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Abstract
Using purely elementary methods, necessary and sufficient conditions

are given for the existence of 2T -periodic and 4T -periodic solutions around
the upper equilibrium of the mathematical pendulum when the suspension
point is vibrating with period 2T . The equation of the motion is of the form

θ̈ −
1
l

(g + a(t)) θ = 0,

where l,g are constants and

a(t) :=

A if 2kT ≤ t < (2k + 1)T,
−A if (2k + 1)T ≤ t < (2k + 2)T, (k = 0, 1, . . . );

(0.1)

A,T are positive constants. The exact stability zones for the upper equilib-
rium are presented.
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1 Introduction
It was a surprising discovery at the beginning of the last century (see [1, 14]) that
the upper (unstable) equilibrium of the mathematical pendulum can be stabilized
by vibrating of the point of suspension vertically with sufficiently high frequency.
Many papers (see, e.g., [2, 4, 8, 15, 16, 17, 20, 21] and the references therein) have
been devoted to the description of this phenomenon (see also [1, 5, 19]). Inves-
tigating the small oscillations around the upper equilibrium V. I. Arnold [1] and,
later on, M. Levi and W. Weckesser [17] estimated the stability zones on parame-
ter planes. It is well known [1] that the boundary curves of these zones correspond
to the equations of motions having 2T -periodic or 4T -periodic solutions, where
2T is the period of the vibration of the suspension point. In this paper we give
necessary and sufficient conditions for the parameters in the equation of motions
so that the equation have periodic solutions of 2T or 4T . These conditions define
the exact stability zones on the parameter plane. The conditions and their proofs
are based upon purely elementary methods; we do not use even Floquet’s theory
[1, 5, 19].

In Section 2 we set up the model describing the small oscillations of the excited
pendulum around the upper equilibrium. The model is a non-autonomous sec-
ond order linear differential equation with a 2T -periodic step function coefficient.
We reduce this equation to an equivalent discrete dynamical system on the plane.
In Section 3 we construct periodic solutions of period 2T or 4T to this equiva-
lent system. In Section 4 we formulate the Oscillation Theorem and present the
stability zones on the parameter plane introduced by Arnold [1].

2 The model
It is well-known [1, 5, 19] that motions of the mathematical pendulum are de-
scribed by the second order differential equation

ψ̈ +
g
l

sinψ = 0 (−∞ < ψ < ∞), (2.1)
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where the state variable ψ denotes the angle between the rod of the pendulum
and the direction downward measured counter-clockwise; g and l are the gravity
acceleration and the length of the rod respectively. The lower equilibrium position
ψ ≡ 0 (mod 2π) is stable and the upper one ψ ≡ π (mod 2π) is unstable. We
want to stabilize the upper equilibrium position, so introducing the new angle
variable θ = ψ−π and linearizing equation (2.1) we obtain the linear second order
differential equation

θ̈ −
g
l
θ = 0,

which describes the small oscillations of the pendulum around the upper equilib-
rium position θ = 0 (mod 2π).

Suppose that the suspension point is vibrating vertically with the acceleration

a(t) :=

A if 2kT ≤ t < (2k + 1)T,
−A if (2k + 1)T ≤ t < (2k + 2)T, (k = 0, 1, . . . );

(2.2)

A,T are positive constants, so that the motion of the suspension point is 2T -
periodic. Since the suspending rod is rigid the acceleration of the vibration is
continuously added to the gravity, and the equation of motion of the pendulum is

θ̈ −
1
l
(g + a(t))θ = 0. (2.3)

Every motion of (2.3) has two phases during every period, a hyperbolic and an
elliptic one, that are described by the equations

θ̈ − ω2
hθ = 0 (2kT ≤ t < (2k + 1)T ) (2.4)

and
θ̈ + ω2

eθ = 0 ((2k + 1)T ≤ t < (2k + 2)T ), (2.5)

where

ωh :=

√
A + g

l
, ωe :=

√
A − g

l
, k ∈ Z+

0 := {0, 1, 2, . . . }

denotes the hyperbolic and the elliptic frequency of the pendulum, respectively.
We introduce two different phase planes for the two different phases of the mo-

tions. Starting with the hyperbolic case, we introduce the new phase variables

xh = θ, yh =
θ̇

ωh
,
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Figure 1: Hyperbolic and elliptic rotation

in which (2.4) has the following symmetric form:

ẋh = ωhyh, ẏh = ωhxh. (2.6)

