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Abstract

Call a simple graph H of order n well-separable, if by deleting a separator set of size o(n)
the leftover will have components of size at most o(n). We prove, that bounded degree well-
separable spanning subgraphs are easy to embed: for every γ > 0 and positive integer ∆ there
exists an n0 such that if n > n0, δ(G) ≥ (1 − 1

2(χ(H)−1)
+ γ)n for a simple graph G of order n,

and ∆(H) ≤ ∆ for a well-separable graph H of order n, then H ⊂ G.

1 Notation

In this paper we will consider only simple graphs. We mostly use standard graph theory notation:
we denote by V (G) and E(G) the vertex and the edge set of the graph G, respectively. degG(x) (or
deg(x)) is the degree of the vertex x ∈ V (G), δ(G) is the minimum degree and ∆(G) is the maximum
degree. Denote degG(v, A) the number of neighbors of v in the set A. We write NG(x) (or N(x))
for the neighborhood of the vertex x ∈ V (G), hence, degG(x) = |NG(x)|. NG(U) = ∪x∈UN(x) for a
set U ⊂ V (G). NG(v, A) is the set of neighbors of v in A. Set e(G) = |E(G)| and v(G) = |V (G)|.
When A and B are disjoint subsets of V (G), then we denote by e(A, B) the number of edges with
one endpoint in A and the other in B. We write χ(G) for the chromatic number of G. If A is a
subset of the vertices of G, we write G−A for the graph induced by the vertices of V (G) −A.

If G has a subgraph isomorphic to H , then we write H ⊂ G. In this case we sometimes call G
the host graph. We say that G has an H–factor, if there are bv(G)/v(H)c disjoint copies of H in G.
Throughout the paper we will apply the relation “�”: a� b, if a is sufficiently smaller, than b.

2 Introduction

In this paper we consider a problem in extremal graph theory. Before getting on the subject of our
result let us take a short historical tour in the field.

One of the main results of the area is Turán’s Theorem:

Theorem 1 (Turán 1941 [15]) If G is a graph on n vertices, and

e(G) >

(

1−
1

r − 1

)

n2

2
,

∗Part of this research was done during the author’s stay at Max-Planck-Institut für Informatik, Saarbrücken,
Germany

†Partially supported by the IST Programme of the EU under contract number IST-1999-14186 (ALCOM-FT), and
by OTKA T034475.

1



then Kr ⊂ G.

Another milestone in extremal graph theory is the following theorem:

Theorem 2 (Erdős–Stone–Simonovits 1946/1966 [6, 5]) For every graph H and ε > 0 there
exists an N = N(H, ε) such that if G is a graph on n > N vertices, and

e(G) >

(

1−
1

χ(H)− 1
+ ε

)

n2

2
,

then H ⊂ G.

The deep result of Hajnal and Szemerédi shows that when we are looking for a Kr–factor in a
graph, the situation is different.

Theorem 3 (Hajnal–Szemerédi 1969 [7]) If G is a graph of order n and δ(G) ≥ (1 − 1/r)n,
then G has a Kr–factor.

There are two important changes in the formulation of the above result: first, it is not sufficient
to bound the number of edges anymore – we need a lower bound on the minimum degree of the host
graph. Second, that 1/(r− 1) changed to 1/r. Obviously, it is harder to have a Kr–factor than just
a single copy of Kr.

The following results were conjectured by Alon and Yuster ( [1, 2]), and proved by Komlós,
Sárközy and Szemerédi:

Theorem 4 (Komlós–Sárközi–Szemerédi [12]) For every graph H there is a constant K such
that if G is a graph on n vertices, then

δ(G) >

(

1−
1

χ(H)

)

n

implies that there is a union of vertex disjoint copies of H covering all but at most K vertices of G.

Theorem 5 (Komlós–Sárközi–Szemerédi [12]) For every graph H there is a constant K such
that if G is a graph on n vertices, then

δ(G) >

(

1−
1

χ(H)

)

n + K

implies that G has an H–factor.

