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Abstract

The equation

x′′+a2(t)x = 0,

a(t) :=


√

g
l − ε if 2kT ≤ t < (2k + 1)T,√

g
l + ε

if (2k + 1)T ≤ t < (2k + 2)T, (k = 0, 1, . . . )

is considered, where g and l denote the constant of gravity and the length
of the pendulum, respectively; ε > 0 is a parameter measuring the intensity
of swinging. Concepts of solutions going away from the origin and ap-
proaching to the origin are introduced. Necessary and sufficient conditions
are given in terms of T and ε for the existence of solutions of these types,
which yield conditions for the existence of 2T -periodic and 4T -periodic so-
lutions as special cases. The domain of instability, i.e. the Arnold tongues
of parametric resonance are deduced from these results.
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1 Introduction
The mathematical model of swinging is the parametrically excited pendulum equa-
tion. As is known [1, 16], the small oscillations of the mathematical pendulum are
described by the linear equation

x′′ +
g
l

x = 0, (1.1)

where x denotes the angle between the rod of the pendulum and the direction
downward measured counter-clockwise; g and l are the gravity acceleration and
the length of the rod, respectively. All solutions of this equation are periodic of the
same period 2π

√
l/g, and the equilibrium state x = x′ = 0 is stable. A swing, as

a physical pendulum is equivalent to a mathematical pendulum of an appropriate
length [12], provided that the swinger is motionless. However, the swinger wants
to destabilize the pendulum, so he/she moves squatting and raising consecutively.
As a result, the distance of the center of gravity of the physical pendulum from the
suspension point (i.e, the length of the mathematical pendulum) changes in time
periodically, and motions are described by the equation

x′′ + a2(t)x = 0,

a(t) :=


a1 :=

√
g

l − ε if 2kT ≤ t < (2k + 1)T,

a2 :=
√

g
l + ε

if (2k + 1)T ≤ t < (2k + 2)T, (k = 0, 1, . . . ).

(1.2)
This is a linear equation with periodic coefficient (Hill’s equation [10, 14]) whose
coefficient is a piecewise constant function (Meissner’s equation [15, 17]). The
problem of swinging is to find the instability domain on the parametric plane
(T, ε) to the excited equation (1.2) (problem of parametric resonance). By the
use of the Floque Theory it has been proved [1, 2, 16] that the stability domain
has separate components (“Arnold tongues”, see Figure 7), and the two boundary
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curves of type T = f (ε), T = g(ε) of every tongue consist of points of the plane
for which (1.2) has either 2T -periodic or 4T -periodic solutions, and f (ε), g(ε) go
to one of the points ((k/2)(π

√
l/g), 0) (k ∈ N) as ε → 0. This result harmonizes

with experiences: for small ε > 0, period of swinging has to be equal to a multiple
of the half of the own period of the unexcited pendulum (1.1) [3].

In this paper we show that the problem of swinging can be solved by the use of
an elementary geometric method. At first we find the conditions guaranteeing that
the trajectory t 7→ (x(t; x0, x′0), x′(t; x0, x′0)) of (1.2) starting from a point P(x0, x′0)
of the (x, x′) plane returns to a point of the line L through the origin (0, 0) and P in
the sense that (x(2T ; x0, x′0), x′(2T ; x0, x′0)) ∈ L (see the angle-periodic solutions
later). Such a solution is either going away from the origin, or approaching to the
origin, or periodic of either 2T or 4T . For every one of these four properties we
determine the set on the parameter plane (T, ε) whose points represent equations
having solutions with the given property. It will be pointed out that the set of
going away and that of approaching coincide, and they are bounded by the curves
of periodicity in accordance with the conclusions of the Floque Theory. It is worth
emphasizing that, besides the method is constructive, it can be used also in the case
when the coefficient is not exactly periodic [4], even also for nonlinear equations
[7], to which cases the Floquet Theory cannot be applied.

The paper is organized as follows. In Section 2, to make the paper self-contained,
we review the method. In Section 3 we construct the sets of going away and ap-
proaching, from which we will get the set of periodicity as a special case. In
Section 4 we deduce stability conclusions.

2 The method
Equation (1.2) can be handled by the method of the investigation of equations
with piecewise coefficients established in [5] and developed in [6]. Given two se-
quences {ak}∞k=1, {tk}∞k=0 of positive numbers (limk→∞ tk = ∞) with t0 := 0, consider
the equation

x′′ + a2(t)x = 0, a(t) := ak if tk−1 ≤ t < tk (k ∈ N). (2.1)