Using polar coordinates rh, ϕh and the transformation rules

xh = rh cosϕh, yh = rh sinϕh (rh > 0, −∞ < ϕh < ∞),

(2.6) can be rewritten into the system

ṙh = rhωh sin 2ϕh, ϕ̇h = ωh cos 2ϕh. (2.7)

The derivative of Hh(x, y) := x2
h − y2

h with respect to system (2.6) equals identi-
cally zero, i.e., Hh is a first integral of (2.6), so the trajectories of the system are
hyperbolae; (2.7) describes “hyperbolic rotations" (see Figure 1). We will need
the solution of the second equation in (2.7). This equation is separable, so we can
write ∫ t

0

ϕ̇h(s) ds
cos 2ϕh(s)

= ωht, 0 ≤ t ≤ T,

and so ∫ ϕh(t)

ϕ0

dϕ
cos 2ϕ

= ωht, ϕ0 := ϕh(0) , −
π

4
. (2.8)

Let G(ϕ) :=
∫

dϕ/ cos 2ϕ. Then

G(ϕ) = −
1
2

ln
∣∣∣∣∣tan

(
π

4
− ϕ

)∣∣∣∣∣ ,
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whence

G(ϕ) :=


−

1
2

ln tan
(
π

4
− ϕ

)
if − π/4 < ϕ < π/4,

−
1
2

ln tan
(
ϕ −

π

4

)
if − 3π/4 < ϕ < −π/4.

(2.9)

From (2.8) we obtain
ϕh(t) = G−1 (ωht + G(ϕ0)) .

Especially,
ϕh(T − 0) = G−1 (ωhT + G(ϕ0)) , (2.10)

where ϕh(T − 0) denotes the left-hand side limit of ϕ at T . Now, we can give the
solution of the second equation of (2.7):

ϕh(t;ϕ0) :=


π

4
− arctan

(
e−2ωht tan

(
π

4
− ϕ0

))
if − π/4 < ϕ0 < π/4,

π

4
+ arctan

(
e−2ωht tan

(
ϕ0 −

π

4

))
if − 3π/4 < ϕ0 < −π/4.

(2.11)

Let us repeat the same procedure for the second phase of the period with the new
phase variables xe = θ, ye = θ̇/ωe. Then we get the systems

ẋe = ωeye, ẏe = −ωexe, (2.12)

ṙe = 0, ϕ̇e = −ωe. (2.13)

Now He(x, y) := x2
e + y2

e is a first integral, and the trajectories of (2.12) are circles
around the origin; (2.13) describes uniform “elliptic (ordinary) rotations".

Equation (2.3) has a piecewise continuous coefficient, so we have to modify the
standard definition of a solution of a continuous second order differential equation.
A function θ : R → R is a solution of (2.3) if it is continuously differentiable on
R, it is twice differentiable on the set

S := R \ {kT }k∈Z+
0
,

and it satisfies equation (2.3) on the set S . Any solution θ consists of solutions
xh : [2kT, (2k + 1)T )→ R and xe : [(2k + 1)T, (2k + 2)T )→ R of (2.6) and (2.12),
respectively (k ∈ Z+

0 ). To guarantee the continuity of the derivative θ̇ on Rwe have
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to require the “connecting conditions"

xe((2k + 1)T ) = lim
t→(2k+1)T−0

xh(t), xh((2k + 2)T ) = lim
t→(2k+2)T−0

xe(t);

ωeye((2k + 1)T ) = lim
t→(2k+1)T−0

ωhyh(t), ωhyh((2k + 2)T ) = lim
t→(2k+2)T−0

ωeye(t).

(2.14)
Geometrically this means that at the ends of the hyperbolic and elliptic phases
jumps happen in the dynamics: there acts on the phase point (x, y) a linear trans-
formation (a contraction or a dilatation)

(x, y) 7→ (x, dy) =: (x, ŷ) (0 < d = const., d , 1)

in the direction of y-axis. Namely, d = ωh/ωe at t = (2k + 1)T , and d = ωe/ωh at
t = (2k + 2)T .

The steps of dynamics of the system can be described as follows. The phase
point starts from (x0, y0) and moves along a hyperbola during the interval [0,T ).
At the moment t = T a dilation of measure ωh/ωe > 1 happens parallel with
y−axis. Then the phase point turns clockwise around the origin by ωeT . Finally,
a contraction of measure ωe/ωh < 1 happens. These four steps are repeated ad
infinitum.

