Varieties in which congruences and}subalgebms are amicable

By B. CSAKANY in Szeged

In earlier articles [6], [8] we proved' If \in each algebra of the variety & any
subalgebra is a block of a unique congruence; and

every congruence has a unique block which is a subaloebra
all block of any congruence are subalgebras '

then & is- equlvalent to the variety of all -

umtal right modules
affine modules

over some ring with unit element. :
- These results suggest that it may be fruitful to mves’uoate those varieties in

‘which there exists a similar but more general connection between congruences and

subalgebras. Such a connection can be introduced in the following way.

Let M be a non-void set, S a set of its subsets and Z a set of equivalences of M.
We say that G and-Z are amicable, if every S€S is a block of some o€2 and every
o€ has a block which belongs to &. Uniqueness of the corresponding equivalences
and blocks is not requifed. If, especially, M is an algebra, © the set of its subalgebras

~ and X the set of congruences of M, then in the above case we say shortly that in M

the congruences and subalgebras are ‘amicable. Finally, if the same is fulfilled in
each algebra of a variety &/, we say that in &/ congruences and subalorebras are
amicable.

Following KuroS ([2], §<14; see also [11]), we call a variety & Abelian, if in
all algebras-of & -any two operations commute. Our result consists of a.full de-
somptlon of equationally complete Abelian varieties w1th the property in the title.

Theorem. A variety o is an equatzonally complete Abelian variety m which
congruences and subalgebras are amzcable zf and only if o is equwa[em to one of z‘he
following varieties:

(2) varieties of vector spaces over ﬁelds

(b) the variety of pointed sets,

© (c). varieties of affine spaces over ﬁelds (see [3], Ch. XII, and [8]), ,

() the variety of sets. .
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Corollary. An Abelian variety is catégorically free (i.e., exhausted by its free
algebras) if and only if it is an equationally complete variety in which congruences and
subalgebras are amicable. '

As a preparation of the proof, we formulate several lemmas.

Lemma 1. In any Abelian algebra the set of ail idempotent elementst) forms a
subalgebra.

Indeed, let £ and g be n-ary, resp. m-ary polynomials on the Abelian algebra A;
further, let a;, ..., a, be idempotent elements of A. Since f and g commute, we have
g(f(ala Y Ny { P a}z));f(g(ala s @)y ves 8@ys ees a,,))=f(a1, > Gg)y1-€.y

flay, ..., a,) is also idempotent.

Lemma 2. In any algebra a subset closed with respect to endomorphisms gen-
erates a fully invariant congruence.

Let A be an arbitrary algebra, M a subset of 4, and denote by the sign ~ the
congruence of A generated by M (i.e., the smallest congruence of A under which
all elements of M are congrﬁent). Then, for a, b€ A, a~b means that there exist
elements a=a,, 4, ..., @, =b such that for suitable translations (i.e., unary algebraic
functions) 7y,...,7, of A and elements myq, ..., My, Mgy, ..., M €M the equa-
tions my;T;=a;_y14; (i=1,...,k; j=0,1) hold. For any x€A and for i=1, ...,k
let the image of x under t; defined by #,(x, ¢, ..., ¢y ), Where ¢; is a polynomial of A
and ¢;, ..., Cu, €A Suppose that A is closed with resplect to endomorphisms of A. For
any such endomorphism ¢ denote by tf the tramslation x—f; (X, ¢4, ..., ¢y @)
Then for ap=a,0, a;¢, ..., a9 =>be, for 1, ..., ¢, and for the elements ml-jqnlEM

we have (m;;@)tf =t;(m;; @, cu @, ... )=(t:(my;, ) ~))@=0a;_14;¢, Whence ap=>bp,

which was needed.
The following fact is familiar:

Lemma 3. 4 free algebra in an equationally complete variety has no other fully
invariant congruences than the trivial ones.