A function x : [0,∞)→ R is a solution of (2.1) if it is continuously differentiable
on [0,∞), the restriction x|[tk−1,tk) is twice differentiable and solves the equation for
k ∈ N. With the new state variable y := x′/ak we can write (2.1) in the form of the
2-dimensional system

x′ = aky, y′ = −akx (tk−1 ≤ t < tk, k ∈ N). (2.2)
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We must guarantee that system (2.2) is equivalent to equation (2.1). To this end it
is enough to require that x(tk) = x(tk−0), x′(tk) = x′(tk−0) (k ∈ N), where f (t−0)
denotes the left-hand side limit of function f at t. This implies some additional
“connectivity” conditions for solutions of (2.2) as follows. Let the first equality
be required as an initial condition on the interval [tk, tk+1). The second one says
ak+1y(tk) = aky(tk − 0) for every k ∈ N, which yields the other initial condition on
[tk, tk+1). This means that (2.1) is equivalent to the system of first order differential
equations with impulses

x′ = aky, y′ = −akx (tk−1 ≤ t < tk),

x(tk) = x(tk − 0), y(tk) =
ak

ak+1
y(tk − 0) (k ∈ N).

(2.3)

If a pair x0, y0 are given we can construct the solution of (2.3) on [0,∞) satisfying
the initial condition x(t0) = x0, y(t0) = y0 in the following way. We solve the
equation (2.2) with these initial conditions in [t0, t1) and have the solution (x1, y1) :
[t0, t1) → R2. Then we define x2(t1) := x1(t1 − 0), y2(t1) := (a1/a2)y1(t1 − 0) and
solve equation (2.2) with these initial conditions in [t1, t2), and so on. Thus we get
the solution of (2.3) on [t0,∞) by the definition

(x(t), y(t)) := (xk(t), yk(t)) if tk−1 ≤ t < tk, (k ∈ N).

Since (x2(t) + y2(t))′ ≡ 0 on the intervals [tk−1, tk) (k ∈ N), pieces of the trajectory
of this solution are located on circles around the origin, and at t = tk the trajectory
makes a jump parallel with the y-axis.

Due to its special form, the impulsive system (2.3) can be represented as a dis-
crete dynamical system on the plane (x, y). Introduce the polar coordinates r, φ by
the formulae

x = r cosφ, y = r sinφ (r > 0,−∞ < φ < ∞). (2.4)

We know that r′(t) ≡ 0 along any solution of (2.3) in every interval [tk−1, tk). Since

x′(t) = −r(t)φ′(t) sinφ(t) = aky(t) = akr(t) sinφ(t) (tk−1 ≤ t < tk),

we have
φ′(t) = −ak (tk−1 ≤ t < tk). (2.5)

So, the continuous components of the dynamics of (2.3) are uniform clockwise
rotations around the origin with the angle velocity ak. The impulsive steps of the
dynamics are either contractions or dilatations in the direction of the y-axis.
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The steps of dynamics of (2.3) can be described as follows. The phase point
starts from (x0, y0) and turns clockwise around the origin by a1(t1 − t0), then a
contraction or a dilatation of measure a1/a2 happens parallel with y-axis. This will
be the image (x1, y1) of the point (x0, y0) after the first step. Applying the same
two transformations to the new point (x1, y1) with the new parameters a2(t2 − t1)
and a2/a3 we get the next state: (x2, y2). We repeat these steps ad infinitum, see
Figure 1.

Figure 1: Steps of the dynamics of (2.3) or (2.7)

Introducing the notations R(θ) and C(κ) for the matrices of the rotation and the
contraction-dilatation, respectively, i.e.,

R(θ) =
(

cos θ sin θ
− sin θ cos θ

)
(−∞ < θ < ∞),

C(κ) =
(

1 0
0 κ

)
(κ =

ak

ak+1
, 0 < κ < ∞),

(2.6)
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we can give the discrete dynamical system(
xk+1

yk+1

)
= C

(
ak+1

ak+2

)
R(ak+1(tk+1 − tk))

(
xk

yk

)
(k = 0, 1, 2, . . . ), (2.7)

equivalent to (2.3).
Let us consider this system in polar coordinates. Denote by (rR, φR), and (rC, φC) =

(ρ(r, φ; κ), ϕ(φ; κ)) the image of the point (r, φ) at the rotation and the contraction-
dilatation (2.6), respectively. Then, obviously, rR(r, φ) = r, φR(r, φ) = φ − θ;
furthermore,

ρ(r, φ; κ) =
√

x2 + κ2y2 = r
√

1 + (κ2 − 1) sin2 φ = f (φ; κ)r,

f (φ, κ) :=
√

1 + (κ2 − 1) sin2 φ, (κ > 0,−∞ < φ < ∞).

It is easy to see that tan ϕ(φ; κ) = κy/x = κ tanφ (x , 0), so

ϕ(φ; κ) :=


arctan(κ tanφ) +

[φ + π
2
π

]
· π if φ , (2k + 1)

π

2
,

φ if φ = (2k + 1)
π

2
, (k ∈ Z),

where [x] denotes the integer part of x ∈ R. Now, the system (2.3) in polar
coordinates has the form

rk+1 = f
(
φk − ak+1(tk+1 − tk);

ak+1

ak+2

)
rk,

φk+1 = ϕ

(
φk − ak+1(tk+1 − tk);

ak+1

ak+2

)
,

(k = 0, 1, 2, . . . ). (2.8)

The following lemma summarizes the properties of functions f and ϕ. The very
simple proof can be found in [6].