Let us consider this system in polar coordinates. Denote by (rR, ϕR), and (rC, ϕC) =

(ρ(r, ϕ; d), φ(ϕ; d)) the image of the point (r, ϕ) at the rotation of a clockwise
angle α and the contraction-dilatation, respectively. Then, obviously, rR(r, ϕ) =

r, ϕR(r, ϕ) = ϕ − α; furthermore,

ρ(r, ϕ; d) =
√

x2 + d2y2 = r
√

1 + (d2 − 1) sin2 ϕ = f (ϕ; d)r,

f (ϕ, d) :=
√

1 + (d2 − 1) sin2 ϕ, (d > 0,−∞ < ϕ < ∞).

It is easy to see that tan φ(ϕ; d) = dy/x = d tanϕ (x , 0, i.e., ϕ . π/2 (mod π)),
so

φ(ϕ; d) :=


arctan(d tanϕ) +

[ϕ +
π

2
π

]
· π if ϕ , (2k + 1)

π

2
,

ϕ if ϕ = (2k + 1)
π

2
, (k ∈ Z),

where [x] denotes the integer part of x ∈ R.
The detailed description of properties of functions f and φ can be found in [10].

During our calculations we will use from these properties that f is even and φ is
odd, furthermore φ(· + kπ; d) = φ(·; d) + kπ (k ∈ Z); φ (φ(ϕ; d); 1/d) = ϕ (ϕ ∈ R).
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3 The construction of periodic solutions
Let us start a trajectory t 7→ (r(t), ϕ(t)) from r0, ϕ0 at t0 = 0. With D := ωh/ωe > 1,
for the first five notable points of the trajectory we introduce the notations

r0 := r(0), ϕ0 :≡ ϕ(0) (mod 2π), −2π < ϕ0 ≤ 0;
r1 := r(T − 0), ϕ1 := ϕ(T − 0);
r2 := r(T ) = f (ϕ1; D) r1, ϕ2 := ϕ(T ) = φ (ϕ1; D) ;
r3 := r(2T − 0)(= r2), ϕ3 := ϕ(2T − 0);
r4 := r(2T ) = f (ϕ3; 1/D)r3, ϕ4 := ϕ(2T ) = φ(ϕ3; 1/D).

(3.1)

Since systems (2.4) and (2.5) are linear, it is obvious that if t 7→ (x(t), y(t)) is a
solution of a system then t 7→ (−x(t),−y(t)) is also a solution. So, it is sufficient
to consider the half plane of the right-hand side, namely, when −π/2 5 ϕ0 < π/2.

Figure 2: Steps of the dynamics. 1

Lemma 3.1. Let ϕ0 ∈ [−π/2, π/2). Then t 7→ (r(t), ϕ(t)) is a trajectory of a
2T-periodic solution of (2.3) if and only if either

(a) −π/4 < ϕ0 < 0 and there is a non-negative integer k such that{
ϕ1 = −ϕ0

ϕ3 = −ϕ2 − 2kπ, (3.2)

or
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Figure 3: Steps of the dynamics. 2

(b) −π/2 < ϕ0 < −π/4 and there is a non-negative integer k such that{
ϕ1 = −ϕ0 − π
ϕ3 = −ϕ2 − π − 2(k + 1)π. (3.3)

Proof. Necessity. Let θ be a 2T -periodic solution of (2.3) such that −π/2 < ϕ0 <
π/2. From equations (2.7) we obtain that every hyperbola satisfies some differen-
tial equation

dr
dϕ

= r tan 2ϕ
(
−
π

4
+ m

π

2
< ϕ <

π

4
+ m

π

2
, m ∈ {−1, 0, 1}

)
. (3.4)

(3.4) is separable, so integrating it we have

r
r0

=

√
| cos 2ϕ0|

| cos 2ϕ|

(
−
π

4
+ m

π

2
< ϕ0, ϕ <

π

4
+ m

π

2
, m ∈ {−1, 0, 1}

)
. (3.5)

Using (3.1) and the features of the function f we can write

r3 = f (ϕ0; D)r0, r2 = f (ϕ1; D)r1.

Since the solution is 2T -periodic and r3 = r2 we have

r1

r0
=

√
| cos 2ϕ0|

| cos 2ϕ1|
=

f (ϕ0; D)
f (ϕ1; D)

=

√
1 + (D2 − 1) sin2 ϕ0

1 + (D2 − 1) sin2 ϕ1
. (3.6)
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By the use of the function

h(ϕ) :=
| cos 2ϕ|

1 + (D2 − 1) sin2 ϕ
(3.7)

(3.6) can be expressed by h(ϕ0) = h(ϕ1).
An elementary calculation shows that h is strictly decreasing on the closed in-

terval [π/4 + mπ/2, π/2 + mπ/2], and strictly increasing on [mπ/2, π/4 + mπ/2]
( m ∈ Z).

