1. PRELIMINARIES

Throughout this article, we restrict ourselves to algebras whose base set is finite, has \(n \geq 3 \) elements and is identified with \(\{0, 1, \ldots, n-1\} \).

A well-known theorem of ŚWIERCZKOWSKI [6] says that if the base set of an algebra \(A \) is independent then \(A \) is trivial. This theorem can be reformulated as follows: let \(A \) be an \(n \)-element algebra; whose at most \(n \)-ary term functions are projections; then all term functions of \(A \) are projections. A very close result was proved independently by HARRAU [3] (Lemma 2.2.): let \(C \) be a clone on an \(n \)-element set, whose at most \(n \)-ary functions are essentially at most unary; then every function in \(C \) is essentially at most unary.

Consider a \(k \)-ary function \(f : A^k \rightarrow A \), and a partition \(\pi \) of the set \(K = \{1, \ldots, k\} \). Let \(\varphi \) be a self-map of \(K \) mapping every \(x \in K \) on the least element of the block of \(\pi \) containing \(x \) and let \(\{i_1, \ldots, i_\ell\} \) (with \(i_1 \leq \ldots \leq i_\ell \)) be the image of \(\varphi \). We define the \(\pi \)-ary function \(f^\pi \) by \(f^\pi(x_1, \ldots, x_\ell) = f(x_{\varphi(1)}, \ldots, x_{\varphi(\ell)}) \). It is said to be a factor function (shortly: factor) of \(f \). The factor \(f^\pi \) is proper if \(\pi \) is
not the least partition (i.e. has a nonsingleton block).
We associate with \(f \) and \(\tau \) also the restriction \(f^\tau \)
of \(f \) to the set of all \(k \)-tuples \((a_1, \ldots, a_k) \in A^k\) with
\(a_i = a_j \) whenever \(i \) and \(j \) belong to the same class of \(\tau \).

Clearly, if \(C \) is a clone and \(f \in C \) then any factor \(f^\tau \) of \(f \) also belongs to \(C \). As we shall see,
the converse is not true in general; however, it is easy to see that the theorem of Świerczkowski mentioned above
is equivalent to the assertion that every more than \(n \)-ary function is a projection provided all of its proper
factors are projections. Substituting "projection" by "essentially at most unary function" here, we obtain
Harnau's result. These examples suggest the following definition: a clone \(C \) on an \(n \)-element set inductive
if every more than \(n \)-ary function belongs to \(C \) provided all of its proper factors are members of \(C \).

In this note, we prove the inductivity or the non-inductivity of several clones, especially of those occurring
in Rosenberg's completeness theorem (see, e.g., [5], p. 155), and we give an application of the inductivity
of clones of linear functions.

2. INDUCTIVE CLONES

The following lemma is trivial:

LEMMA. Let \(Q \) be a subset of the poset \(P \) of partitions of \([1, \ldots, k]\) \((k \geq 4)\) distinct from the least partition. If

1. \(r \in Q \) whenever \(r > \tau \in Q \)
2. at least two minimal elements of \(P \) belong to \(Q \),

then \(P = Q \).

The above quoted results can be expressed as follows:

PROPOSITION 1. The clone of projections \(P \) and the clone \(U \) of essentially at most unary functions
are both inductive.

For reader's convenience we give a short proof based on the lemma. Let \(k > n \) and let \(f \) be a \(k \)-ary
function whose all proper factors belong to \(P \) \((U)\). For each partition \(\tau \) of \([1, \ldots, k]\) denote by \(\tau \)
the block of \(\tau \) such that \(f^\tau(x_1, \ldots, x_k) = g(x_j) \) for some \(j \in \tau \) and \(g \) unary (where \(g \) is the identity if
the clone is \(P \)). It suffices to show that there exists an \(\tau \) \((\simeq k)\) such that \(\tau \in Q \) for every proper \(\tau \).

