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The completing step is to prove that (A4:f) is equivalent to (4;m). For this
aim, it suffices to show that fis a polynomial of (4; m). Assume first that fis binary.
The binary polyhbmials Gos ---» dp-1 OF A, defined by qo;—-ei (i.e., the second binary
projection) and g,=m(ej, gk-15 ¢é?) for k=0, are, by definition, polynomials of
{4; m); too. Moreover, they are pairwise different, since, by (9), for any a, b€4
and k=0, ..., p—1 the equality g.(a, b)= “ka-+@+1)b holds. But A has exactly
p binary polynomials, whence f=g¢; follows for somei (0=i<p). Thus, f is a poly-
nomial of (4; m). Finally, let f be n-ary with 2<n=4. Then (y,) shows that fis gen-
erated by m and some binary. polynomials of A. Just we saw, however, that binary
polynomials of\% are generated by m. Hence, f 18 ai'pol‘ynomial of (4;my, q.e.d.

Remarks. 1. Our theorem is not a genefalization of the Gritzer—Pad-
manabhan theorem, because the last one contains no assumption on the power of
"subalgebras in A. In fact, groupoids satisfying (3,1)—(3,4). cannot have two-element

subgroupoids, as the identity (15) in [3] shows. In other words, (3,1)—(3,4) together

imply (3%) for any groupoid A. It is an open prbblem _,vglfhethe,rl (p*) follows from
(p, )—(p,4) for some (possibly for all) p_fin_;eg p=3.

2. The method we used allows some rminor generalizations of our theorem. -

Thus, we can take any algebra (4; F) instead of {(4; /) where the arities of opera-
tions from F do not exceed 4. Moreover, if we require. (p, k) for k=0, ..., n then it
suffices to assume that all operations from F are at most 7n-ary. Hence it follows
that an arbitrary algebra A satisfying (p*) and (p, k) for every non-negative integer
k, is equivalent to an affine space over GF(p).
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On affine spaces over prime fields

By B. CSAKANY. in Szeged

The aim of this note to prove a result for affine spaces over arbitrary prime
fields like the Gritzer—Padmanabhan characterization theorem of affine spaces
over GF(3). Our terminology and notation are the standard ones (see [1]) excepting

that the identical mapping'of any set will be considered as an essentially unary:

operation which permits to give a more concise form for the succeeding proposi-
tions. Under this agreement, p; (A) — the number-of essentially unary polynomials —
equals 1 for any idempotent algebra. o ‘ R

Following Pronka [6], for any gtoup ‘G=‘<G;‘+"> the algebra (G; 1), where
I denotes the set of all idempotent polynomials of G, is called the idempotent reduct
of G. Concerning this notion we shall need the fact that idempotent reducts of abelian
groups of exponent p are exactly the affine spaces over GF(p); furthermore, the
free affine space over GF(p) with an n-element free generating set is the same as
the idempotent reduct of 277%, where Z, is the group of order p.’ ‘

The characterization theorem we mentioned above (i.e., the join of Theorems 2
and 3 in [5]) may be formulated as follows: ' o : R

A groupoid A is.equivalent to an affine space over.GF(3) if and only if

G0 W=D
holds for.k=1, 2, 3, 4. In this case (3, k) remains valid for all non—ﬁegaitivé 'integélgé k
Our result.is the following. . ; =

Theorem. Let p be an arbitrary prime. An algebra A={4; F % where: fis at
most quaternary; is equ?vqleﬁt to an affine space over GF(p) if and only if

(p: k) . _pk(A) = ;’_((p_l)k_(_ 1);,) ;
holds for k=1,2,3,4, and : o L

(p*) there exists no subalgebra B in A with 1<|B|<p:.In this case (p, k) remains
valid for all non-negative integers k. ‘

[
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Proof. Let ¥ be the variety generated by A and, for any natural k, denote
by F, the free algebra over ¥~ with the free generating set {X, ..., Xx-1}. Suppose
that A is equivalent to an affine space over GF(p). The variety of all affine spaces
over GF(p) is equationally complete; hence it is equivalent to ¥, Thus, for every
natural k, F, is equivalent to the idempotent reduct of Z%™*, implying |Fel=p"""
The formula ‘

® ~:W=imﬂM

(see [4], p- 38.) gives
PlA) = zk;[k] (—1)FHF = %((p <1 — (=1,

i=o \1
which was needed. Further, any subalgebra of A is also equivalent to an affine space
over GF(p), which clearly cannot have g elements for 1=<g=p.