These theorems suggest that the crucial parameter in extremal graph theory is the chromatic
number. However, it is easy to come up with examples when the maximum degree turns out to be
much more important. We give one possible set of examples for this fact. Let {Hd}d>2 be a family
of random bipartite graphs with equal color classes of size n/2: Hd will be the union of d random 1–
factors. Let r be an odd positive integer, and consider the graph G of order n having r independent
sets of equal size, and all the edges between any two independent sets. By a standard application
of the probabilistic method one can prove that for a given r, if d is large enough (d = constant · r is
sufficient), then Hd 6⊂ G. Since Hd is bipartite for every d, this proves, that the critical parameter
for embedding expanders cannot be the chromatic number. (Although, the chromatic number still
has a role, see [4].) One may think, that the main reason of this fact is that Hd is an expander graph
with large expansion rate.

We show, that if a graph is ”far from being an expander”, then again, the chromatic number
comes into picture. First, let us define what we mean on ”non–expander” graphs.
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Definition 1 Let H be a graph of order n. We call H well-separable, if there is a subset S ⊂ V (H)
of size o(n) such that H − S has components of size o(n).

We call S the separator set, and write C1, C2, . . . , Ct for the components of H −S. Note, that if
H is an expander graph, then it is not well–separable. For simpler notation let us denote χ(H) by
k, and exclude the trivial case k = 1 in the rest of the paper. We will show the following property
of well–separable graphs.

Theorem 6 For every γ > 0 and positive integer ∆ there exists an n0 such that if n > n0 and
δ(G) ≥ (1 − 1

2(k−1) + γ)n for a simple graph G of order n, and ∆(H) ≤ ∆ for the well-separable

graph H of order n, then H ⊂ G.

Observe, that trees are well–separable graphs. A conjecture of Bollobás [3] (proved by Komlós,
Sárközy and Szemerédi [9]) states that trees of bounded degree can be embedded into graphs of
minimum degree (1/2 + γ)n for γ > 0. Since every tree is bipartite, this result is a special case of
Theorem 6.

Our proof of Theorem 6 uses the Regularity Lemma of Szemerédi [14] (sometimes called Uni-
formity Lemma). In the next section we will give a brief survey on this powerful tool, and related
results. For more information see e.g., [13, 8]. We will prove Theorem 6 in the fourth section.

3 A review of tools for the proof

We introduce some more notation first. The density between disjoint sets X and Y is defined as:

d(X, Y ) =
e(X, Y )

|X ||Y |
.

We need the following definition to state the Regularity Lemma.

Definition 2 (Regularity condition) Let ε > 0. A pair (A, B) of disjoint vertex-sets in G is
ε-regular if for every X ⊂ A and Y ⊂ B, satisfying

|X | > ε|A|, |Y | > ε|B|

we have
|d(X, Y )− d(A, B)| < ε.

We will employ the fact that if (A, B) is an ε–regular pair as above, and we place constant · ε|A|
new vertices into A, the resulting pair will remain regular, although with a somewhat larger ε,
depending on the constant.

An important property of regular pairs is the following:

Fact 7 Let (A, B) be an ε–regular pair with density d. Then for any Y ⊂ B, |Y | > ε|B| we have

|{x ∈ A : deg(x, Y ) ≤ (d− ε)|Y |}| ≤ ε|A|.

We will use the following form of the Regularity Lemma:

Lemma 8 (Degree Form) For every ε > 0 there is an M = M(ε) such that if G = (V, E) is any
graph and d ∈ [0, 1] is any real number, then there is a partition of the vertex set V into `+1 clusters
V0, V1, . . . , V`, and there is a subgraph G′ of G with the following properties:

• ` ≤M ,
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• |V0| ≤ ε|V |,

• all clusters Vi, i ≥ 1, are of the same size m
(

≤ b |V |
`
c < ε|V |

)

,

• degG′(v) > degG(v)− (d + ε)|V | for all v ∈ V ,

• G′|Vi
= ∅ (Vi is an independent set in G′) for all i ≥ 1,

• all pairs (Vi, Vj), 1 ≤ i < j ≤ `, are ε-regular, each with density either 0 or greater than d in
G′.

Often we call V0 the exceptional cluster. In the rest of the paper we assume that 0 < ε� d� 1.

