introduction to the story how the notion and theory of distributions has emerged and developed, with due credit to the great predecessors: Dirac, Bochner, Sobolev, Carleman, de Rham, and others.

We read on these pages stories on a long series of great mathematicians from Hadamard to Grothendieck with whom Schwartz worked, on outstanding state men from the young Mitterrand to Pham Van Dong whom he encountered in the course of his lifelong political activity, as well as on memorable victims from Audin (his student!) to Schars and Massera for whom he fought during the past half century. And when I read these pages, I couldn’t help recalling the classic lines from Tennyson’s Ulysses:

"Much have I traveled in the realms of gold / And many goodly states and kingdoms seen; / My mind still ponders, / As I before / Where I was born, or in what corner of the world / Nature has placed me."

The history of mathematics and world history in the twentieth century as it was seen by a great French participant — this would be an appropriate subtitle for this book, whose Latin clarity shines through the present English translation. We find the man smiling at us from the cover page, an extremely interesting personality obsessed almost equally with mathematics, the protection of human rights, and — last and least — butterfly hunting.

Beyond the mathematical and historical lessons, he has a further one for all of us, which is crystallized in these lines written about the perilous years of his persecution: "In spite of circumstances, we preserved an incredible aptitude for happiness. Without this quality, how would humanity survive?"

(A message to the Editor: in some places names are misprinted, as e.g. Mercader (p. 116), Thibault (p. 128), Kaczmarz (p. 147), Meštrović (p. 293); finally, pumas are Puma concolor (p. 151), and the English title for "Le Zéro et l’Infini" is Darkness at Noon (p. 109)).


This is a high-level popularization of mathematical logics, devoted to Gödel-type theorems. Chapter I gives a historical overview of the topic. In Chapter II we have a description of LISP, a simple but mighty formal language for processing and evaluating (whatever) expressions. LISP is used in the rest of the book to interpret all results.

The core of the book are Chapter II–V, containing Gödel’s Incompleteness Theorem, Turing’s Halting Problem, and the author’s own results which says that it is impossible decide whether an expression is the “best possible” out of all expressions equivalent to it.

In the remaining two chapters the author provides a survey of algorithmic information theory, and sketches his very interesting and challenging thoughts about the future of mathematics.

The exposition is clear, probably sometimes a bit too concise, the style vivid and