Lemma 2.1. 1. For every κ > 0 the function f (·; κ) : R → (0,∞) is even and
π-periodic; furthermore,

f
(
ϕ(φ; κ);

1
κ

)
=

1
f (φ; κ)

(φ ∈ R)

(see Figure 2).
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Figure 2: Graph of f

2. For every κ > 0 the function ϕ(·; κ) and ϕ(·+π/2; κ)−π/2 are odd, ϕ(·+kπ; κ) =
ϕ(·; κ) + kπ (k ∈ Z); furthermore,

ϕ

(
ϕ(φ; κ);

1
κ

)
= φ (φ ∈ R).

3. If 0 < κ < 1, then for all k ∈ Z we have

ϕ(φ; κ) < φ if 2k
π

2
< φ < (2k + 1)

π

2
,

ϕ(φ; κ) > φ if (2k + 1)
π

2
< φ < 2(k + 1)

π

2
.

4. If κ > 1, then the inequalities between ϕ(φ; κ) and φ are of the opposite
directions (see Figure 3).

3 Periodic, approaching and going away solutions
To transform (1.2) into an equation containing the period of excitation explicitly
as a parameter, introduce the so called non-dimensional time τ = (π/T )t and the
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Figure 3: Graph of ϕ

new variable z(τ) = x((T/π)τ). Then (1.2) has the form

z̈ + A2(τ)z = 0, ˙( ) =
d
dτ

( ), (3.1)

where

A(τ) =
T
π

a
(T
π
τ
)
=



T
π

√
g

l − ε if 2kπ ≤ τ < (2k + 1)π,

T
π

√
g

l + ε
if (2k + 1)π ≤ τ < (2k + 2)π (k ∈ Z+ := {0, 1, . . .}).

For the sake of habit we use t instead of τ and x, x′ instead of z, ż. If we introduce
the parameter λ := T/π, then (3.1) takes the form

x′′ + λ2Q(t)x = 0,

Q(t) =


a2

1 = a2
1(ε) :=

g
l − ε if 2kπ ≤ t < (2k + 1)π,

a2
2 = a2

2(ε) :=
g

l + ε
if (2k + 1)π ≤ t < (2k + 2)π (k ∈ Z+).

(3.2)
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Setting

tk := kπ, a2k+1 := λa1, a2k+2 := λa2 (k ∈ Z+),

D :=
a1

a2
, d :=

a2

a1

(3.3)

our equation (3.2) is of the form (2.1). The corresponding system (2.7) with the
old-new variables x, y := x′k/ak reads as follows:

(
x2ℓ+1

y2ℓ+1

)
= C(D)R(λa1π)

(
x2ℓ

y2ℓ

)
,(

x2ℓ+2

y2ℓ+2

)
= C(d)R(λa2π)

(
x2ℓ+1

y2ℓ+1

)
(l ∈ Z+).

(3.4)

After turning to polar coordinates (2.4), let us start a trajectory from r0, φ0 at
t0 = 0. For the first five notable points of the trajectory we introduce the notations

r0 := r(0), φ0 :≡ φ(0) (mod 2π), −π ≤ φ0 < π;
r1 := r(π − 0)(= r0), φ1 := φ(π − 0);
r2 := r(π) = f (φ1; D) r1, φ2 := φ(π) = ϕ (φ1; D) ;
r3 := r(2π − 0)(= r2), φ3 := φ(2π − 0);
r4 := r(2π) = f (φ3; d)r3, φ4 := φ(2π) = ϕ(φ3; d),

(3.5)

(indexing differs from that in (2.8) and (3.4)!, see Figure 4).

Definition 3.1. A solution of system (3.4) is called angle-periodic of period 2π
(respectively, 4π) if

φ4 ≡ φ0 (mod 2π) (respectively, φ4 ≡ φ0 − π (mod 2π)).

Definition 3.2. An angle-periodic solution of system (3.4) with period 2π or 4π is
called approaching (to the origin) (respectively, going away (from the origin)) if

r4 < r0 (respectively, r4 > r0).

Taking into account properties of functions f and ϕ (see Lemma 2.1), it is easy
to prove that if a solution is approaching (respectively, going away), then

φ(2nπ) ≡ φ(0) (mod 2π) (respectively, φ(4nπ) ≡ φ(0) (mod 2π)),
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Figure 4: The first four steps of the dynamics of (3.4)

and

r(2nπ) =
(

r4

r(0)

)n

r0 (n ∈ N).

