158 ' B. CSAKANY

Then the algebraic function ¢ of U, defined by x¢=1(0,1,2,x) is a near-
transposition of 4. By Lemma 2, % is functionally complete, a contradiction again,
showing that P,()=0. - :

It remains to prove p;(%) 0. In the opposite case, the polynomial of ¥ with
minimal number of essential variables turns out to be a near-projection, making
use of Lemma 4, whence the functional completeness of U follows. Claim 4 is
proved, completing the proof of the theorem.
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Homogeneous algebras are functionally complete

B. CsAkKANY

A finite algebra A with base set A is called functionally complete if every
(finitary) operation on A is an algebraic function of 9. A well-known theorem of
H. Werner asserts that any algebra having the ternary discriminator functiqn as an
algebraic function is functionally complete [17]. Recently, E. Fried and A. F.
Pixley proved [2] that an algebra U with 3=<|A|< is functionally complete
provided the dual discriminator function d, defined by

x, if x=y,
d(xy,2)= {z otherwise,
is an algebraic function of .

The above functions are pattern functions in the sense of R, W. Quackenbush
([11], p. 74). Two n-tuples {ay, ..., a,), (b,,...,b,) formed from arbitrary ele-
ments are said to be of the same pattern if, for 1<i, j=<n, g, = a; implies b, = b
and vice versa. An n-ary function f is called a pattern function if, for any possible
choice of a;, .. s Gy,

flay,...,a,)=a(l=i=n) (*)
where i depends upon (a,,..., a;l) in such a manner that (%) implies
f(bs, ..., b,)=b; (with the same i) whenever (b,, . .., b,) is of the same pattern as
(ay,. .., a,). Obviously, projections are pattern functions; we call a function (in

particular, a pattern function) non-trivial if it is not a projection (and an algebra is
non-trivial if it has a non-trivial operation). Another example of non-trivial
pattern function is the normal transform, introduced by M. I. Gould and G.
Gritzer for studying Boolean extensions [4].

Following E. Marczewski [8], we call a function f: A" — A homogeneous if
every permutation of A is an automorphism of the algebra (A ; f). Marczewski
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showed that a function f:A"™— A is homogeneous iff, for every n-tuple
{a,,...,a,y€ A" either (%) or

flan, ..., a)=a(#{an....a ; A={ar ..., a4y, a)) (% %)

holds in such a way that (*) implies f(b;,...,b,)=b; (with the same i) and
(%) implies f(by,...,b.)=b (¢{b1,...,b.}; A={b;,...,b,, b)) whenever

(a,...,a,) and (bl,.. b, ) are of the same pattern. In particular, pattern
functions are exactly those homogeneous functions whose value is given by (*) for
every n-tuple {(ai,...,a,). In what follows, we shall use this descrlptlon of

homogeneous functions without further reference. An algebra A is called
homogeneous, if every permutation of the base set of % is an automorphism of .
Clearly, ¥ is homogeneous, iff every operation of ¥ is homogeneous, and this
means that every polynomial of % is homogeneous.

The aim of this article is to prove that the functional completeness results
mentioned before are corollaries of a more general fact; namely, we have the
following

THEOREM. All but six non-trivial homogeneous finite algebras are function-
ally complete. The exceptional algebras are equivalent to the following ones:

(1) 2;n)={0, 1}; n) with n(x)=x+1 (mod 2);

(2) 2;s) with s(x,y,z)=x+y+z (mod 2);

(3) (2;5) with §(x,y,z)=x+y+z+1 (mod 2);

(4) (2; d) with d(x,y, z)=xy+xz+yz (mod 2);

(5) (3;°) with xey=2x+2y (mod 3);

(6) (4; f,) where f, is the ternary homogeneous function defined by f,(1,2,3)=
f0(0,1, 1) =f(1,0, 1) =fo(1, 1,0)= (0, 0,0) = 0.

Here n is the negation, s is the minority function, or switching function [18], d
is the majority function, or dual discriminator function [2]. Further, (5) is the
three-element idempotent, commutative, non-associative groupoid in [5]; finally,
(6) is called the four-element Swierczkowski algebra (see [15], [3]); it is the direct
square of (2).

' COROLLARY 1. Let % be an algebra with finite base set A such that there
exists a non-trivial homogeneous function f on A which is an algebraic function of
. Then ¥ is functionally complete provided (A f) is not equivalent to any of the
algebras (1)—(6).
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The following fact was first proved by B. Ganter, J. Ptonka, and H. Werner
{31

COROLLARY 2. All but one non-trivial homogeneous afgebras are simple.
The exceptional algebra is the four-element Swierczkowski algebra.