The number of minimal partitions of \([1, \ldots, k]\) is \(\binom{k}{2} \), which is greater than \(k \), since \(k \geq 4 \). Hence
there exists an \(\tau \) such that \(\tau \in Q \), \(\tau \neq 1 \), \(\tau \neq 2 \) for two distinct minimal partitions \(\tau_1, \tau_2 \). We show that the set \(Q \) of proper partitions \(\tau \) satisfying \(\tau \in Q \) fulfills the conditions of the Lemma. If \(\tau < \rho \), then \(\rho^\tau \) is a factor
of \(f^\tau \), whence (1) follows. (2) is true by the choice of \(\tau \). Now assume that two distinct partitions \(\rho \) and \(\sigma \) from \(Q \) cover a minimal element \(\tau \) of \(P \). As \(\tau = \rho \wedge \sigma \) and \(\tau \in Q \), we have \(\tau \in \rho \cap \sigma = \tau \), whence
\(\tau \in Q \) follows, proving (3).
PROPOSITION 2. Let \(R \) be a ring with unit 1/ and \(A \) a faithful \(R \)-module. Then the clone
\[
C = \{ \lambda_1 x_1 + \ldots + \lambda_k x_k : a_1, \ldots, a_k \in A \}
\]
\((C' = \{ \lambda_1 x_1 + \ldots + \lambda_k x_k : a_1, \ldots, a_k \in A \}, \lambda_1 + \ldots + \lambda_k = 1)\)

is inductive.

We prove this for \(C \) only; for \(C' \), the same argument works. Suppose that \(f \) is a \(k \)-ary function \((k > n)\) on \(A \) whose all proper factors are in \(C \). It is enough to find \(a_1, \ldots, a_k \in R \) and \(a \in A \) such that \(f_n(a_1, \ldots, a_k) = a_1 x_1 + \ldots + a_k x_k + a \) for every \(\tau \). Assume
\[
f(x_1, x_2, \ldots, x_k) = \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + b,
\]
\[
f(x_1, x_3, \ldots, x_k) = \gamma_1 x_1 + \gamma_2 x_3 + \ldots + \gamma_k x_k + c.
\]

We show that \(a_1 = \gamma_1, a_2 = \beta_1 - \gamma_1, a_3 = \beta_2, \ldots, a_k = \beta_k, a = b \) will do. By the lemma, we have to show that the set \(G \) of proper partitions \(\tau \) satisfying \(f_n(a_1, \ldots, a_k) \) fulfills the conditions of the lemma. Indeed, \(f(x_1, x_2, \ldots, x_k) = a_1 x_1 + a_2 x_2 + \ldots + a_k x_k + a \), and \(f(x_1, x_3, \ldots, x_k) = \gamma_1 x_1 + + \gamma_2 x_3 + \ldots + \gamma_k x_k + c \) since \(\sigma = f(0, \ldots, 0) = b \), \((\gamma_1 - \gamma_2)x = f(x, x, 0, \ldots, 0) = (\beta_1 - \gamma_1)x, \gamma_3 x = f(0, 0, 0, x, \ldots, 0) = \beta_2 x, \gamma_3 x = f(0, 0, 0, 0, x, 0, \ldots, 0) = \beta_3 x, \) and so on. Thus \(G \) contains two minimal partitions. Clearly, if \(\tau_1 < \tau_2 \) and \(\tau_1 \in G \) then \(\tau_2 \in G \).

Finally we show that \(Q \) satisfies (3), too. Let \(\pi = (12), \kappa = (123), \lambda = (12)(34) \), where the parentheses indicate the at least two-element classes of the partition; the further possible cases may be treated analogously. Suppose
\[
f(x_1, x_2, x_3, x_4, \ldots, x_k) = (a_1 + a_2 + a_3)x_1 + a_4 x_4 + \ldots + a_k x_k + a.
\]
\[
f(x_1, x_2, x_3, x_4, \ldots, x_k) = (a_1 + a_2)x_1 + (a_3 + a_4)x_3 + \ldots + a_k x_k + a,
\]
\[
f(x_1, x_2, x_3, x_4, \ldots, x_k) = \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + \delta_4 x_4 + \ldots + \delta_k x_k + d,
\]
with suitable \(\delta_1, \ldots, \delta_k \in R, d \in A \). Then \(d = f(0, \ldots, 0) = a, \delta_1 x = f(x, x, 0, \ldots, 0) = c = (a_1 + a_2)x, \ldots, \delta_k x = f(x, x, x, \ldots, 0) = c = (a_1 + a_2 + a_3)x \) whence \(\delta_3 = a_3 \); considering \(f(0, 0, x, x, 0, \ldots, 0) \) and \(f(0, 0, 0, x, 0, \ldots, 0) \) we obtain \(\delta_4 = a_4, \delta_5 = a_5 \), etc., showing that \(f(x_1, x_2, x_3, x_4, \ldots, x_k) = (a_1 + a_2)x_1 + a_3 x_3 + a_4 x_4 + \ldots + a_k x_k + a \), which was needed.