Furthermore, a solution of system (3.4) is 2π-periodic (respectively, 4π-periodic)
if and only if it is angle-periodic with period 2π (respectively, 4π) and r4 = r0.

Lemma 3.3. 1. An angle periodic solution of (3.4) is approaching (respectively,
going away) if and only if

f (φ1; D) < f (φ0; D) (respectively, f (φ1; D) > f (φ0; D)).

2. An angle-periodic solution of (3.4) with period 2π or 4π is periodic with the
same period if and only if

f (φ1; D) = f (φ0; D) .
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Proof. Let us consider an angle-periodic solution of (3.4) with period 2π. Then
φ4 = φ0 − 2(p + 1)π with some p ∈ Z+, so using Lemma 2.1 we have

φ3 = ϕ
−1 (φ4; d) = ϕ (φ0 − 2(p + 1)π; D) = ϕ (φ0; D) − 2(p + 1)π (3.6)

and
r4 = f (φ3; d)r3 = f (ϕ(φ0; D); d)r3 =

1
f (φ0; D)

r3 =
f (φ1; D)
f (φ0; D)

r0,

whence we get all the three statements regarding the 2π-periodic solutions.
In the 4π-periodic case φ4 = φ0 − (2p + 1)π with some integer p ∈ Z+, but this

difference does not play any role in the proof. �

Lemma 3.3 says that φ0 and φ1 uniquely determine that the distance from the
origin along an angle-periodic trajectory either tends to zero, or diverges to the
infinity, or changes periodically. Now we classify the points of the stripe (0 ≤
φ0 < π;φ1 < φ0) in the plane (φ0, φ1) according to these three properties. Using
Lemma 2.1 (see also Figure 2) one can see that the solutions of the equation
f (φ1; D) = f (φ0; D) are all the points of the lines

φ1 = φ0 + jπ, φ1 = (π − φ0) + jπ ( j ∈ Z).

The solution set of the inequality f (φ1; D) > f (φ0; D) in the stripe consists of
components of two types:

(a) 0 ≤ φ0 <
π

2
:

φ0 − ( j + 1)π < φ1 < −φ0 − jπ ( j ∈ Z+),

(b)
π

2
≤ φ0 < π :

−φ0 − ( j − 1)π < φ1 < φ0 < φ0 − jπ ( j ∈ Z+)

(see the shaded regions on Figure 5). Similarly, the solution set of the inequality
f (φ1; D) < f (φ0; D) is determined by

(a) 0 ≤ φ0 <
π

2
:

−φ0 − jπ < φ1 < φ0 − jπ ( j ∈ Z+),

(b)
π

2
≤ φ0 < π :

φ0 − ( j + 1)π < φ1 < −φ0 − ( j − 1)π ( j ∈ Z+).
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Figure 5: The solution set of the inequality f (φ1; D) > f (φ0; D)

By equation (2.5) of the dynamics we have

φ1 − φ0 = −a1λπ, φ3 − φ2 = −a2λπ. (3.7)

The first equality together with Lemma 3.3 makes unique the initial angle φ0 of
periodic solutions as a function of a1 and λ: the solution is 2π-periodic or 4π-
periodic only if either

(α) a1λ is an integer and φ0 is arbitrary,

or

(β) a1λ is not integer and either

(a) φ0 = {a1λ}
π

2

or

(b) φ0 = ({a1λ} + 1)
π

2
,

(3.8)
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where {ξ} denotes the fractional part of the real number ξ.

Lemma 3.4. 1. The solution is angle-periodic with period 2π if and only if there
exists an integer p ∈ Z+ such that

ϕ (φ0; D) − ϕ (φ0 − a1λπ; D) − 2(p + 1)π = −a2λπ. (3.9)

2. The solution is angle-periodic with period 4π if and only if there exists an
integer p ∈ Z+ such that

ϕ (φ0; D) − ϕ (φ0 − a1λπ; D) − (2p + 1)π = −a2λπ. (3.10)

Proof. Necessity. 1. The dynamics and (3.6) give

φ2 = ϕ (φ1; D) , φ3 = ϕ (φ0; D) − 2(p + 1)π. (3.11)

Applying (3.7) we obtain (3.9).
2. As we have already mentioned in the proof of Lemma 3.3, in the 4π-periodic

case we have

φ2 = ϕ (φ1; D) , φ3 = ϕ (φ0; D) − (2p + 1)π

instead of (3.11). Then (3.7) yields (3.10).
Sufficiency. 1. Let us suppose that (3.9) is valid. Then, taking into account the

second equality of (3.7) we get

φ3 = φ2 − a2λπ = ϕ (φ0 − a1λπ; D) − a2λπ = ϕ (φ0; D) − 2(p + 1)π.