Definition 3 (Reduced graph) Apply Lemma 8 to the graph G = (V, E) with parameters ε and
d, and denote the clusters of the resulting partition by V0, V1, . . . , V`, V0 being the exceptional cluster.
We construct a new graph Gr, the reduced graph of G′ in the following way: The non-exceptional
clusters of G′ are the vertices of the reduced graph (hence |V (Gr)| = `). We connect two vertices of
Gr by an edge if the corresponding two clusters form an ε-regular pair with density at least d.

The following corollary is immediate:

Corollary 9 Apply Lemma 8 to the graph G = (V, E) satisfying δ(G) ≥ cn (|V | = n) for some
c > 0 with parameters ε and d. Denote Gr the reduced graph of G′. Then δ(Gr) ≥ (c − θ)`, where
θ = 2ε + d.

A stronger one-sided property of regular pairs is super-regularity:

Definition 4 (Super-Regularity condition) Given a graph G and two disjoint subsets of its
vertices A and B, the pair (A, B) is (ε, δ)-super-regular, if it is ε-regular and furthermore,

deg(a) > δ|B|, for all a ∈ A,

and
deg(b) > δ|A|, for all b ∈ B.

Finally, we formulate another important tool of the area:

Theorem 10 (Blow-up Lemma [10, 11]) Given a graph R of order r and positive parameters
δ, ∆, there exists a positive ε = ε(δ, ∆, r) such that the following holds: Let n1, n2, . . . , nr be arbi-
trary positive integers and let us replace the vertices v1, v2, . . . , vr of R with pairwise disjoint sets
V1, V2, . . . , Vr of sizes n1, n2, . . . , nr (blowing up). We construct two graphs on the same vertex set
V = ∪Vi. The first graph F is obtained by replacing each edge {vi, vj} of R with the complete
bipartite graph between Vi and Vj . A sparser graph G is constructed by replacing each edge {vi, vj}
arbitrarily with an (ε, δ)–super–regular pair between Vi and Vj . If a graph H with ∆(H) ≤ ∆ is
embeddable into F then it is already embeddable into G.

Remark 1 (Strengthening the Blow-up Lemma) Assume that ni ≤ 2nj for every 1 ≤ i, j ≤ r.
Then we can strengthen the lemma: Given c > 0 there are positive numbers ε = ε(δ, ∆, r, c) and
α = α(δ, ∆, r, c) such that the Blow-up Lemma remains true if for every i there are certain vertices
x to be embedded into Vi whose images are a priori restricted to certain sets Tx ⊂ Vi provided that

(i) each Tx within a Vi is of size at least c|Vi|,

(ii) the number of such restrictions within a Vi is not more than α|Vi|.
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4 Proof of Theorem 6

The proof goes along the following lines:

(1) Find a special structure in G by the help of the Regularity Lemma and the Hajnal–
Szemerédi Theorem (Theorem 3).

(2) Map the vertices of H to clusters of G in such a way that if {x, y} ∈ E(H), then x and y
are mapped to neighboring clusters; moreover, these clusters will form an (ε, δ)–super–regular
pair for all, but at most o(n) edges.

(3) Finish the embedding by the help of the Blow-up Lemma.

4.1 Decomposition of G

In this subsection we will find a useful decomposition of G.
First, we apply the Degree Form of the Regularity Lemma with parameters ε and d, where

0 < ε � d � γ < 1. As a result, we have ` + 1 clusters, V0, V1, . . . , V`, where V0 is the exceptional
cluster of size at most εn, and all the others have the same size m. We deleted only a small number
of edges, and now all the (Vi, Vj) pairs are ε–regular, with density 0 or larger than d. By Lemma 9
we will have that δ(Gr) ≥ (1− 1

2(k−1) + γ′)`, where γ′ = γ − d− 2ε > 0.