If ϕ0 ∈ [0, π/4] or ϕ0 ∈ [π/4, π/2], then ϕ1 must be found in the same interval.
Since h is strictly monotonous in these intervals, h(ϕ0) = h(ϕ1) cannot be satisfied.
So, a 2T -periodic solution cannot start from such a ϕ0.

Function h is even and periodic of period π/2, so if ϕ0 ∈ (−π/4, 0) or ϕ0 ∈

(−π/2,−π/4) then there exists exactly one ϕ1 ∈ (0, π/4) or ϕ1 ∈ (−3π/4,−π/2) for
which h(ϕ0) = h(ϕ1); i.e., (3.2) or (3.3) are satisfied, respectively.

Sufficiency. Case (a). Let us suppose that the phase-point moves on the phase
plane such that (3.2) is satisfied. Using the notations (3.1) and the properties of
the function f és a φ we have

ϕ4 = φ(−ϕ2 − 2kπ; 1/D) = φ(−ϕ2; 1/D) − 2kπ = φ(−φ(ϕ1; D); 1/D) − 2kπ

= φ(−φ(−ϕ0; D); 1/D) − 2kπ = ϕ0 − 2kπ.

On the other hand

r4 = f (ϕ3; 1/D)r3 = f (−ϕ2 − 2kπ; 1/D)r2 = f (−φ(ϕ1; D); 1/D) f (ϕ1; D)r1

= f (φ(−ϕ0; D); 1/D) f (−ϕ0; D)r0 = f (−φ(−ϕ0; D); 1/D) f (ϕ0; D)r0 = r0.

Case (b) can be treated by a similar computation.
�

Lemma 3.2. Let ϕ0 ∈ [−π/2, π/2). Then t 7→ (r(t), ϕ(t)) is the trajectory of such
a 4T-periodic solution of (2.3) which is not 2T-periodic if and only if either

(a) −π/4 < ϕ0 < 0 and there is a non-negative integer k such that{
ϕ1 = −ϕ0

ϕ3 = −ϕ2 − π − 2kπ, (3.8)

or
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Figure 4: 4T-periodic solution 1.

Figure 5: 4T-periodic solution 2.

(b) −π/2 < ϕ0 < −π/4 and there is a non-negative integer k such that{
ϕ1 = −ϕ0 − π
ϕ3 = −ϕ2 − 2π − 2kπ. (3.9)

Proof. (2.3) is linear, so a solution t 7→ (r(t), ϕ(t)) is 4T -periodic but not 2T -
periodic if and only if r(2T ) = r(0), ϕ(2T ) ≡ ϕ(0) − π (mod 2π). Therefore the
necessity can be proved in the same way as in Lemma 3.1.
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Sufficiency. Case (a). If (3.8) is satisfied, then, using notaions (3.1) we can write

ϕ4 = φ(−ϕ2 − π − 2kπ; 1/D) = φ(−ϕ2; 1/D) − (2k + 1)π = φ(−φ(ϕ1; D); 1/D)

− (2k + 1)π = φ(−φ(−ϕ0; D); 1/D) − (2k + 1)π = ϕ0 − (2k + 1)π.

Therefore, ϕ4 ≡ ϕ0 − π (mod 2π), what we want to prove. Furthermore, we have

r4 = f (ϕ3; 1/D)r3 = f (−ϕ2 − π − 2kπ; 1/D)r2 = f (−φ(ϕ1; D); 1/D) f (ϕ1; D)r1

= f (φ(ϕ0; D); 1/D) f (−ϕ0; D)r0 = f (φ(ϕ0; D); 1/D) f (ϕ0; D)r0 = r0.

Sufficiency, case (b). It is the same as in the proof of Lemma 3.1.
�

We can give two theorems which yield necessary and sufficient conditions for
the existence of 2T -periodic and 4T -periodic solutions of (2.3).