As functionally complete algebras are simple, for finite algebras this is
immediate from our theorem. In order to settle the infinite case, it is enough to
remark that finitely generated homogeneous algebras are finite, and locally simple
algebras are simple.

Let us recall the basic notions we shall use in the sequel. A set of operatlons
on a set A is a clone if it contains all the projections, and it is closed under
superposition. The clone generated by a set S of operations is the minimal clone
containing S. The algebraic functions of an algebra U with base set A form.the
clone generated by the set of operations of ¥ and constant functions on A. For
operations f, g on A, we shall say that f produces g if g is contained in the clone
generated by f. A finite algebra ¥ is called primal if every possible operation on A
is a polynomial of U or, equivalently, the set of operations of % generates the
clone of all operations on A. Thus, an algebra (A ; F) is functionally complete iff,
for the set F' of all algebraic functions on A, the algebra (A; F') is primal. A
function f: A™ — A is essential if it essentially depends on at least two variables
and takes on all values from A. A set S of unary operations on A (i.e.
transformations -of A) is basic if, for any essential function f, the algebra
(A; SU{f}) is primal.

The proof ‘of the theorem is based on the following lemmas which can be easily
derived from corresponding primality criteria, due to J. Stupecki [14], S. V.
Jablonskil [6], and A. Salomaa [13] (see also [12]).

LEMMA 1. A non-trivial homogeneous finite algebra % whose base set A has
at least three elements is functionally complete if there exist a transposition as well as
a transformation of defect 1 of A (i.e., a transformation whose range consists of
|A|—1 elements) that are algebraic functions of .

Proof. Observe that a non-trivial homogeneous operation on A is essential
provided |A|=3. Further the assumptions of the lemma imply that all the
transformations of A are algebraic functions of U. Indeed, let (ab) be that
transposition of A which is assumed to be algebraic, and (cd) another transposi-
tion of A. Take a permutation ¢ of A satisfying ag =c, bp =d, and let f be an
n-ary polynomial of ¥ such that for suitable a,,...,a,€A, f(x,a,,...,a,)=
(ab). Then ¢ is an automorphism of A, whence (cd) =f(x, a,q, . .., a.¢) is also an
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algebraic function of %. However, the set of all transpositions with a transforma-
tion of defect 1 added generates the full transformation semigroup of A (see [1],
p. 7).

Slupecki’s theorem asserts that, for |A|= 3, the full transformation semigroup
of A is basic. Hence A provided with all algebraic operations of ¥ is primal, i.e. ¥
is functionally complete, as needed.

Call a transformation ¢ of A a near-transposition if there exist different a, b, c,
de A such that ayy=b, by =a. cy =d, and xy =x if x€ A and x#a, b, c.

LEMMA 2. A non-trivial homogeneous algebra A with four-element base set
A is functionally complete if there exists a near-transposition of A which is an
algebraic function of .

Proof. We can proceed as in the proof of the preceding lemma observing that
any near-transposition is an algebraic function of %. It is easy to verify that the set
of all near-transpositions generates the semigroup of all non-onto transformations
of A. Jablonskii’s theorem says that, for |[A|=3, the semigroup of all non-onto
transformations of A is basic. This proves the lemma.

LEMMA 3. A non-trivial homogeneous finite algebra % with at least five-
element base set A is functionally complete if there exists a transposition of A which
is an algebraic function of .

Proof. We can copy the proof of Lemma 1, applying Salomaa’s theorem here:
for |A|=35, the alternating group of A is basic.

Let f(x,....,x,) be an arbitrary function on a finite set A. Denote by f; the
function arising from f by identification of the variables x; and x;, We write f; =g
to indicate that f coincides with g on the set of all n-tuples from A whose i-th
and j-th entries coincide. The following technical lemma is essentially due to S.
Swierczkowski [15]: ' '

LEMMA 4. Let f be an at least quaternary operation on A such that, for every
distinct i. j(=n), there exists a k = k(i, j) with f; = e}. Then k is always the same
number. i.e. it does not depend upon i and j.

The main preparatory step to prove the theorem is the following lemma:

LEMMA 5. If A =(A:f) is a finite algebra with 3 <|A| where f is a non-trivial
pattern function then U is functionally complete.
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Proof. First we remark that if (A ; g) is functionally complete and f produces g
then (A; f) is functionally complete as well. Thus, in order to prove the theorem,
we have to find a set S of pattern functions on A with the following properties:

-1. For each pattern function f on ‘A there exists a g € S such that f produces g.