Applying Theorem 3, we have a Kk–factor in Gr. It is possible, that at most k − 1 clusters are
left out from this k–clique cover – such clusters are put into V0. It is easy to transform the ε–regular
pairs inside this clique cover into super–regular pairs: given a δ with ε� δ � d we have to discard
at most εm vertices from a cluster to make a regular pair (ε, δ)–super–regular. In a clique a cluster
has k − 1 other adjacent clusters in Gr. Hence, it is enough to discard at most (k − 1)εm vertices
from every cluster, and arrive to the desired result. Note, that now the pairs are ε′–regular, with
ε′ < 2ε; for simplicity, we will use the letter ε in the rest of the paper. We will discard the same
number of vertices from every non–exceptional cluster, and get, that all the edges of Gr inside the
cliques of the cover are (ε, δ)–super-regular pairs. For simplicity we will still denote the common
clustersize by m in Gr. The discarded vertices are placed to V0; now |V0| ≤ (2k − 1)εn.

Our next goal is to distribute the vertices of V0 among the non–exceptional clusters so as to
preserve super–regularity within the cliques of the cover. We also require that the resulting clusters
should have about the same size.

For a cluster Vi in Gr denote clq(Vi) the set of the clusters of Vi’s clique in the Kk–cover, but
without Vi itself. Hence, Vi 6∈ clq(Vi), and |clq(Vi)| = k − 1 for every Vi ∈ V (Gr).

Recall, that every cluster in Gr has the same size, m. We want to distribute the vertices of V0

evenly among the clusters of Gr: we will achieve that ||Vi|− |Vj || < 4kεm for every 1 ≤ i, j ≤ ` after
placing the vertices of V0 to non–exceptional clusters. Besides, we require that if we put a vertex
v ∈ V0 into Vi ∈ V (Gr), then deg(v, Vj) ≥ δm for every Vj ∈ clq(Vi).

For proving the above claim, let us define an auxiliary bipartite graph F1 = F1(V0, V (Gr), E(F1)).
That is, the color classes of F1 are V0 and the set of the non–exceptional clusters. We draw a {v, Vi}
edge for v ∈ V0 and Vi ∈ V (Gr), if degG(v, Vj) ≥ δm for every Vj ∈ clq(Vi).

Set γ′′ = k(γ − 2(ε + d))(> 0). The following lemma is crucial in distributing V0.

Lemma 11 degF1
(v) ≥ (1/2 + γ′′)` for every v ∈ V0.

Proof: Consider an arbitrary v ∈ V0. Then we can partition the set of k–cliques of the disjoint
clique cover into k + 1 pairwise disjoint sets A0, A1, . . . , Ak. A clique Q is in Aj if v has at least
δm neighbors in exactly j clusters of Q. Set aj = k|Aj |/` for every 0 ≤ j ≤ k, that is, aj is the
proportion of cliques in Aj . Clearly,

∑

j aj = 1. At most δn is the number of edges which connects
v to such clusters which are not adjacent to it in F1. Hence, by the minimum degree condition,
1/k

∑

j jaj ≥ δ(Gr)/`− δ. Notice, that if v has large enough degree (that is, at least δm neighbors
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in G) to at most k − 2 clusters in a clique, then v is not adjacent to any clusters of that clique in
F1. There are two possibilities left: v has one neighbor in a clique in F1, or it is connected to all the
clusters in F1, depending on whether it has large enough degree to k− 1 or k clusters of that clique.
Putting these together, the solution of the following linear program is a lower bound for degF1

(v)/`:

k
∑

j=0

aj = 1 and
k

∑

j=0

jaj − z = k( 2k−3
2k−2 + γ − 2(ε + d))

where aj , z ≥ 0

min{ak−1

k
+ ak}

Let A be the coefficient matrix of the two equalities above, i.e.,

A =

(

1 1 1 . . . 1 1 0
0 1 2 . . . k − 1 k −1

)

.

Let aT = (a0, a1, . . . , ak, z), bT = (1, k(2k− 3)/(2k− 2) + γ ′′), and cT = (0, 0, . . . , 0, 1/k, 1, 0). Then
the dual of the linear program above is:

AT u ≤ c

max{bT u}

It is easy to check that u1 = 2−k and u2 = k−1
k

is a feasible solution (in fact the optimal solution
as well), and therefore max bT u ≥ 1/2 + γ′′.