A special case of \(C \) is the clone of all functions of form \(\Sigma x \), where \(A \) is a \(p \)-elementary Abelian group considered as an \(R \)-module with \(R \) the full endomorphism ring of \(A \). (This is the third type of maximal clones in Rosenberg's theorem.)

It is easy to observe that the clone of all functions preserving a given non-trivial equivalence relation on \(A \) and the clone of all functions invariant un-
under a given permutation p of A are also inductive.

Indeed, let $f : A^k \rightarrow A$ where $|A| < k$ and suppose that, for any proper x, f^x preserves a given non-trivial equivalence \sim on A. Let $a_1, b_1 \in A$ and assume $a_1 \sim b_1$ ($i = 1, \ldots, k$). Since $|A| < k$, at least two a_i's -- say, a_1 and a_2 -- coincide; the same is valid for the b_i's. If $b_1 = b_2$ then $f(a_1, a_2, \ldots, a_k) \sim f(b_1, b_2, \ldots, b_k)$, since f^x preserves \sim. If $b_1 = b_3$ then $f(a_1, a_2, a_3, a_4, \ldots, a_k) \sim f(b_1, b_3, b_1, b_4, \ldots, b_k)$, since $a_2 = a_1 \sim b_1$, $a_3 \sim b_3 = b_1$, and f^x preserves \sim; further, $f(b_1, b_1, b_1, b_4, \ldots, b_k) \sim f(b_1, b_2, b_3, b_4, \ldots, b_k)$, since $b_1 \sim a_1 = a_2 \sim b_2$ and f^x preserves \sim. The remaining case $b_3 = b_4$ can be settled in the same fashion. Thus, f preserves \sim.

As for the clone of p-invariant functions, it suffices to remark that $b_1 = a_1 \sim p$ implies that the pattern of equalities in (a_1, \ldots, a_k) is the same as in (b_1, \ldots, b_k), whence $(f(a_1, \ldots, a_k))p = f(b_1, \ldots, b_k)$, since every f^x is invariant under p.

3. NON-INDUCTIVE CLONES

Let \leq be a non-trivial partial order on A. Then the clone of all functions preserving \leq is not inductive. We show this by constructing an $(n+1)$-ary non-monotone function on A with monotone factor functions only.

For this aim, denote by $A^{n+1}_{(\leq)}$ the set of all $(n+1)$-tuples from A whose ith and kth entries coincide. Then $A^{n+1} = \bigcup_{\neq k} A^{n+1}_{(\leq)}$. Making use of the componentwise partial order on A^{n+1}, we define a new partial order on it as follows: for $a, b \in A^{n+1}$ let $b \leq a$ if and only if there exist $a_0 = b, a_1, \ldots, a_n = b$ ($i \geq 0$) in A^{n+1} such that, for every $j = 1, \ldots, k$, $a_{j-1} \leq a_j$ in A^{n+1}, and there exist $i = i(j), k = k(j)$ such that $a_{j-1}, a_j \in A^{n+1}_{(i\leq j)}$.

Now \leq is weaker than \leq; still they coincide on each $A^{n+1}_{(\leq)}$. Hence it is enough to find a function $f : A^{n+1}_{(\leq)} \rightarrow A$ which is not monotone with respect to \leq and is monotone with respect to \leq. Indeed, an n-ary factor $f_{(i\leq j)}$ of f is monotone exactly when $f_{(i\leq j)}$ is monotone, and the latter one is the restriction of f to $A^{n+1}_{(i\leq j)}$.

Let S and T be arbitrary posets; take an arbitrary $a \in S$, and let $s, d \in T$, $s < d$. Then the function

$$ f(x) = \begin{cases} s & \text{if } x \leq s, \\ d & \text{otherwise} \end{cases} $$

is monotone. Apply this fact to the case $S = A^{n+1}_{(\leq)}$ with \leq, $T = A = \{a_1, \ldots, a_{n+1}, 0, 1\}$ where 1 covers 0, $s = a = 0$, $d = 1$, $a = (0, 1, a_1, \ldots, a_{n+1})$. Then f is monotone with respect to \leq. Put $b = (0, 0, 1, a_1, \ldots, a_{n+1})$. Then $b \leq a$ fails, because there is no $a \in A^{n+1}_{(\leq)}$ with $b < a < c$, and there are no i, k with $a, b \in A^{n+1}_{(i \leq k)}$. Hence it follows $0 = f(a) < f(b) = 1$, though $b < a$, showing that f is not monotone with respect to \leq.