2. For every ge S, the algebra (A; g) is functionally complete.

Let T be the set of all essentially ternary pattern functions on A. Further, call
the n-ary pattern function [, on A near-trivial if I (xq,...,x,)=x; whenever
Xy, ..., X, are all different and I, (x,, ..., x,) =x, otherwise ([8], p. 83). Under a
near-projection we shall mean any function which can be obtained from a
near-trivial function by a permutation of variables. Let N be the set of all
near-trivial functions on A. We shall prove that $=TUN has the properties 1
and 2. _ :
As for Property 1, it suffices to prove that, if g is a non-trivial pattern function
on A having the minimal number of essential variables among all non-trivial
pattern functions it produces, then g is essentially ternary or it is near-trivial.
Notice that g is essentially at least ternary. Hence it is enough to show that if g is
essentially at least quaternary and it turns into a projection by identifying any two
of its variables, then g is a near-projection. This follows readily from Lemma 4.

In order to prove that S enjoys Property 2, first we show that for any
non-trivial ternary pattern function g the algebra (A ; g) is functionally complete.
We can establish without difficulty that there exist 24 distinct ternary pattern

functions on A} it is straightforward to show that the following six functions form"

a maximal subset of them relative to the property that they cannot be obtained
from each other by permutation of variables: Pixley’s ternary discriminator
function p; the dual discriminator function d; the switching function s (see [18],
p.9), defined by

y, if x=2z2,
s(x,y,z)=qz if x=y,
X otherwise;

the function e, defined by the requirement that e(x, y, z)=x if and only if x, y, z

are all distinct or no two of them are distinct; the ternary near-trivial function l;;
and the ternary first projection e3.

All of these functions are produced by p ([3], second theorem). Further,
e(y, e{x, z,y),x)=p(x, y, z) and s(x, s(y, x, z), y) = l;(x, y, z). Hence our claim will
be proven if we show that (A;d) and (A;I[;) are functionally complete. For
(A; d), this is the result of Fried and Pixley, quoted in the introduction and for
(A 13), this will be done right now.

Secondly, we have to prove that for any non-trivial near-trivial function I, the
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algebra (A 1,) is functionally complete. By Lemma 1, the proof will be complete
if we show that there exist a transposition as well as a transformation of defect 1

of A which are algebraic functions of (A;l,).
Let A={1,..., m}(m=3); then n=<m, because [, is non-trivial. We use the

following notation: for M< A and i, k € A, f¥_,(x) means the transformation of
A defined by

5 _ [ if xeM,
frr—i3) {k- otherwise.
If M={i,,...,i}, we also write f__,_,; instead of fx;_.;. We shall construct the
transposition (12) from functions of form fg;_,(x), and then show that the latter
ones are algebraic functions of (A;1,).
For n =3, we have

(12) = ln (x7 f%,2.3——>1(x)= f‘i‘.3—->2(x))'
Now, let n>3; then

(12) = ln.(x’ f§—>4(x): fg.4—>5(x)a LR ;,é_t.l....n—1—>n(x),

f?,2,3....,n—>1(x)’ f%,3,4,...,n—>2(x))-

Thus, it is sufficient to show that, for any meaningful value of k, F,(x)=
f3s. ks1(x) and G (x)=f7,.  r—1(x) are algebraic functions of (A;l,). This
can be done by induction on k. As a preparation, we show that f;_,, is algebraic.
This requires a separate induction on m. If m=n, we have fi,,=
1.2,x,4,5,...,n,3). Let m>n and let h(x) be an algebraic function which
equals to fi_,(x) on {1,...,m—1}. Then [ (h(x),x, m—n+4, m—n+
5,....,m3)=fi_, on {1,...,m}. Analogous induction starting from the case
m =n shows that fZ_,,(x) (=1,(.(1,x,4,5,...,n,3),3,4,...,n2) if m=n) and
fioix) (=1,(x,2,3,...,n) if m=n) are algebraic functions of (A;1,).

Hence, in particular, we have that F,(x) and G,(x) are algebraic. Finally, the
induction steps we need are the following:

Fk(x) = ln (Fk—l(x)s 39 47 TS (e 13 flvcl—>2(x)’ f%—»l(x))7
Gk(x) = ln(Gk—l(x)s 3, 4: AR (O 17 fl%—)n(x), flrcl-»l(x»

A slight modification of the function representing (12), namely, the replace-
ment of fr,  1(X) by flasnoi(x) in the next to last argument, gives a
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transformation of defect 1, which moves 1 into 2, and leaves the further elements
invariant. Thus S has Property 2, completing the proof of Lemma 5.

