ > < □ > < □ > < □ >

$$\omega_1 = \sqrt{\frac{g + A_1}{l}}$$

$$(\mathsf{H}) \qquad \ddot{x} - \omega_1^2 x = \mathsf{0}$$

 Image: 1
 Image: 1
 Image: 2
 Image: 2

・ロト ・個ト ・モト ・モト

$$\omega_1 = \sqrt{\frac{g + A_1}{l}}$$

$$(\mathsf{H}) \qquad \ddot{x} - \omega_1^2 x = \mathsf{0}$$

$$y = \frac{\dot{x}}{\omega_1}$$
(H)
$$\begin{cases} \dot{x} = \omega_1 y, \\ \dot{y} = \omega_1 x \end{cases}$$

æ

・ロト ・個ト ・モト ・モト

$$\omega_{1} = \sqrt{\frac{g+A_{1}}{l}} \qquad \qquad \omega_{2} = \sqrt{\frac{A_{2}-g}{l}}$$
(H) $\ddot{x} - \omega_{1}^{2}x = 0$
(E) $\ddot{x} + \omega_{2}^{2}x = 0$

$$y = \frac{\dot{x}}{\omega_{1}} \qquad \qquad y = \frac{\dot{x}}{\omega_{2}}$$
H) $\begin{cases} \dot{x} = \omega_{1}y, \\ \dot{y} = \omega_{1}x \end{cases}$
(E) $\begin{cases} \dot{x} = \omega_{2}y, \\ \dot{y} = -\omega_{2}x \end{cases}$

L. Csizmadia (Szeged)

(

 Image: 1
 Image: 1
 Image: 2

 03.11.2011
 11 / 26

< □ > < □ > < □ > < □ > < □ > < □ >

$$x = r \cos \varphi, \ y = r \sin \varphi$$

(日) (日) (日) (日) (日)

$$x = r \cos \varphi, \ y = r \sin \varphi$$

$$0 \le t < T_1 \qquad T_1 \le t < T_1 + T_2$$
(H)
$$\begin{cases} \frac{\dot{r}}{r} = \omega_1 \sin 2\varphi \\ \dot{\varphi} = \omega_1 \cos 2\varphi \end{cases} \qquad (E) \qquad \begin{cases} \dot{r} = 0 \\ \dot{\varphi} = -\omega_2 \end{cases}$$

 03.11.2011
 12 / 26

(日) (日) (日) (日) (日)

$$x = r \cos \varphi, \ y = r \sin \varphi$$

$$0 \le t < T_1 \qquad T_1 \le t < T_1 + T_2$$
(H)
$$\begin{cases} \frac{\dot{r}}{r} = \omega_1 \sin 2\varphi \\ \dot{\varphi} = \omega_1 \cos 2\varphi \end{cases}$$
(E)
$$\begin{cases} \dot{r} = 0 \\ \dot{\varphi} = -\omega_2 \end{cases}$$
(I.)

Le traiettorie di (E): rotazione in senso orario, velocitá angolare: $-\omega_2$ L'angolo:

$$\beta_E = -\omega_2 T_2 \quad (T_1 \le t < T_1 + T_2)$$

3

A B A A B A

< 口 > < 同

Rotazione ellittica

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Rotazione iperbolica У Х

・ロト ・ 日 ・ ・ ヨ ・ ・

Spazio delle fasi (II.)

Fase di flusso di (H): rotazione iperbolica

L'angolo?

 $\dot{\varphi} = \omega_1 \cos 2\varphi$

$$arphi(t) = \arctan\left(rac{e^{2\omega_1(t-t_0)}\cdotrac{1+ anarphi_0}{1- anarphi_0}-1}{e^{2\omega_1(t-t_0)}\cdotrac{1+ anarphi_0}{1- anarphi_0}+1}
ight)$$

∃ >

Spazio delle fasi (II.)

Fase di flusso di (H): rotazione iperbolica

L'angolo?

 $\dot{\varphi} = \omega_1 \cos 2\varphi$

$$arphi(t) = \arctan\left(rac{e^{2\omega_1(t-t_0)}\cdotrac{1+ anarphi_0}{1- anarphi_0}-1}{e^{2\omega_1(t-t_0)}\cdotrac{1+ anarphi_0}{1- anarphi_0}+1}
ight)$$

Lemma

Indicando $\beta_H(z; t_0) = \varphi(t_0 + T_1) - \varphi(t_0)$ l'angolo di rotazione iperbolica del vettore z = (x; y) in $[t_0; t_0 + T_1]$, si ha

$$|eta_{\mathcal{H}}(z;t_0)|\leq 2 \arctan rac{e^{\omega_1 \mathcal{T}_1}-1}{e^{\omega_1 \mathcal{T}_1}+1}<rac{\pi}{2}$$

(III.)