Theorem 3.3. There is a solution of (2.3) of period 2T if and only if there are
positive constants A and T in (2.2) and a non-negative integer k such that either

2 arctan
(
D

eωhT − 1
eωhT + 1

)
+ 2kπ = ωeT, (3.10)

or

2 arctan
(
D

eωhT + 1
eωhT − 1

)
+ (2k + 1)π = ωeT. (3.11)

Theorem 3.4. There is such a 4T-periodic solution of (2.3) which is not 2T-
periodic if and only if there are positive constants A and T in (2.2) and a non-
negative integer k such that either

2 arctan
(
D

eωhT − 1
eωhT + 1

)
+ (2k + 1)π = ωeT, (3.12)

or

2 arctan
(
D

eωhT + 1
eωhT − 1

)
+ 2kπ = ωeT. (3.13)

Proof of Theorem 3.3. Necessity. We suppose that θ is a 2T -periodic solution of
equation (2.3), furthermore, case (a) of Lemma 3.1 is satisfied. Using notations
(3.1) and the second equation of (2.13) we obtain

ϕ3 − ϕ2 = −ωeT. (3.14)
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We eliminate ϕ2 and ϕ3 in (3.14) in terms of ϕ0. We can do it using the formulae

ϕ2 = φ(ϕ1; D) = φ(−ϕ0; D), ϕ3 = φ(ϕ0; D) − 2kπ.

The first one is trivial. For the second one, take into consideration that −π/4 <
ϕ0 < 0 and ϕ1 = −ϕ0 imply

0 < ϕ2 = φ(ϕ1; D) <
π

2
.

Therefore (3.2) yields

−2kπ −
π

2
< ϕ3 = −ϕ2 − 2kπ < −2kπ.

On the other hand, by the periodicity, ϕ0 ≡ ϕ4 = φ(ϕ3; 1/D) (mod 2π), thus
ϕ3 = φ(ϕ4; D) ≡ φ(ϕ0; D) (mod 2π). From these we get ϕ3 = φ(ϕ0; D) − 2kπ.

Now, (3.14) can be rewritten as

2φ(ϕ0; D) − 2kπ = −ωeT,

therefore
2 arctan (D tanϕ0) − 2kπ = −ωeT. (3.15)

Using (2.10) and (2.11) we obtain

e−2ωhT =

tan
(π
4
− ϕ1

)
tan

(π
4
− ϕ0

) =

tan
(π
4

+ ϕ0

)
tan

(π
4
− ϕ0

) =

(
1 + tanϕ0

1 − tanϕ0

)2

,

whence we have

tanϕ0 =
1 − eωhT

1 + eωhT . (3.16)

Substituting (3.16) into (3.15) we get (3.10).
Now, let us suppose that case (b) of Lemma 3.1 is satisfied. Similarly we obtain

2 arctan (D tan (−ϕ0)) − π + (k + 1)2π = ωeT, (3.17)

and

tanϕ0 =
1 + eωhT

1 − eωhT (3.18)

which yield (3.11).
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Sufficiency. Suppose that (3.10) is satisfied. We show that the solution with

ϕ0 := arctan
1 − eωhT

1 + eωhT (3.19)

is 2T -periodic. Obviously,

eωhT =
1 − tanϕ0

1 + tanϕ0
. (3.20)

By (2.11), this means that

tan
(
π

4
− ϕ1

)
=

1 + tanϕ0

1 − tanϕ0
, (3.21)

and thus ϕ1 = −ϕ0. We show that the second equality in (3.2) is also satisfied. In
fact, from (2.7) and (3.10) we obtain

2 arctan
(
D

eωhT − 1
eωhT + 1

)
+ 2kπ = −(ϕ3 − ϕ2).

But in view of (3.16) we can write ϕ2 = φ(ϕ1; D) = −φ(ϕ0; D) = − arctan(D tanϕ0)

= − arctan
(
D

1 − eωhT

1 + eωhT

)
, therefore 2ϕ2 + 2kπ = −ϕ3 + ϕ2, i.e., ϕ3 = −ϕ2 − 2kπ. So

we have proved that (3.2) is satisfied. Lemma (3.1) guaranties that the solution is
2T -periodic.

If (3.11) is satisfied, then we define

ϕ0 := − arctan
eωhT + 1
eωhT − 1

∈
(
−
π

2
,−
π

4

)
. (3.22)

Repeating step by step the previous reasoning we get that (3.3) is satisfied, and
the solution with this ϕ0 is 2T -periodic.

�

Proof of Theorem 3.4. Necessity. Suppose that we have a 4T -periodic solution
such that (3.8) is satisfied. We will obtain (3.12) if we express ϕ2 and ϕ3 in terms
of ϕ0 in the equality ϕ3 − ϕ2 = −ωeT .