Consequently

φ4 = ϕ (φ3; d) = ϕ (ϕ (φ0; D) ; d) − 2(p + 1)π = φ0 − 2(p + 1)π ≡ φ0 (mod 2π),

so the solution is angle-periodic with period 2π.
2. If (3.10) is satisfied, then the same computation yields

φ3 = ϕ(φ0; D) − (2p + 1)π,

φ4 = φ0 − (2p + 1)π ≡ φ0 − π (mod 2π),

i.e., the solution is angle-periodic with period 4π. �
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If we substituted (3.8) for φ0 in (3.9) and (3.10), then we would get necessary
and sufficient conditions for the existence of periodic solutions. However, we do
not do this now. Instead we solve a more general problem: we establish existence
theorems for approaching and going away solutions, which theory will contain
results for periodic solutions as special cases. Since we are interested in obtain-
ing conditions for the parametric resonance (instability), we develop in detail the
theory for the going away solutions.

We have to deal with the points of the shaded set on Figure 5. Fix a value
γ ∈ (0, π) and consider the going away solutions for which points (φ0, φ1) belong
to line sections

(a) φ1 = −φ0 − γ − jπ
(
0 < φ0 <

π

2
− γ

2
; j ∈ Z+

)
. (3.12)

Let us fix a1, λ > 0 (i.e., T > 0, ε > 0) in system (3.4) such that a1λ < Z. By the
first equality in (3.7), at this value only the line section with j = [a1λ] can contain
a point determining a going away solution; namely, the abscissa of this point is

φ0 = {a1λ}
π

2
− γ

2
. (3.13)

At first let us search for going away solutions with period 2π; i.e., substitute
(3.13) for φ0 in (3.9):

ϕ
(
{a1λ}

π

2
− γ

2
; D

)
− ϕ

(
−{a1λ}

π

2
− γ

2
; D

)
+ [a1λ] π − 2(p + 1)π = −a2λπ.

One has to distinguish two cases:

(1) [a1λ] = 2m (m ∈ Z). Then

ϕ
(
{a1λ}

π

2
− γ

2
; D

)
− ϕ

(
−{a1λ}

π

2
− γ

2
; D

)
+ [a1λ] π

= ϕ
(
{a1λ}

π

2
+ 2m

π

2
− γ

2
; D

)
+ ϕ

(
{a1λ}

π

2
+ 2m

π

2
+
γ

2
; D

)
=

= ϕ
(
a1λ
π

2
− γ

2
; D

)
+ ϕ

(
a1λ
π

2
+
γ

2
; D

)
.

(3.14)

(2) [a1λ] = 2m − 1 (m ∈ Z). In this case the difference (3.14) has the form

ϕ
((

a1λ
π

2
− γ

2

)
+
π

2
; D

)
+ ϕ

((
a1λ
π

2
+
γ

2

)
+
π

2
; D

)
− π.
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Summarizing, if there is a going away solution with period 2π belonging to
some of line sections (3.12), then, with µ := a1λπ/2, the condition

−ϕ
(
µ − γ

2
; D

)
− ϕ

(
µ +
γ

2
; D

)
2

+ (p + 1)π =
a2

a1
µ (3.15)

is satisfied, provided that [a1λ] is even, and(
−ϕ

((
µ − γ

2

)
+
π

2
; D

)
+
π

2

)
+

(
−ϕ

((
µ +
γ

2

)
+
π

2
; D

)
+
π

2

)
2

+ (p + 1)π =
a2

a1
µ,

(3.16)
provided that [a1λ] is odd.

Executing the same computations for the line sections

(b) φ1 = −φ0 + γ − ( j − 1)π
(
π

2
+
γ

2
< φ0 < π; j ∈ Z+

)
(3.17)

and the initial angles
φ0 = ({a1λ} + 1)

π

2
+
γ

2
,

we arrive at the following result:
If there is a going away solution with period 2π belonging to some of line sec-

tions (3.17), then the condition(
−ϕ

((
µ − γ

2

)
+
π

2
; D

)
+
π

2

)
+

(
−ϕ

((
µ +
γ

2

)
+
π

2
; D

)
+
π

2

)
2

+ (p + 1)π =
a2

a1
µ,

(3.18)
is satisfied, provided that [a1λ] is even, and

−ϕ
(
µ − γ

2
; D

)
− ϕ

(
µ +
γ

2
; D

)
2

+ (p + 1)π =
a2

a1
µ, (3.19)

provided that [a1λ] is odd.
If we are searching for periodic solutions, then we have to set γ = 0 in the results

(3.15)-(3.16) and (3.18)-(3.19) above. However, in the case of periodic solutions
we have to take into consideration also the points of the line sections

(c) φ1 = φ0 − ( j + 1)π (0 ≤ φ0 < π; j ∈ Z+) .
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By the first equality in (3.7) a1λ = j+1, i.e., a1λ ≥ 1 is integer and φ0 is arbitrary;
consequently, condition (3.9) in Lemma 3.4 has the form

−µ + (p + 1)π =
a2

a1
µ,

which coincides with (3.15)-(3.16) and (3.18)-(3.19), provided that γ = 0 and
a1λ ∈ Z+.