Lastly, we recall a useful result of Krukovits [12]:

Lemma 4. A variety sZ (of type t) is Hamiltonian (i.e., in any algebra of o/
every subalgebra is a block of some congruence) if and only if for any n-ary polynomial
symbol f (of type t) there exists a ternary polynomial symbol h, (of type ) such that
in o/ the identity '

¢y ' » S, cees Xp) =hf(x0:x1’f(x0,x23 "'7xn))
kolds. '

1) We call an element of an algebra A idempotent if it forms a one-element subalgebra of A.
. A class of algebras is idempotent if its every algebra consists of idempotent elements only.
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Proof of the theorem. Sufficiency is obvious. To prove the necessity, let
us consider an equationally complete Abelian variety & in which congruences and
subalgebras are amicable. The last condition means exactly that </ is Hamiltonian
and any algebra in &/ has at least one idempotent element. We shall distinguish
two -cases.

I. &/ is not idempotent.

Let F, be the o/-free algebra with countable free generating set. The idempotent
elements of ¥, form a proper subset A in F,. By Lemma 1, M is a subalgebra in
F,. Obviously, M is closed under endomorphisms of F,,. Since ./ is Hamiltonian,
M is a block of the congruence generated by itself in F,,. Hence this congruence
has at least two blocks. On the other hand, this congruence is fully invariant by
Lemma 2, and, using Lemma 3, we get that our congruence is just the equality.
It follows that F,, has a unique idempotent element 0. Then there exist an essentially
nullary polynomial whose value is 0 in F,,; denote it also by 0. Now we shail distinguish
two subcases. :

a) For some n>1, & has an essentially n-ary polynomial.

Suppose that n is the minimal among such natural numbers; we show that n=2.
Denote by F, the /-free algebra freely generated by the set {xy, ..., x,} and let f
be an essentially n-ary polynomial. Since 7 is minimal, f(0, &, ..., &}) — where &l
denotes the i-th #-ary projection — is essentially not more than unary and so for

some i 2=i=n) f(0, x, ..., x,)€[x;] holds, ie., for a suitable unary f; we have

FO, x5, ..., x)=f;(x;). Applying Lemma 4, we get
.f(xla A x;;)-‘_‘ hf(os xl,f(oa Xas wees xn))' = hf(oa x17.f;.(xi>)6[x1’ -xi],,

whence f is essentially binary. In what follows we write / multiplicatively.

Let ¥, be the o/-free algebra with free generators x and y. Define on F; an
equivalence ~ as follows: for a, b€F,, let a~b if a-0=>5-0. This relation is a
fully invariant congruence on F,. Indeed, for any m-ary operation g and g, ...
ceis Oy Byy oy b€ Fy from a;~b; (i=1, ..., m) it follows (using that f and g com-
mute): :

(2> g(ala “ees am)'o = g(ala nee am)'g(o? e 0) =
= g(al’oa eees am’O) = g(bl’ov o bm'o) = g(bh ) bm)'oa

whence g(ay, ..., ay) ~g(by, ..., b,). Further, if @, b€ F, and o is any endomorphism
of F,, then a~ b implies

3) ac-0=ac-06 ={a-0)c = (b-0)0 = bo-0,

i.e., ac~bo.

On the basis of Lemma 3, ~ is trivial. Suppose that it is the complete relation;

then O is a right zero element with respect to f. Let /* denote the polynomial &+ Ex.
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Using Lemma 4, we get

X =5, %) = hp(0, 7, (0, ) = hyu(0, 3, %-0) = hx(0, 3, 0),

a contradiction since f is essentially binary. Hence it follows that ~ is the equality
relation on F,. This' means that the mapping ¢,: Fy—~F, defined by ap,;=a-0 is
1—1. Moreover, ¢, maps F, onto itself. Indeed, as (2) and (3) show, the image
of F, under ¢, is a fully invariant subalgebra in F,, whence, by Lemma 2 and 3,
this image is either {0} or F,. The first case infer that o is trivial. Thus, F,¢,=F,;
ie., ¢;: F,~F, is a bijection. We can get in an analogous way that the mapping
©y: Fy—~F, defined by ap,=0-4a is also a bijection.-

Let f~1(x, y) be the unique element of F, for which f~*(x, y) @, =x holds. Then
S7(x, y)-0=x is an identity in 7, whence f~1(x, 0) - 0=x follows. We get similarly
a binary polynomial ~f satisfying 0- ~1f(0, x)=x. Now we take the polynomial
F (e, 0)- 70, £)); it will be called addition and-denoted additively. We see that
0 is the unit element with respect to addition.