Applying the lemma above it is easy to distribute the vertices of V0 evenly, without violating
our requirement. For every v ∈ V0 randomly choose a neighboring cluster in F1, and put v into that
cluster. Since degF1

(v) ≥ (1/2 + γ′′)`, with very high probability (use eg., Chernoff’s bound) no
cluster will get more than 2|V0|/` new vertices from V0. Hence, we have that ||Vi| − |Vj || < 4kεm
for every 1 ≤ i, j ≤ `.

4.2 Assigning the vertices of H

In this subsection we will map the vertices of H to clusters of Gr. We will heavily use the fact that
H is k–colorable.

Fix an arbitrary k–coloration of H . For an arbitrary set A, denote A1, A2, . . . , Ak the color
classes determined by this k–coloration.

We will map S and C1, C2, . . . , Ct by the randomized procedure below.

Mapping algorithm

Input: the set A

• Pick a clique Q = {Q1, Q2, . . . , Qk} in the cover of Gr randomly, uniformly.

• Pick a permutation π on {1, 2, . . . , k} uniformly at random.

• Assign the vertices of Ai to the cluster Qπ(i) for every 1 ≤ i ≤ k.

Repeating this algorithm for S and all the components in H−S, we will have, that the number of
vertices of H assigned to a cluster are almost the same: with probability tending to 1, the difference
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between the number of assigned vertices to a cluster and the cluster size m will be at most o(n).
This follows easily from Chebyshev’s inequality.

Recall, that for applying the Blow–up Lemma, it is necessary to map adjacent vertices in H to
adjacent clusters in Gr.

For x ∈ V (H) let κ(x) denote the cluster to which x is assigned. After randomly assigning S
and C1, C2, . . . , Ct, we have that if {x, y} ∈ H and x, y ∈ S or x, y ∈ Cj for some 1 ≤ j ≤ t, then
{κ(x), κ(y)} ∈ E(Gr). On the other hand, there is no guarantee that a vertex in S and a vertex in
some component of H − S are assigned to adjacent clusters, even when they are adjacent in H .

Therefore, we have to reassign a small subset of V (H). We will see that no vertex which is at
distance larger than k from S will change its place, and vertices of S will not be reassigned.

Consider an arbitrary component Cj . Set B = N(S)∩Cj , and Bp = B ∩Cp
j for every 1 ≤ p ≤ k.

By the algorithm below we will define B′
p, the subset of Cp

j which will be reassigned.

Step 1. Set B′
k = Bk, and i = 1

Step 2. Set B′
k−i = Bk−i ∪

⋃i−1
p=0(N(B′

k−p) ∩ Ck−i
j )

Step 3. If i < k − 1, then set i← i + 1, and go back to Step 2.

Informally, when we determine which vertices to reassign from Ck−i, we take into account all the
neighbors of B′

p with p > k − i, and Bk−i itself. It is important, that we proceed backwards, that
is, we specify the vertices to be reassigned starting from the last, the kth color class. Note, that the
vertices of ∪k

p=1B
′
p are at distance at most k from S. Hence, | ∪k

p=1 B′
p| < ∆k|S| = o(n).

Now we have the sets {B′
p}. First we will find a new cluster for B′

1: Take an arbitrary cluster
W1 from the set

k
⋂

p=2

N(κ(Sp)) ∩
k

⋂

p=2

N(κ(B′
p)).

Then we choose W2 for B′
2 from the set

⋂

p6=2

N(κ(Sp)) ∩
k

⋂

p=3

N(κ(B′
p)) ∩N(W1).

In general, assume that we have the clusters W1, W2, . . . , Wi−1 for some i ≤ k. Then we choose
Wi for B′

i from the set

⋂

p6=i

N(κ(Sp)) ∩
k

⋂

p=i+1

N(κ(B′
p)) ∩

i−1
⋂

p=1

N(Wp).

Observe, that this way Wi (1 ≤ i ≤ k) is chosen from a non–empty set, since it comes from
the common neighborhood of 2k − 2 clusters, and this neighborhood is of size at least γ ′` by the
minimum degree condition of G.