Now we are ready to prove our theorem which can be decomposed into the
following four claims. - '

CLAIM 1. A non-trivial homogeneous finite algebra is functionally complete
provided its base set consists of at least five elements.

CLAIM 2. A two-element non-trivial homogeneous algebra is not function-
ally complete iff it is equivalent to one of algebras (1)-(4).

. CLAIM 3. A three-element non-trivial homogeneous algebra is not function-
ally complete iff it is equivalent to the algebra (5).

CLAIM 4. A fohr-element non-trivial homogeneous algebra is not function-.

ally complete iff it is equivalent to the algebra (6).

Proof of Claim 1. It suffices to prove that if |A|=5 and f is a non-trivial
homogeneous operation on A, then (A;f) is functionally complete. If f is a
pattern function, we can.apply Lemma 5. If not, by a suitable identification of
variables of f, if necessary, we get a homogeneous function f’ with n(=|A|—-1)
distinct variables xi,...,x,, whose value is given by (#*) on any n-tuple
(as, ..., a,) consisting of pairwise different entries. By the assumption, f’ is at
least quaternary. If it has two variables whose identification turns f’ into a
non-trivial f”, then f” is a pattern function and Lemma 5 applies again. Otherwise
f’ fulfils the conditions of Lemma 4, whence it turns into the same (n—1)-ary
projection - say, into the first one — by identifying any two of its variables. Put, as
usual, A ={0,1,...,n}. Now, the transposition (01) is an algebraic function of
(A;f), namely, (01)=f'(x,2,...,n). Hence, by Lemma 3, (A;f) is functionally
complete.

Proof of Claim 2. An algebra on the set 2={0,1} is determined up to
equivalence by-the clone of its polynomials that are Boolean functions; the
algebra is homogeneous iff its clone consists of self-dual functions only. Consider-
ing the diagram of the lattice of all two-element algebras, due to E. Post (see, e. g.
[7]), we check that (2; R,), (2; L,), (2; Ls), and (2; D,) (in notations of Post) are
exactly those two-element algebras which are not functionally complete, and their
clones can be generated by the functions x+1, x+y+z, x+y+z+1, xy +xz +yz
(mod 2), respectively.
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Proof of Claim 3. Let A =(3; F) be non-trivial, homogeneous, and functioii-
ally incomplete. Let f be a polynomial of % having the minimal number of

essential variables among all polynomials of ¥. If f is essentially at least quater-’

nary, then Lemma 4 shows that f is a projection, in contrary to the hypothesis.
Thus, f is essentially at most ternary.

As f cannot be a paftern function, we can suppose that the value of, e.g.,
f1.(0,1) is given by (*#), i.e., f(0,0,1)=2. Then, the transposition (01) is an
algebraic function of %, namely, (01) = f(x, x, 2). Now, no unary algebraic function
of % can have a two-element image set (i.e., no transformation of defect 1 of 3
can be an algebraic function of %), or else ¥ is functionally complete by Lemma 1.

Suppose f(0,1,1)=2; then (0, 2, 1)=2, as the image set of f(0, x, 1) cannot
have exactly two elements. Now examining f(x, 0, 1) we obtain (1,0, 1)=1. It is
an easy computation that f(x, y, z)=2x+2z (mod 3) for any possible x, y, x € 3.
Suppose f(0,1,1)=1; we get f(x,y, z)=2y+2z (mod 3) analogously. Finally,
f(0,1,1)=0 implies in the same way that f(x,y, z)=x+y+2z=22x+2y)+2z
(mod 3). '

Anyway, we have a polynomial f of ¥, satisfying identically f(x,y, x)=
f(y,x,x)=y. By the classical theorem of A. I. Malcev, (3; F) generates a
congruence permutable variety. Furthermore, (3; F) is simple, and it has trivial
subalgebras only. By a result of R. McKenzie ([9], Theorem 4), these three
conditions jointly imply that either (3; F) is quasi-primal, or the operations in F
are linear functions in a vector space over a prime field. As quasi-primal algebras
are functionally complete, we have the second possibility. Thus, for any g=
g(xy,...,%x,)€F, gx1,...,x)=ax,+ - +a,x, +b (mod 3). Here b =0, since g
is idempotent, i.e., the operations in F are (idempotent) vector space polynomials
over GF(3). However, by a result of J. PYonka [10], any two non-trivial idempo-
tent polynomials of a vector space over a prime field generate each other, whence
(3; F) is equivalent to (3; o), as asserted.