To prove the sufficiency, first we remark that (p, 1) and (p, 3) jointly imply
that f is at least binary and A is idempotent. Now, if p=2, using URBANIK’s de-
scription of idempotent algebras ([7], Theorem 4) we get that A is equivalent to an
affine space over GF(2), moreover, f is essentially ternary. '

Suppose p=>2. By (%), (p, 1) and (p, 2) we have |F,|=p. Let B a minimal sub-
algebra of A having at least two elements. By (p*), we have |B|=p. Since B is gen-
erated by two elements, itis a homomorphic image of F,, whence |B|]=p and B=F,.
Thus, the proper subalgebras of F, are exactly the one-clement ones.

Next we show that F2(=F,XF,) is generated by the set S={{x, X0y, {Xo» Xo>
" (x5 X1)}- Let {g1(xq, X1); 82(X05 x,)) be an arbitrary element of F;. Consider an
* essentially binary polynomial & of F,. Then

(%05 h(xo’ x (= h((*o, Xo)s {Xa> x.))) €ISL
(A Xo)s h(Xo, X)) (= h(<x1> Xo)s {Xo> x1>)) €[S].

Now, h(xy, Xo)#=Xo; hence [(h(xy, Xo), 2 (Xo, %)) {os B (x> X NI(EISD contains p
elements, ie., all elements of F; with second component k(xo, x;), and thus
‘<f(x09 xl): k(xm x1)>€[S] Analogously, <g1(x0> xl)’ X0>E[S], whence <g1(x03 xl)a
22(Xg, X))€E[S] follows.

Let ¢: F;—~F2 that homomorphism for which X0 ={Xo, X0 X19={X1, X0},
. Xp@={Xy, X1y holds. Then ¢ is onto. Hence there exists an essentially ternary poly-
nomial m of Fj satisfying (m(xo, X3, X))@ =(xy, Xp). But

(m(xm X1s xz))¢ = <m(x0.~ X1 xo)’ m(x(l: Xo> x1)>,
whence we get that the identity

® m(Xgs X1, Xo) = M(Xg, Xo» Xy) = Xy

On affine spaces over prime fields ‘ 35
holds in ¥, This implies | ¢ :
(vs) (m(xo,fl(xo: X1), fo (%o, xz)))(” = {f1(x0, X1)s fo(Xo» X1))
for any binary polynomials f;, f.
Obser\;e.that |Fy) =p?=|F}|. Thus ¢ is an isomorphism; i.e., F;=F:. We show
that F,,' = F? is valid too. Since |Fy|=|F}|(=p?), it is enough to.show that the homo-
morphism : F,~F} for which

xOl/I = <JC0, xO: x0>’ xlll’ = <x19 xO: x0>’ X2lll = <x02 x1> X0>, xalﬁ ‘= <x0:'x0; x1>

holds, is surjective. Applying (f), we get

- (70 (m(xm m(xo, f1(Xo, X1), f2(Xo» X)), f3 (%o, xa)))‘/’ =

= <.ﬁl (xoe xl)s ﬁz(xm xl)a fa(xo» x1)>

for any binary polynomials f;, f3, f3- Hence ¢ is onto, indeed.

. Now, let 0 be an arbitrary element of 4. Introduce the binary algebraic func-
tion + on 4, called addition and defined by a+b=m(0, , b) for all a, bc 4. We
claim that (4; +) is an abelian group of exponent p. Using (f) as well as the iso-
morphisms ¢ and ¥ it follows . ’

C
m(xo, Xy, m(Xg, X, xa)) = (Xy, Xy, XYt = m(x0: m(Xy, X1, X), xs)
in B, and :
R m(x09 xl: xz) = <x09 xl: x1>‘P_1 = m(xO: xzs xl)

in F;, implying associativity, resp. commutativity of the addition. From () we get
a-+0=0+a=a for any a€ 4. Further,

m(x0: xla m(x2a x03 ‘xO)) = <x1, m(xla x0> x0)>(p_1 = m(xZa x1> xO)
yolds in F,, whence for any a€ 4 we have a+m(a, 0, 0)=m(qa, a, 0)=0; i.e., m(a, 0, 0)
is the additive inverse for a. Finally, let a€ 4, a><0. Then every element of the sub-
group by a in {4; +) is contained in the subalgebra C of A generated by {a, 0}.
Since (C; +) is also a subgroup of {4; +) and |C|=p, the order of a equals p in
{A4; +), proving our claim. ' ’
For arbitrary a, b, c€A,
©) o m(a, b,¢) = —a+b+c
holds. Indeed, let 6: F,—~A the homomorphism for which x,0=0, x,0=a, x,6=b,
x36=c. Then, using (y,), we get ‘ |
»m(a, b,c) = (m(xh Xas x3))0 = (m(xy, X9, Xo)> X1, x1>‘l’_19 =
= (m(xo, m(xg, m(xy, Xo» Xo)s X3), xa))e =—a+b+ec.
In view of (§) and Lemma 1 in [6], (4; m) is equivalent to an affine space over GF(p).
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