The inductivity of the remaining clones appearing in Rosenberg's theorem will be refuted by a common counter-example. Define $f : A^{n+1} \rightarrow A$ as follows:

- 121 -
4. AN APPLICATION

Consider the three-element set $A = \{0, 1, 2\}$. We write $r_3(x, y)$ for $2x + 2y \pmod{3}$, d for the dual discriminator, and I_3 for the ternary near-projection on A (see, e.g. [1]). We prove that in the lattice of clones on A the clone $[r_3]$ is covered by $[r_3, d]$. This was discovered by MARCENKOV [4], who determined the lattice of clones of homogeneous functions on the three-element set. We give another proof here, using the inductivity of the clone $[r_3]$ which is the same as the clone of functions of form $\sum \lambda_\xi x_\xi$ with $\sum \lambda_\xi = 1$, where A is the base set of GF(3) and $\lambda_\xi \in \text{GF}(3)$ (clone C' in Proposition 2). Taking into account that $[r_3, d]$ is the clone of all homogeneous functions on A (see Theorem 2 in [2]), our assertion can be formulated in the following more symmetric way: on the three-element set an arbitrary nontrivial linear homogeneous function together with an arbitrary non-linear homogeneous function generates the clone of all homogeneous functions.

We have to show that

(*) \[[r_3, f] \supseteq [r_3, d] \]

whenever f is homogeneous and $f \notin [r_3]$. First, let f be a non-trivial pattern function. Then, as the minimal clones of pattern functions on A are exactly $[I_3]$ and $[d]$ (see [2], Theorem 1), $I_3 \in [f]$ or $d \in [f]$ holds. The latter case implies (*) immediately, while the former case can be settled using the identity
(**) \(d(x,y,z) = \ell_3(\ell_2(y,x,z), r_3(x,y), \ell_3(z,y,z)) \).

Secondly, let \(f \) be a non-pattern function. Then \(f \) is at least ternary. It suffices, however, to consider only the case when \(f \) is exactly ternary. Indeed, if \(n > 3 \) is the minimal integer with the property that there exists an \(n \)-ary homogeneous non-linear \(f \) such that \([r_3,f] \) does not contain \([r_3,d] \), then, for each proper factor \(f^x, [r_3,f^x] \subseteq [r_3,f] \) does not contain \([r_3,d] \) a fortiori, whence \(f^x \in \{r_3\} \). As \([r_3]\) is inductive, this implies \(f \in \{r_3\} \), a contradiction.

Thus, let \(f \) be a ternary homogeneous non-pattern function on \(A \) with \(f \notin \{r_3\} \). Such a function is determined uniquely by the values \(f(0,1,2), f(0,0,1), f(0,1,0), \) and \(f(0,1,1) \). A trivial computation shows that there exist 31 such functions and each of them can be obtained by a permutation of variables from exactly one of the following ten functions:

\[
\begin{array}{cccccccccc}
 f_1 & f_2 & f_3 & f_4 & f_5 & f_6 & f_7 & f_8 & f_9 & f_{10} \\
 f_1(0,1,2) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 f_1(0,0,1) & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
 f_1(0,1,0) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 f_1(0,1,1) & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

We have to prove that, for any \(i \), either \(d \in \{f_i\} \) or \(\ell_3 \in \{f_i\} \) holds (the latter one also suffices in view of (**)). But this is true, as the following identities show:

\[
\begin{align*}
f_1(f_1(x,y,z), z, z) &= d(x,y,z), \\
f_4(\ell_3(x,y,z), \ell_3(y,z,x), f_4(y,x,z)) &= f_2(x,y,z), \\
f_2(x,y, f_2(y,z,x)) &= \ell_3(x,y,z), \\
f_7(x, f_7(x,y,z), y) &= f_6(x,y,z), \\
f_8(z, x, f_8(x,y,z)) &= f_2(x,y,z), \\
f_3(x, z, f_3(y,x,z)) &= f_10(x,y,z), \\
f_{10}(x,y, f_{10}(x,y,z)) &= p(x,y,z)
\end{align*}
\]

where \(p \) is Pixley's ternary discriminator (it is well-known that \(d \in \{p\} \)).

\[
\begin{align*}
f_5(x, f_5(x,y,z), z) &= f_6(x,y,z), \\
f_6(f_6(x,y,z), f_6(x,y,x), f_6(y,x,z)) &= \ell_3(x,y,z), \\
f_9(x, y, f_9(y,x,z)) &= p(x,y,z).
\end{align*}
\]

REFERENCES