4.3 Achieving |Vi| − |Li| = 0

We have, that if {x, y} ∈ E(H), then {κ(x), κ(y)} ∈ E(Gr). Moreover, the {κ(x), κ(y)} edges are
super–regular pairs for all, but at most o(n) edges in E(H).

Still, we cannot apply the Blow–up Lemma, since |Vi| = |Li| is not necessarily true for every
1 ≤ i ≤ `. What we know for sure is that ||Vi| − |Li|| < 5εm, because these differences were at
most o(n) in the beginning, distributing the vertices of V0 had contribution at most 4kεm for every
1 ≤ i ≤ `, and we relocated o(n) vertices in the previous subsection.
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We will partition the clusters of Gr into three disjoint sets: V<, V= and V>. If |Vi| < |Li|, then
Vi ∈ V<; if |Vj | = |Lj |, then Vj ∈ V=, and we put Vp into V>, if |Vp| > |Lp|. Clearly, it is enough to
replace at most 5kεn vertices of G so as to achieve |Vi| = |Li| for every 1 ≤ i ≤ `, while preserving
regularity for the edges of Gr. But we need super–regular pairs for the edges of the k–cliques of the
cover, hence, a straightforward relocation of some vertices of G is not helpful. Instead, we will apply
an idea similar to what we used for distributing the vertices of V0.

First, we define a directed graph F2: the vertices of F2 are the clusters of Gr, and (Vi, Vj) ∈ E(F2),
if (Vi, Vp) ∈ E(Gr) for every Vp ∈ clq(Vj). We will have that the out–degree of every cluster is at
least (1/2 + γ′′)` by considering the linear program of Subsection 4.1. Since δ(Gr) ≥ ( 2k−3

2k−2 + γ′)`,
it is easy to see that any k − 1 clusters have at least (1/2 + γ ′)` common neighbors. That is, the
in–degree of F2 is at least (1/2 + γ ′)`. Therefore, there is a large number – at least (γ ′ + γ′′)` – of
directed paths of length at most two between any two clusters in F2.

Let Vi ∈ V< and Vj ∈ V> be arbitrary clusters. If (Vj , Vi) ∈ E(F2), then we can directly place a
vertex from Vj into Vi which has at least δm neighbors in Vi (and most of the vertices has actually
at least dm neighbors, since d is the lower bound for the density of regular pairs). If there is no such
edge, then there are several different directed paths of length two from Vj to Vi. These paths differ
in their ”center” cluster. Assume that Vp is such a cluster, i.e., (Vj , Vp) and (Vp, Vi) are edges in F2.
It is useful to choose Vp randomly, uniformly among the possible ”center” clusters.

Take any vertex v ∈ Vj which has at least δm neighbors in Vp, and put it into Vp. Then choose
any vertex from Vp which has at least δm neighbors in Vi, and put it into Vi. As a result, we
decreased ||Vj | − |Lj || and ||Vi| − |Li||, while ||Vp| − |Lp|| did not change. Now, by the remark after
the definition of a regular pair it is clear that if we make all ||Vi|−|Li|| = 0 this way, we will preserve
regularity and super–regularity as well.

4.4 Finishing the proof

Now we are prepared to prove Theorem 6.
We have to check if the conditions of the Blow–up Lemma are satisfied. There are o(n) edges of

E(H) which are problematic: those edges having their endpoints in clusters which do not constitute
a super–regular pair. Denote the set of these edges by E ′. Suppose that x is a vertex which occurs
in some edges of E′. It can have neighbors assigned to at most 2k − 2 clusters Vx1

, Vx2
, . . . , Vx2k−2

.
Since (κ(x), Vxi

) is a regular pair for every 1 ≤ i ≤ 2k − 2, there is a set Tx ⊂ κ(x) of size at
least (1 − (2k − 2)ε)m (by Fact 7 and applying induction), all the vertices of which has at least
(d − ε)2k−2m > δm neighbors in Vxi

for every 1 ≤ i ≤ 2k − 2. Tx will be the set to which x is
restricted. Since |E′| = o(n), the number of restricted vertices is small enough, and therefore we can
apply the strengthened version of the Blow-up Lemma.
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