(H)
$$\ddot{x} - \omega_1^2 x = 0; \ y = \frac{\dot{x}}{\omega_1}$$
 (E) $\ddot{x} + \omega_2^2 x = 0; \ y = \frac{\dot{x}}{\omega_2}$

・ロト ・個ト ・モト ・モト

(III.)

$$0 \le t < T_1 \qquad \qquad T_1 \le t < T_1 + T_2$$

(H)
$$\ddot{x} - \omega_1^2 x = 0; \ y = \frac{\dot{x}}{\omega_1}$$
 (E) $\ddot{x} + \omega_2^2 x = 0; \ y = \frac{\dot{x}}{\omega_2}$

$$\dot{x}$$
 continua in $[0; +\infty) \Rightarrow \omega_1 y(T_1 - 0) = \omega_2 y(T_1 + 0)$

< □ > < □ > < □ > < □ > < □ > < □ >

(III.)

$$0 \le t < T_1 \qquad T_1 \le t < T_1 + T_2$$
(H) $\ddot{x} - \omega_1^2 x = 0; \ y = \frac{\dot{x}}{\omega_1}$ (E) $\ddot{x} + \omega_2^2 x = 0; \ y = \frac{\dot{x}}{\omega_2}$
 $\dot{x} \text{ continua in } [0; +\infty) \Rightarrow \omega_1 y(T_1 - 0) = \omega_2 y(T_1 + 0)$

$$(T_1) = (T_1 + 0) \qquad \omega_1^2 (T_1 - 0)$$

$$y(T_1) = y(T_1 + 0) = \frac{\omega_1}{\omega_2}y(T_1 - 0);$$

・ロト ・個ト ・モト ・モト

(III.)

$$0 \le t < T_1 \qquad T_1 \le t < T_1 + T_2$$
(H) $\ddot{x} - \omega_1^2 x = 0; \ y = \frac{\dot{x}}{\omega_1}$ (E) $\ddot{x} + \omega_2^2 x = 0; \ y = \frac{\dot{x}}{\omega_2}$
 $\dot{x} \text{ continua in } [0; +\infty) \implies \omega_1 y(T_1 - 0) = \omega_2 y(T_1 + 0)$
 $y(T_1) = y(T_1 + 0) = \frac{\omega_1}{\omega_2} y(T_1 - 0); \ q = \frac{\omega_1}{\omega_2}$

 03.11.2011
 15 / 26

・ロト ・個ト ・モト ・モト

(III.)

$$0 \le t < T_1 \qquad T_1 \le t < T_1 + T_2$$

H) $\ddot{x} - \omega_1^2 x = 0; \ y = \frac{\dot{x}}{\omega_1}$ (E) $\ddot{x} + \omega_2^2 x = 0; \ y = \frac{\dot{x}}{\omega_2}$
 $\dot{x} \text{ continua in } [0; +\infty) \implies \omega_1 y(T_1 - 0) = \omega_2 y(T_1 + 0)$
 $y(T_1) = y(T_1 + 0) = \frac{\omega_1}{\omega_2} y(T_1 - 0); \ q = \frac{\omega_1}{\omega_2}$

Contrazione: q < 1Dilatazione: q > 1

< □ > < □ > < □ > < □ > < □ > < □ >

Salti

 Image: 1
 Image: 2
 Image: 2

 03.11.2011
 16 / 26

・ロト ・個ト ・モト ・モト

Salti

Angolo:

$$|eta_J| \leq |\arctanrac{1}{\sqrt{q}} - \arctan\sqrt{q}|$$

・ロト ・個ト ・モト ・モト

Risultato principale

Teorema

Sia
$$\omega_1 = \sqrt{rac{g+A_1}{l}}, \ \omega_2 = \sqrt{rac{A_2-g}{l}}, \ q = rac{\omega_1}{\omega_2}
eq 1$$
, e

$$a(t) = \left\{ egin{array}{ll} A_1, & {\it se}\; k(T_1+T_2) \leq t < (k+1)T_1 + kT_2; \ -A_2, & {\it se}\; (k+1)T_1 + kT_2 \leq t < (k+1)(T_1+T_2), k \in \mathbb{Z}_+ \end{array}
ight.$$

L'equilibrio, (0,0), dell'equazione del moto, $\ddot{x} - \frac{g + a(t)}{l}x = 0$, é stabile forte, se:

•
$$\omega_2 T_2 < \pi$$
;
• $2 \arctan \frac{e^{\omega_1 T_1} - 1}{e^{\omega_1 T_1} + 1} + 2|\arctan \frac{1}{\sqrt{q}} - \arctan \sqrt{q}| < \min\{\omega_2 T_2; \ \pi - \omega_2 T_2\}$.