Now we can formulate a necessary and sufficient condition for the existence of
2π-periodic solutions.

Lemma 3.5. Given a1, a2, λ, system (3.4) has 2π-periodic solution if and only if
either

−ϕ
(
a1λ
π

2
;

a1

a2

)
+ (p + 1)π = a2λ

π

2
(3.20)

or

−ϕ
(
a1λ
π

2
+
π

2
;

a1

a2

)
+
π

2
+ (p + 1)π = a2λ

π

2
(3.21)

for some p ∈ Z+.

Proof. Necessity was proved before the theorem. To start proving sufficiency,
assume that (3.20) holds. If a1λ < Z and [a1λ] is even, then choose

φ0 = {a1λ}
π

2
.

We have to prove that the sufficient condition (3.9) of the angle periodicity of
period 2π and the condition f (φ1; D) = f (φ0; D) of periodicity are satisfied. In
fact, (3.20) gives

ϕ (φ0; D) − ϕ (φ0 − a1λπ; D) = ϕ
(
{a1λ}

π

2
; D

)
− ϕ

(
{a1λ}

π

2
− 2a1λ

π

2
; D

)
=

(
ϕ
(
a1λ
π

2
; D

)
− [a1λ]

π

2

)
−

(
−ϕ

(
a1λ
π

2
; D

)
− [a1λ]

π

2

)
= 2(p + 1)π − a2λπ,

so condition (3.9) in Lemma 3.4 is satisfied, which means that the solution is
angle-periodic with period 2π. On the other hand,

φ1 = φ0 − a1λπ = {a1λ}
π

2
− 2a1λ

π

2
= −{a1λ}

π

2
− [a1λ] π = −φ0 − [a1λ] π,

16



therefore, f (φ1; D) = f (φ0; D) and the solution is 2π-periodic.
If a1λ < Z and [a1λ] is odd, then define

φ0 = ({a1λ} + 1)
π

2
.

Similarly to the previous calculation, we get

ϕ (φ0; D) − ϕ (φ0 − a1λπ; D) = ϕ
(
({a1λ} + 1)

π

2
; D

)
− ϕ

(
({a1λ} + 1)

π

2
− 2a1λ

π

2
; D

)
= ϕ

(
a1λ
π

2
; D

)
− ([a1λ] − 1)

π

2
+ ϕ

(
a1λ
π

2
; D

)
+ ([a1λ] − 1)

π

2

= 2(p + 1)π − a2λπ,

so the solution is angle-periodic with period 2π. Furthermore,

φ1 = φ0 − a1λπ = ({a1λ} + 1)
π

2
− 2a1λ

π

2
= −{a1λ}

π

2
− (2 [a1λ] − 1)

π

2

= −φ0 − ([a1λ] − 1) π,

so Lemma 3.4 and Lemma 3.3 again guarantee 2π-periodicity.
Finally, if a1λ ∈ Z, then let φ0 be arbitrary. Then

ϕ (φ0; D) − ϕ (φ0 − a1λπ; D) = a1λπ = 2(p + 1)π − a2λπ,

thus the solution is angle-periodic of period 2π. Moreover,

f (φ1; D) = f (φ0 − a1λπ; D) = f (φ0; D) ,

so the solution is 2π-periodic.
If condition (3.21) is satisfied, then the proof is similar. �

Lemma 3.6. Given a1, a2, λ, system (3.4) has 4π-periodic solution if and only if
either

−ϕ
(
a1λ
π

2
; D

)
+

(
p +

1
2

)
π = a2λ

π

2
(3.22)

or

−ϕ
(
a1λ
π

2
+
π

2
; D

)
+
π

2
+

(
p +

1
2

)
π = a2λ

π

2
(3.23)

for some p ∈ Z+.
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Proof. When we are searching for 4π-periodic solutions, then φ4 = φ0− (2p+1)π
is supposed, therefore we have φ3 = ϕ(φ0; D) − (2p + 1)π instead of (3.6). This
is the reason that the only difference between conditions (3.9) and (3.10) is: the
letter contains the member −(2p + 1) instead of −2(p + 1). Making this change in
conditions of Lemma 3.5 we get conditions of Lemma 3.6. �

Now we are ready to formulate and prove the main theorem on the existence of
periodic solutions to the original equation (1.2).

Theorem 3.7. For every ε > 0 there are sequences {Tk(ε)}∞k=1, {T̃k(ε)}∞k=1 such that
equation (1.2) with T = Tk(ε) (respectively, with T = T̃k(ε)) has 2Tk(ε)-periodic
(respectively, 4T̃k(ε)-periodic) solutions. In addition,

0 < T̃1 ≤ T̃2 < T1 ≤ T2 < T̃3 ≤ T̃4 < . . . ; lim
k→∞

Tk = ∞, (3.24)

and

lim
ε→0+0

2T2p+1(ε) = lim
ε→0+0

2T2p+2(ε) = (2p + 2)

1
2

2π
√

l
g


 ,

lim
ε→0+0

2T̃2p+1(ε) = lim
ε→0+0

2T̃2p+2(ε) = (2p + 1)

1
2

2π
√

l
g




(3.25)

hold for all p ∈ Z+.