Next we prove that in & the direct and the «/-free products of two algebras
coincide. As it was proved in [5] (Theorem 1), this fact jointly with the existence of 0
" in & implies that < is equivalent to the variety of all unital right semimodules over
some .associative semiring R with unit element. Let A, B€«/; then AXB is gen-
erated by the union of its subalgebras (A, 0)={(a, 0)|ac 4} and (0, B)={(0, b) |b¢ B};
furthermore, (A, 0)=A and (0, B)~B. Consider an arbitrary algebra C¢cs/ and
homomorphisms ¥ : (4, 0)~C, y: (0, B)--C. We have to prove that ¥ and y admit
a common homomorphic extension n: AXB—C. Define n by means (a, b)n=
=(a, 0)![/+(0 b)x. Obviously, n is an extension of zp and yx. On the other hand,
for any me-ary polynomial g and elements aj, ..., a,€4, by,..., b, €B we have

(@1 B)s oovs (@ )1 = (2(@1s v @), 8By o.n, b))y = (g(al, e ), O) i+
H0, g0, s b1 = £((@0, ), .o (s O +2(0, 8, o, OB 7 =
= g((a, 0¥, ..., (@, ) +8 (0, b+ - +(0, b)z) =
= g((@1, OV + 0, b)) 25 - 5 (s 0)1//-F(O= bm)x) = (a1, b1 v s (@> b)),

ie,nisa homomor phism.

. Thus, o/ is equivalent to the variety of all unital right sermrnodules over a
semmnOR Then the Hamiltonian property of </ guarantees.that R is an associative
ring, and, as semimodules over rings are modules, &/ is equivalent to the variety
of unital right modules over the ring R (see [12], Theorem 7). Now, the Abelian
property and the equational completeness of ./ together imply, that R is a field
and - is equivalent to the variety of all vector spaces. over R (see [6]; § 2).

'b) For n=1, & has no essentially n-ary polynomials. . :
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Let F, be again the «/-free algebra freely generated by x and y. Define on F,
an equivalence ~ as follows: for a4, bE€F,, let a~b if [a]ﬂ{x, y} [61N{x, y}.
We shall prove that ~ is a fully invariant congruence on ¥,.

Since all operations in & are essentially no more than unary, the set of trans-
lations of F, is the same as that of its (polynomial) operations. The last ones com-
mute pairwise, whence it follows that all translations of ¥, are endomorphisms.
Thus, it is enough to prove that ~ is invariant under endomorphisms.

Let Cx={ala€F2, [aN {x, y}}={x}. Define C, similarly; and let Coz{alaer,
[alN{x, y}=@}. Then all the blocks of ~ are C,, C,, C, and none of them may
be void. Indeed, if [a]N {x, y}={x, y}, then let, e.g., a=¢(x), where ¢ is a polynomial.
For suitable polynomial » we have r(@)=y, whence r(t(x))=y, showing that </ is
trivial, a contradiction. On the other hand, x€C,, y€C, and 0€C,. Remark that
C.Six]and C,S{yl.

In the foilowmg, I, k, q, 1, s, t, u denote (unary) polynomials. Consider an
arbitrary ‘endomorphism ¢ of F,. First we show that ¢ maps C, into itself. Let
I(x)€C, and suppose /(x) 9 €C,. Then for a suitable k£ we have k(/(x) p)=x, whence
k(I(xp))=x. If xp=g(x), then, by the Abelian property, k(g(/(x)))=k{l/(g(x)))=x
holds showing that /(x)€C,, a contradiction; and if x¢=¢(y), then k(I(g(»))=x
and & is trivial, in contrast to the assumption. Supposing that /(x)p€C, we get a
contradiction analogously.