 → < Ξ → Ξ</th>
 つ < ⊂</th>

 03.11.2011
 17 / 26

< □ > < □ > < □ > < □ > < □ > < □ >

M. Levi and W. Weckesser

$$\omega_1 = \sqrt{\frac{g + A_1}{l}}, \ \omega_2 = \sqrt{\frac{A_2 - g}{l}}, \ q = \frac{\omega_1}{\omega_2} \neq 1$$
$$A_2 >> g \rightsquigarrow g = 0$$

$$T_1 = T_2, \ A_1 = A_2 \rightsquigarrow \omega_1 = \omega_2 = \omega$$

< □ > < □ > < □ > < □ > < □ > < □ >

M. Levi and W. Weckesser

$$\omega_1 = \sqrt{\frac{g + A_1}{l}}, \ \omega_2 = \sqrt{\frac{A_2 - g}{l}}, \ q = \frac{\omega_1}{\omega_2} \neq 1$$
$$A_2 >> g \rightsquigarrow g = 0$$

$$T_1 = T_2, \ A_1 = A_2 \rightsquigarrow \omega_1 = \omega_2 = \omega$$

Loro risultato: $-\pi < -\omega \Rightarrow$ Stabilitá forte

 →
 ≥
 >

 03.11.2011
 18 / 26

< ロ > < 同 > < 回 > < 回 > < □ > <

M. Levi and W. Weckesser

$$\omega_1 = \sqrt{\frac{g + A_1}{l}}, \ \omega_2 = \sqrt{\frac{A_2 - g}{l}}, \ q = \frac{\omega_1}{\omega_2} \neq 1$$
$$A_2 >> g \rightsquigarrow g = 0$$

$$T_1 = T_2, \ A_1 = A_2 \rightsquigarrow \omega_1 = \omega_2 = \omega$$

Loro risultato: $-\pi < -\omega \Rightarrow$ Stabilitá forte

Nostro risultato:
$$-\pi < -\frac{\omega}{2} - 2 \arctan \frac{e^{\frac{\omega}{2}} - 1}{e^{\frac{\omega}{2}} + 1} \Rightarrow$$
 Stabilitá forte

L. Csizmadia (Szeged)

 Image: Image:

< ロ > < 同 > < 回 > < 回 > < □ > <

03.11.2011 19 / 26

æ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$T_1 = T_2; \ A_1 = A_2 = A; \ A >> g, D << I$

イロト 不得 とくほ とくほ とうしょう

 $T_1 = T_2; \ A_1 = A_2 = A; \ A >> g, D << I$ $\varepsilon = \sqrt{\frac{D}{I}}, \ \mu = \sqrt{\frac{g}{A}};$

03.11.2011 20 / 26

イロト 不得 とくほと くほとう ほう

 $T_1 = T_2; \ A_1 = A_2 = A; \ A >> g, D << I$ $\varepsilon = \sqrt{\frac{D}{I}}, \ \mu = \sqrt{\frac{g}{A}}; \ \varepsilon << 1, \mu << 1$

03.11.2011 20 / 26

イロト 不得下 イヨト イヨト ニヨー

$$T_1 = T_2; \ A_1 = A_2 = A; \ A >> g, D << I$$
$$\varepsilon = \sqrt{\frac{D}{I}}, \ \mu = \sqrt{\frac{g}{A}}; \ \varepsilon << 1, \mu << 1$$

Risultato di Arnold:
$$\mu < rac{\sqrt{2}arepsilon}{\sqrt{3}} \Rightarrow$$
 Stabilitá forte

L. Csizmadia (Szeged)

 Image: Image:

・ロト ・聞 ト ・ ヨト ・ ヨト

$$T_1 = T_2; \ A_1 = A_2 = A; \ A >> g, D << I$$
$$\varepsilon = \sqrt{\frac{D}{I}}, \ \mu = \sqrt{\frac{g}{A}}; \ \varepsilon << 1, \mu << 1$$

Risultato di Arnold:
$$\mu < rac{\sqrt{2}arepsilon}{\sqrt{3}} \Rightarrow$$
 Stabilitá forte

La mappa di stabilitá é vicino all'origine.

э

03.11.2011

20 / 26

Interpretazione geometrica del risultato di Arnold

L. Csizmadia (Szeged)

03.11.2011 21 / 26

$$A > g \Rightarrow \varepsilon$$
 arbitrario, $\mu < 1$

Mappa globale di stabilitá, $0 < \varepsilon < 3$

L. Csizmadia (Szeged)

03.11.2011 22 / 26

03.11.2011 23 / 26

< 一型

э

 $1 < \varepsilon < 2$

03.11.2011 24 / 26

03.11.2011 25 / 26

3) J

< 一型

Grazie per la Vostra cortese attenzione!