Proof. Equation (1.2) has 2T -periodic (respectively, 4T -periodic) solutions if and
only if system (3.4) has 2π-periodic (respectively, 4π-periodic) ones, so we will
apply Lemmas 3.5-3.6. Introduce the notations

Fp(µ) := −ϕ(µ; D)+ (p+1)π, Gp(µ) :=
(
−ϕ

(
µ +
π

2
; D

)
+
π

2

)
+ (p+1)π (p ∈ Z+).

For every p, functions Fp and Gp are strictly decreasing and vanish, so the equa-
tions Fp(µ) = (a2/a1)µ, Gp(µ) = (a2/a1)µ each have exactly one solution in the
interval ((p+1)π/2, (p+1)π) (see Figure 6); they will be denoted by µ2p+1 ≤ µ2p+2.
Similarly, equations Fp(µ) − π/2 = (a2/a1)µ, Gp(µ) − π/2 = (a2/a1)µ have solu-
tions µ̃2p+1 ≤ µ̃2p+2 and

0 < µ̃1 < µ̃2 < µ1 ≤ µ2 < µ̃3 ≤ µ̃4 < µ3 ≤ µ4 < . . . . (3.26)
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Figure 6: Graphs of Fp and Gp for l = 2, ϵ = 1.2

Taking the limit ε→ 0 in equations (3.20)-(3.21) and (3.22)-(3.23) we obtain

lim
ε→0+0

µ2p+1(ε) = lim
ε→0+0

µ2p+2(ε) = (p + 1)
(
π

2

)
,

lim
ε→0+0

µ̃2p+1(ε) = lim
ε→0+0

µ̃2p+2(ε) =
(
p +

1
2

) (
π

2

)
.

We can complete the proof by setting

Tk(ε) := 2

√
l − ε

g
µk(ε), T̃k(ε) := 2

√
l − ε

g
µ̃k(ε).

�

It is worth noticing that Theorem 3.7 is a special case of the classical Oscil-
lation Theorem of the theory of Hill’s equation [14] for system (3.4). The ad-
vantage of our approach is that we have constructed the periodic solutions, so
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asymptotic properties (number of periodic solutions, number of zeros) formulated
in the Oscillation Theorem can be deduced directly. What is more, from Lem-
mas 3.5-3.6 we obtain an answer to the problem of the coexistence of periodic
solutions [11] for equation (1.2). This equation has two linearly independent 2π-
periodic (respectively, 4π-periodic) solutions if and only if both (3.20) and (3.21)
(respectively, (3.22) and (3.23)) are satisfied for the same p and λ.

Corollary 3.8. Given T and ε, if a2/a1 =
√

(l − ε)/(l + ε) is rational, i.e.,√
l − ε
l + ε

=
m
n

(m, n ∈ N, (m, n) = 1),

then for every ε > 0 there are countable many values of T such that all solutions
of equation (1.2) are either 2T-periodic or 4T-periodic. More precisely, if√

g
l − ε

T
π
= jn and j(m + n) is even

(respectively, √
g

l − ε
T
π
= jn and j(m + n) is odd)

with some j ∈ N, then all solutions of equation (1.2) are 2T-periodic (respectively,
4T-periodic).

Using the computation (3.12)-(3.19) and the same reasoning as in the proof of
Lemma 3.5, we obtain existence results for going away solutions.

Lemma 3.9. Given a1, a2, λ, system (3.4) has a solution going away from the
origin of angle period 2π if and only if there is a γ ∈ (0, π) such that

−ϕ
(
µ − γ

2
; D

)
− ϕ

(
µ +
γ

2
; D

)
2

+ (p + 1)π =
a2

a1
µ

or

(
−ϕ

(
(µ − γ

2
) +
π

2
; D

)
+
π

2

)
+

(
−ϕ

(
(µ +

γ

2
) +
π

2
; D

)
+
π

2

)
2

+ (p + 1)π =
a2

a1
µ

for some integer p ∈ Z+.
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Lemma 3.10. Given a1, a2, λ, system (3.4) has a solution going away from the
origin of angle period 4π if and only if there is a γ ∈ (0, π) such that

−ϕ
(
µ − γ

2
; D

)
− ϕ

(
µ +
γ

2
; D

)
2

+ (p +
1
2

)π =
a2

a1
µ

or

(
−ϕ

(
(µ − γ

2
) +
π

2
; D

)
+
π

2

)
+

(
−ϕ

(
(µ +

γ

2
) +
π

2
; D

)
+
π

2

)
2

+ (p +
1
2

)π =
a2

a1
µ

for some integer p ∈ Z+.