Let now I(x)€C, and suppose /(x)p€C,. Consider an arbitrary element r(x).

from C,; we must prove that r(x)p€C,. For suitable s, # we have s(/(x¢))=x and
Hr(x))=x. Hence s(t(Fx)0)=s(((x))=t(r(s((x@))))=x, and thus
r(x)@€C,. Suppose that I(x)€C, and u(I(x)p)=y. Let r and ¢ be as above; then
u(l(t(r(x) e)))=1(r ((x) @)))=2(r(y))=y, whence r(x)@€C,. These considerations
show also that /(x)p€C, implies r(x) @€ Co-

We got that ~ is a fully invariant congruence in ¥, with three blocks. By virtue
of Lemma 3, ~ is the equality, and so F,={x, y, 0}, i.e., & has no other operations
than 0. Hence &7 is the variety of pointed sets.

1. o is idempotent.

Let us consider for a moment the case in which, for some n>1, &/ has an essen-
tially n-ary (polynomial) operation. Suppose that » is minimal; it can be shown
that n=3. For this aim it suffices to repeat the consideration we made at the beginning
of section a) with the only deviation that we must write x, instead of O.

Hence we shall distinguish three subcases. :

o) & has an essentially binary polynomial.

Let f be such a polynomial; we shall write it multiplicatively. Again F, denotes ‘
the o/-free algebra with free generators x and y. Introduce a relation ~ on Fy: for-

a, bE Fy, let a~b if there exist elements u, a,, b,€ F, such that a=ua,, b=ub, hold.
Obviously, ~ is refiexive and symmetric; we show that it is also transitive. It suffices
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to prove that if ab=cd (g, b, ¢, d¢ F,) then for any p€ F, the equation

&) ' ap = ¢z

has a solution for z in F,. From Lemma 4 we get
: rs = he(s,r, 55) = h(s, 1, 5)

and - : , .

(rs)t = hy(r, rs,vt) = hy(rr, rs, ¥t) = hy(r, rr)he(r, s, t) = reh(r, s, t).
Using these equalities as well as idempotency and permutability of operations in o/
one can compute ap as follows: '

" ap = hy (b, a,bp) = hy(b, a, hy(p, b, p)) =
= hf(kf(b: b: b): hf(a= a, a): hf(p: b;P)) =
= hf(hf(b: a, p)> hf(b: a, b): hf(b: a:p)) = (ab) 'hf(b: a?p) =
= (Cd) 'hf(bz a’p) = c'hf(c: d, ‘[’if(b> aap))‘
Thus, z=h.{c,d, h (b, a, p)) is a solution of (4). Hence ~ is an equivalence.
Moreover, ~ 1is a fully invariant congruence on F;; indeed, for any me-ary
polynomial g and elements a;, b;, ;€ F, (i=1, ..., m) we have glusay, ..., u,a,)=
=g(l£1,. st um)'g(ala s am)Ng(ula e um)'g(bhn. AR bm)‘_‘g(ulbla RS ] umbm)a and
for arbitrary endomorphism ¢ of F, from a ~ & it follows ap = UQP - ay @ ~u@ b, o=ho.
- By Lemma 3, the congruence ~ is trivial, and, since f is essentially binary, ~
is. the complete relation. Hence x~y in F,. This means that, for a suitable binary
polynomial /, in F, the equality x - /(x, y)=y holds. Furthermore, /(x, xpy=I(xx, xy)=
=I(x, x)-I(x, y)=x-1(x, y)=y is also fulfilled. An analogous consideration shows
that, for some binary polynomial 7, the equalities »(x, y)-y=Xx, r(xy, yy=x hold.

Since these equalities may be considered as identities in. o, we see that the
algebras in & are quasigroups with respect to polynomials £, /, » as multiplication,
left and right division, respectively. Hence ¢ is a regular variety [7]. Now Theorem 3
in [8] gives that &/ is equivalent to the variety of affine spaces over some field.

