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Inner automorphisms of unmiversal algebras

By BELA CSAKANY (Szeged)

In this short note we introduce a notion of inner automorphism for universal
algebras, which is a generalization of the corresponding notion referring to groups.
This notion preserves some well-known properties of the usual one. Our terminology
is essentially that of [1].

The following definition seems to be natural: a mapping is an inner auto-
morphism if and only if it is an automorphism and a translation *) in the same
time. Restricting, however, ourselves to groups, this notion is more general than
the usual one; this is shown by the mapping x —2x of the additive group of rationals.
Further, we can have an automorphism, which is a translation, but its inverse is
not a translation. Take, e. g., the set of natural numbers and a single unary operation
on it, defined by the permutation. ¢=(234)...(n*+1,7*+2,...,(n+1)?)... The
mapping @ is an automorphism and a translation, its inverse, however, is no trans-
lation. These deficiencies can be eliminated by defining inner automorphisms not
for a single algebra, but for classes of algebras as follows:

Let 9 be a primitive class ([1], p.114.) of universal algebras, let 4€N and let o
be an automorphism of 4. Suppose we have in the class U a principal derived
operation (shortly operation, [1], p. 115.)  depending on m variables with the pro-
perties:

I. There exist elements a4, ..., a, €4 such that for every ac4 the equality
av =ad,...a,u holds. :

II. In each algebra B of A the mapping b —bb,...b,u (b€ B) is for every choice
of b,, ..., b,€B an automorphism of B.

Such an automorphism « of 4 will be called an inner automorphism.

Examples. 1. For groups the introduced notion coincides with the usual notion
of inner automorphism. Indeed, let G be a group, and suppose ga=~h"1gh for
every g€G, h being a fixed element of G. Then the operation xyu=y~1xy satisfies
I, II. On the other hand, let 8 be an inner automorphism of G in the new sense.
‘We must prove the existence of an element Z€G such that for every g€G the
equality gf=~h"1gh holds. Set gB=ga,...a.u (a,, ..., a, €G) with u satisfying I
too. We can suppose, without violating generality, that xy,...pu=YoX1Y;.. X, Yy,

ti
where X;=x% (k;#0;i=1,...,n), Yi=ﬂyf;j (5,€(¥25 s Ymps 1=0, ...m;
i=1
J=1, ..., t;; here ¢;;#0, if 1=i=n—1). \

*) By translation we mean a derived operation with a single variable [1].
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Now let x, y,, ..., ¥, denote the distinct free generators of a free group F.
Then according to IT @: & ~&y,..0,u=Y,=, ¥,...E,Y,(5,=&) is an automorphism
of F. Especially, we have x~lo=x"1ly,.p,u=Y,X71Y,.. X! Y,=(xp) 1=
=Yy Yut)~t = Y71X;1 Y71X71 Y51, Hence YoXr1Y,. X;1Y, Y, X, Y;...
---X,Y,=1. Then we must have necessarily ¥;=Y,7% (i=0, ..., n) and X;=X,_,.,
(i=1, ..., n). Moreover, X2 =x2y,...p =Y X2Y,.. X2Y, = (x¢)? = (xy,... Y 0)> =
=YX, Y,.. X, Y, Y X, Y;..X,Y,. Since Y,Yo=1 and X X,=x*1%1 we may
observe, that X; (that is, a power of the element x) occurs on the right hand side
2n—1 times, and 7 times on the left hand side. Therefore, n=2n—1, whence n=1.
Hence xy,..y,u=Y;1X,Y;. By virtue of I, é—~¢l..1lu=5, =&k is also an
automorphism of F; consequently, k; =1, hence 5; =¢ and thus X, =x. In this
Wa'y:

-1 ts .
€1 .
~x- [ ye.
j=1 7’

Since F is a free group and x, y,, ..., y,, are its free generators, (1) is an identical
equality for any group, thus for G too. Hence, for each g€G gf=ga,...au =
1

T3
M XYy Ymlbh = ( yi;f]
Jj=1

1y - 1y
:( ail;') -g-]]lai’jf, where a;,=a; (j=1,...,4;i=2,...,m) if and only if
j=1 " i=

2]
Y1,=y;. We see, that the required /4 exists, namely A= [] ai‘jf.
N '._1

i=

2. In self-distributive quasigroups the right and left multiplications as well
as the right and left cancellations are inner automorphisms [2].

3. In any vector space over a fixed skewfield S the multiplications with the
elements of the centre of S are inner automorphisms.

Our observations concerning inner automorphisms are included in the following

Theorem. The set 1(4) of all inner automorphisms of any algebra A in an arbitrary
primitive class U is a group. I(4) is normal in the group of all automorphisms of A.
If among the classes of a congruence of A there is only one subalgebra, then this latter
is invariant under inner automorphisms.

PROOF. Let «, B be inner automorphisms of 4 and denote by u, v the operations
connected with these automorphisms. Let ax=aa,...au, af =ab,...b,v
(@2, -5 Qs by, ..., b, € A) for each a€ 4. Then one can see easily, that the mapping
aB: a—~(aa,...a,u)b,...b,v is also an inner automorphism of 4. We shall show, that
=1 is also an.inner automorphism. Let M be a free algebra in the class 9 with the
free generators X, ..., x,. According to II, the mapping a: E>Ex,. . x,u 1S an
automorphism, hence there exists one and only one element méM such that
mo =xy. Moreover, there exists in % a principal derived operation i, for which
m=Xx,...X,,u. Thus we obtain '

(2> (Xge X ) X5 Xt = Xq1.

~ Now let us consider the mapping «*: a —~aa,...a,ji of A. Since (2) is an identi-
cal relation in 9, we have a(a*«) =a for each a € 4, whence a* =a~1. Furthermore,
we get similarly, that in any algebra B of ¥ for arbitrary b,, ..., b,,€ B the mapping
B*:b—Dbb,...b,u is the inverse of the automorphism b —bb,...b,u. Hence B* is
an automorphism. We have shown, that a~! is also an inner automorphism. Thus
I(4) is a group.
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Take now an arbitrary not necessarily inner automorphism ¢ of 4 and let
a€A4. Then a(p~tap)=((ap~)a)=((ap~1)ay...a.u) p=a(a,@)...(a,p)u, conse-
quently ¢~ lag is an inner automorphism of A. Therefore I(4) is normal in the
group of all automorphism of A.

To prove the third assertion of the Theorem it is sufficient to show, that any
class of an arbitrary congruence 8 of 4 maps onto an other class of § under «. If
a=a'(0), then aa,...a,u=da,...a,ud), that is, ac =a’a(6). If, however, ax =a’«(6),
then by a similar argumentation it follows, that (ax)u~!=(a’0)a~1(0), that is,
a=dad'(0). This completes the proof of the Theorem.

It would be of interest to investigate the question: for which primitive classes
is the converse of the third assertion of the Theorem true? To put it otherwise,
supposing that a subalgebra N is invariant under inner automorphisms, under
which conditions does it follow that N is a class of a congruence 6 and 6 has no
other class which would be a subalgebra? We have this latter case in the three
examples above, but this does not hold, e. g., for the primitive class of semigroups,
because they have only trivial inner automorphisms.
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