Proof of Claim 4. Let p.(A) denote the number of the essentially k-ary
polynomials of the algebra %U. In [16], K. Urbanik proved that a finite idempotent
algebra U with p,(U) = p,(A) =0 and p,5(A) # 0 is equivalent to a direct power P of
the algebra (2), or it can be obtained from 8 by introducing new, essentially at
least m-ary (m =5) operations f, satisfying the equation f(x;, ..., Xp, .. ., X&) = X4
whenever the elements x,, ..., X, belong to a subalgebra of 8 generated by less
than m elements. Hence it follows that a four-element idempotent algebra % with
po(U) = pa(¥) = 0 # p(Y) is equivalent to the four-element Swierczkowski algebra.

Let ¥ be a four-element, non-trivial, homogeneous, functionally incomplete
algebra. Obviously, % is idempotent, and p,(¥) =0 (as a non-trivial homogeneous
essentially binary function can be defined on a three-element set only). Thus, in
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order to prove Claim 4, it suffices to verify that p,(2)#0 and p,(X)=0.

Let A=4, and let f be a non-trivial, essentially ternary, homogeneous
function such that (A; f) is not functionally complete. We start with establishing
that f=f, (the function that appears in the definition of the four-element
Swierczkowski algebra). We can suppose f(0, 1,2)=3, otherwise f is a pattern
function and Lemma 5 leads to a contradiction. Furthermore, suppose f(0,0, 1) =
f(1,0,0)=0. We see that (01) =f(2, x, 3) is an algebraic function of (A;f). We
have f(2, 0, 2) =2, for if not, the algebraic function f(x, 0, 2) is a transformation of
defect 1 of A, and then (A; f) is functionally complete by Lemma 1. Using,
however, f(2,0,2)=2 we get

fea-0(x)=f(f(x, 0,3), f(x,0,2), f(x,1,2))

whence the function f(f75_1(x), f1--.2(x), fo.1—o(x)) is algebraic and at the same
time it is‘artransformation of defect 1 of A. By Lemma 1, f(0,0,1)=£(1,0,0)=0
impossible.

Now suppose f(0,0,1)=7(1,0,0)=1, the unique essentially distinct possi-
bility. The desired identity f=f, will be proved if we shall have verified
f(0,1,0)=1. Assume f(0,1,0)=0; then (01)=f(f(x,2,3), f(0,x, 1), f(x,3,2))
and f(2, f(x, 2, 3), 3) is a transformation of defect 1 of A, in contrary to Lemma 1.
- Next we prove p,(A)=0. Let f be an essentially quaternary polynomial of .
By identifying two variables of f we obtain a ternary polynomial f; which is either
essentially ternary, or - as it is homogeneous - trivial. If f;; is essentially ternary, it
coincides with f,, as we have shown just before. Denote by P the set of all
two-element subsets {i, j} of {1, 2, 3, 4} such that the identification of the i-th and
j-th variables of f furnishes a projection. If {1,2}¢ P then f(x, x,y,y)=x for
x#y, whence {3, 4}e P. Thus, |P|=3. An equatioh f(x, x, x, y) = x implies {1, 2},
{1,3}, {2,3}e P. Assume {1,2}, {3,4}eP. As f(x,x,y,y) equals x or y the
projections fy, and fs;, are the same, say ei. Now f(x,x, x,y)=f(x, x, v, x)=
f(x,y,x,x)=x follows. Thus, it is shown that f turns into a projection by
identifying each two of its variables, whence, by Lemma 4, f is either a near-
projection or a projection. In the first case, % is functionally complete, and in the
second one, f is not essentially quaternary. The contradiction we obtained shows
that |P| =3 holds. We shall distinguish two essentially different possibilities

1. P={{1,4}, {2,4}, {3, 4}} Now f(x,x,y,x)=1y, 1mp1y1ng fra=e3, and
f(x,y,v,y)=x, implying f,,=e}, a contradiction.

2. P={{2,3}, {2,4}, {3,4}}. This gives f,3=e¢j, fra=e3, fu=e5 If
f(0,1,2,3)=0, then f(w,x,y,2z)=fy(x,y,2z) can be verified by a straight-
forward computation, i.e., f is not essentially quaternary. Thus, we can assume
f(O 1,2,3)=3, as the second, third and fourth variables behave analogously now.