Since −π/4 < ϕ0 < 0 and ϕ2 = φ(ϕ1; D) = φ(−ϕ0; D) we have 0 < ϕ2 < π/2.
Together (3.8) this implies

−3π
2
− 2kπ < ϕ3 = −ϕ2 − π − 2kπ < −π − 2kπ.
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The solution is 4T -periodic, consequently ϕ3 = φ(ϕ4; D) ≡ φ(ϕ0−π; D) (mod 2π),
therefore

ϕ3 = φ(ϕ0 − π; D) − 2kπ = φ(ϕ0; D) − π − 2kπ.

Now the equality ϕ3 − ϕ2 = −ωeT has the form

ωeT = −
(
φ(ϕ0; D) − π − 2kπ

)
− φ(−ϕ0; D) = 2 arctan(D tan(−ϕ0)) + (2k + 1)π.

Taking into account (3.16) we obtain (3.12).
If (3.9) is satisfied for a 4T -periodic solution, then the use of (3.18) instead of

(3.16) and a similar calculation yield (3.13).

Sufficiency. Similarly to the proof of Theorem 3.3 one can show that if (3.12)
is satisfied and ϕ0 is defined by (3.19), then (3.8) is true and the solution is 4T -
periodic by Lemma 3.2. Analogously, if (3.13) is satisfied and ϕ0 is defined by
(3.22), then (3.9) is true and the solution is 4T -periodic.

�

T̃1 T̃2T2T1 T2

z = α(T )

z = α(T ) + π

z = α(T ) + 2π

z = β(T )z = β(T )z = β(T )

z = β(T ) + πz = β(T ) + πz = β(T ) + π

z = ωeT

Figure 6: Conditions (3.10)-(3.13)
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4 Remarks

Oscillation theorem
(2.3) is a special Hill’s equation [12]. As is known [18, 11], one of main results
about Hill’s equations is the Oscillation Theorem. From Theorems 3.3 and 3.4 we
can deduce an oscillation theorem for (2.3), which is analogous to Theorem 3.7 in
[7].

Introduce the notations

α(T ) := 2 arctan
(
D

eωhT − 1
eωhT + 1

)
, β(T ) := 2 arctan

(
D

eωhT + 1
eωhT − 1

)
.

α is concave and β is convex from below, consequently, every equation of (3.10)-
(3.13) has exactly one solution provided that the non-negative k, A (i.e., ωh and
ωe) are fixed (see Figure 6).

Corollary 4.1. For every A > g there exist sequences {Tn}
∞
n=1, {T̃n}

∞
n=1 such that

0 < T1 < T̃1 < T̃2 < T2 < T3 < · · · T̃n < T̃n+1 < Tn+1 < Tn+2 · · · ,

and equation (2.3) with T = Tn (respectively, with T = T̃n) has 2T-periodic
(respectively, 4Tperiodic) solutions.

Stability zones
Equation (2.3) contains two independent parameters T, A. Accordingly, there is a
bijection between the set of points (T, A) (T > 0, A > g) on the T -A plane and all
the possible equations of form (2.3). An equation (2.3) is called strongly stable
(strongly unstable) [1] if it is stable (unstable) in the sense of Lyapunov and, in
addition, all the equations close enough are also stable (unstable) in Lyapunov’s
sense. The set on the T -A plane consisting of all the points corresponding to the
strongly stable (strongly unstable) equations is called the stability region (insta-
bility region) of (2.3).

Arnold [1] suggested using the new parameters

ε =
1
√

8l
T
√

A (ε > 0), µ =

√
g
√

A
(0 < µ < 1).
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Figure 7: The exact stability zones

In [6], using a totally different method, we approximated the stability region on the
ε-µ plane and proved that it has infinitely many components, which are tangential
to the ε-axis, they are located “along" the curves

Gm : 2
√

2ε
√

1 − µ2 = (2m + 1)
π

2
(m = 0, 1, . . .)

in the sense that the heights and the width of the components (stability zones,
stability tongues) tend to zero, as m→ ∞.

By Floquet Theory [1] the stability region and the instability region are sepa-
rated by curves whose points correspond to the equations of form (2.3) having
2T - or 4T -periodic solutions. Therefore if we draw the solution sets of equations
(3.10)-(3.13) on the ε-µ plane, then we get the exact boundary curves of the stabil-
ity zones (Figure 7). Figure 8 shows curve G0 and the earlier first approximating
and exact stability zones.
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Figure 8: Curve G0 (dashed); the first earlier approximating, respectively exact
stability zone (thin, respectively thick boundary curve)
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