B) </ has no essentially binary polynomials, but it has an essentially ternary

" polynomial. .

Let f be essentially ternary and consider the polynomial 7= =h;(e3, &3, &3). We
show that in &/ the identity h(x, y, x)=h,(x, x, y)=y holds (i.e., & is a normal
variety). Take the «/-free algebra F, with free generators x, y and z. By the assump-
tion, A, (g3, €3, €3) is essentially at most unary, and by the 1dempotency, it is a projec-
tion. But f(x, y, z2)=#h s (%, x,f(x, y, 2)) shows that &, (e}, i, 2)=¢. is impossible.
Hence /i, (g3, &5, &5) =¢, and h, (x, y, x)=h,(x, y; 1(x, x, X)) =1(y, x, x)y=h;(x, x, y)=y.

On the other hand, # is also essentially ternary. Indeed, in the opposite case /1,
were a projection, which is impossible because of (1). Repeating the consideration
made for &, before, we get h,(x, x, y)=y. -
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Introducing now the binary algebraic operation a+b=h,(x,, a,.b) on the
countably generated Z-free algebra F,(=(x,, x;,...)), we can process similarly
as in the proof of Theorem 1 in [8] to prove that < is equivalent to the variety of affine
modules over some ring R. Note that the main identity marked with (3) in [8] is an
immediate consequence of the Abelian property of <7 here. Moreover, & is equiv-
alent tothe variety of affine spaces over the field R, because o7 is equauonally
complete and Abelian (see Theorem 4 in {8]).

y) For n>1, o/ has no essentially n-ary polynomials.

Then, evidently, <7 is equivalent to the variety of sets. The proof is complete.

Corollary follows directly from GIVANT’s characterization of categorically free
varieties [10] and our theorem.

Remarks 1. As we have seen, in varieties of modules as well as of affine
modules the congruences and subalgebras are amicable. This is the case also in
varieties of modules over semigroups (see [1], p. 55) with unit and zero element.
Groups, rings and lattices furnish no other varieties with the considered property
{abelian groups and zero rings are equivalent to modules).

2. Section ) together with Remark 4 in [9] enables us to give another char-
acterization for ALIEV’s variety of S *-algebras [4]. Namely, if an equationally complete
Abelian variety &, in which congruences and subalgebras are amicable, has 1o

 binary polynomials, but has an essentially at least ternary polynomlal then & is

equivalent to the variety of S*-algebras.

References

1] P. M. ConN, Universal Algebra, Harper & Row (1956).

2] A. G. Kuros, General Algebra (Lecture Notes), Moscow State Umversxty (1970). (Russzan)

[3] S. Mac Lang, G. BIRKHOFF, Algebra, Macmillan (1967).

{4} I. 5. o. ALev, On the minimal variety of symmetric algebras, Algebra i Logika, 5: 6 (1966),
5—14. (Russian)

5] B. CsAxANY, Primitive classes of algebras which are equivalent to classes of semi-modules
and modules, Acta Sci. Math., 24 (1963), 157—164. (Russian)

[6] B. CsArAny, Abelian properties of primitive classes of universal algebras, Acta Sci. Math.

25 (1964), 202—208. (Russian)
[71 B. CsAkAny, Characterizations of regular varieties, Acta Sci. Math., 31 (1970), 187—189.
[8] B. CsArANY, Varieties of affine modules, Acta Sci. Math., 37 (1975), 3—10.
[9] B. CsAkANY—L. MEGYESI, Varieties of idempotent’ medial quasigroups, Acta Sci. Math.,
37 (1975), 17—23.

‘[10} S. R. GIVANT, A representation theorem for universal classes of algebras in which all members

are free, Notices AMS, 19 (1972), A—767.
{11} L. Xrukovirs, On commutative universal algebras, Acta Sci. Math., 34 (1973), 171—174.

[12] L. Kruxovrrs, Hamiltonian varieties of universal algebras, deta Sci. Math., 37 (1975), 11—15. .

( Received September 28, 1973)