If we want to obtain conditions for the existence of solutions approaching to
the origin, then we have to consider the unshaded domain on Figure 5. Repeating
computations we can see that the necessary and sufficient conditions are the same
as ones in Lemmas 3.9 – 3.10. In other words, the equations of type (3.4) pos-
sessing going away solutions and ones possessing approaching solutions are the
same.

4 Stability chart
By the Floque Theory the domain of instability in the parameter plane (T, ε) is a
disconnected open set, whose components are called “Arnold tongues” (see Fig-
ure 7), and the angular points of Arnold tongues on the T -axis are at the abscissas
(1/2)kπ

√
l/g [1, 16]. We will show that the Arnold tongues are the domains be-

tween the graphs of functions T2p+1 and T2p+2 together with the domains between
the graphs of T̃2p+1 and T̃2p+2 defined in Theorem 3.7. (This fact is in accordance
with (3.25).) At first we prove that these domains are subsets of the set of insta-
bility. We use the notations

H := ∪∞p=0(µ2p+1, µ2p+2), H̃ := ∪∞p=0(̃µ2p+1, µ̃2p+2) (4.1)

(for µ j, µ̃ j see (3.26)).

Lemma 4.1. For every µ ∈ H (respectively, µ ∈ H̃) system (3.4) with a1λπ/2 = µ
has a solution going away from the origin with angle period 2π (respectively, 4π).
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Proof. We prove the first statement in an arbitrarily fixed non-empty open interval
(µ2p+1, µ2p+2). For the sake of definiteness, let us suppose that

2m
π

2
< µ2p+1 < µ2p+2 < (2m + 1)

π

2
(m ∈ Z0);

then
Fp(µ2p+1) =

a2

a1
µ2p+1, Gp(µ2p+2) =

a2

a1
µ2p+2.

If 0 < γ1 < γ2 < π, then for functions

Fγp(µ) :=
Fp

(
µ − γ

2

)
+ Fp

(
µ +
γ

2

)
2

, Gγp(µ) :=
Gp

(
µ − γ

2

)
+Gp

(
µ +
γ

2

)
2

the inequalities

Fp(µ) < Fγ1
p (µ) < Fγ2

p (µ) < Gp(µ), Fp(µ) < Gγ2
p (µ) < Gγ1

p (µ) < Gp(µ) (4.2)

are satisfied on the interval (µ2p+1, µ2p+2). In fact, since Fp is convex and Gp is
concave in the interval (2mπ/2, (2m + 1)π/2), (4.2) holds for small γ > 0. For
large γ when either µ − γ/2 or µ + γ/2 or both is out of this interval, then (4.2) is
all the more true because of symmetricity properties of ϕ. On the other hand,

F0
p(µ) ≡ Fp(µ), G0

p ≡ Gp(µ),

lim
γ→π−0

Fγp = Gp(µ), lim
γ→π−0

Gγp(µ) = Fp(µ),

which completes the proof of (4.2).
From (4.2) it follows that for every γ ∈ (0, π) the equations

Fγp(µ) =
a2

a1
µ, Gγp(µ) =

a2

a1
µ

have solutions which fill in the interval (µ2p+1, µ2p+2) while γ changes from 0 to π.
By Lemma 3.9, every system (3.4) with a1λπ/2 = µ ∈ (µ2p+1, µ2p+2) has a going
away solution of angle period 2π.

The proof for H̃ is analogous. �

Theorem 4.2. The inside of the domain of instability (parametric resonance) on
the parameter plane (T, ε) for equation (1.2) is

∪0<ε<l(∪∞p=0({(T, ε) : T2p+1(ε) < T < T2p+2(ε)}∪{(T, ε) : T̃2p+1(ε) < T < T̃2p+2(ε)}))
(4.3)

(Tk, T̃k were defined in (3.24)).
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Figure 7: Arnold tongues for l = 2

Proof. Let us start with an observation about the stability of the system of linear
difference equations (3.4) based upon some basic facts from linear algebra. The
linear mapping whose matrix is C(d)R(λa2π)C(D)R(λa1π) preserves the area on
the phase plane (x, y), therefore the determinant of this matrix (consequently, the
product of the eigenvalues of the matrix) equals 1. This implies that the boundary
of the domain of instability (disregarding the points of axes T and ε) consists of
the points (T, ε) for which the eigenvalues equal either 1 or −1, i.e., of the points
(T, ε) for which system (3.4) has either 2π-periodic or 4π-periodic solution. By
Theorem 3.7 this means that the boundary of the instability domain consists of
graphs of Tk and T̃k. On the other hand, by Lemma 4.1, set (4.3) belongs to the
instability domain. These together complete the proof. �
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