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Abstract. In this paper we will consider tight upper- and lower-bounds
on the weight of the optimal matching for random point sets distributed
among the leaves of a tree, as a function of its cardinality. Specifically,
given two n sets of points R = {r1, ..., rn} and B = {b1, ..., bn} dis-
tributed uniformly and randomly on the m leaves of λ-Hierarchically
Separated Trees with branching factor b such that each one of its leaves
are of depth δ, we will prove that the expected weight of optimal match-
ing between R and B is Θ(

√
nb

Ph
k=1(

√
bλ)k), for h = min(δ, logb n).

Using a simple embedding algorithm from Rd to HSTs, we are able to re-
produce the results concerning the expected optimal transportation cost
in [0, 1]d, except for d = 2. We also show that giving random weights to
the points does not affect the expected matching weight by more than
a constant factor. Finally, we prove upper bounds on several sets for
which showing reasonable matching results would previously have been
intractable, e.g., the Cantor set, and various fractals.

Key words: Random Matching, Hierarchically Separated Trees, Supre-
mum Bounds

1 Introduction

The problem of computing a large similar common subset of two point sets arises
in many areas of computer science, ranging from computer vision and pattern
recognition, to bio-informatics [2, 12, 4]. Most of recent related work concerns
the design of efficient algorithms to compute rigid transformations for establish-
ing correspondences between two point sets in Rd subject to minimization of a
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2 Jeff Abrahamson, Béla Csaba, and Ali Shokoufandeh

distance measure. In comparison, less attention has been devoted to extremal
matching problems related to random point sets such as: Presented with two
random point sets, how do we expect matching weight to vary with data set size?

Perhaps the most seminal work in extremal random matching is the 1984
paper of Ajtai, Komlós and Tusnády [1] presenting a very deep and impor-
tant result which has found plenty of applications since then. They consid-
ered two sets of points Xn and Yn chosen uniformly at random in [0, 1]2, with
|Xn| = |Yn| = n, and determined (asymptotic) bounds on the sequence {EM},
where M is the optimal matching weight, or transportation cost between Xn and
Yn: M = minσ

∑
i ||Xi − Yσ(i)||2 where σ runs through all the possible permu-

tations on [n]. Leighton and Shor [8] addressed the problem of 2 dimensional
grid matching where shortly after Ajtai et al, they analyzed the maximum cost
of any edge in the matching instead of the sum. Shor and Yukick [14] extended
this minimax grid matching result to dimensions greater than two. Shor [13]
applied the AKT result to obtain bounds on the average case analysis of sev-
eral algorithms. Talagrand [15] introduced the notion of majorizing measures
and as an illustration of this powerful technique derived the theorem of Ajtai
et al. Rhee and Talagrand [9] have explored upward matching (in [0, 1]2): the
case where points from X must be matched to points of Y that have greater x-
and y-coordinates. They have also explored a similar problem in the cube [10].
In [16] Talagrand gave insight to exact behavior of expected matching weight
for dimensions d ≥ 3 for arbitrary norms.

In this paper we will introduce the random matching problem on hierarchi-
cally separated trees. The notion of hierarchically (well-)separated tree (HST)
was introduced by Bartal [3]. An λ-HST is a rooted weighted tree with two ad-
ditional properties: (1) edge weights between nodes and their children are the
same for any given parent node, and (2) the ratio of incident edge weights along
a root-leaf path is λ (so edges get lighter by a factor of λ as one approaches
leaves). We primarily consider balanced trees, that is, the branching factor of all
nodes other than the leaves is an integer b, and also require that every leaf is of
depth δ. Using the notion of balanced λ-HST, we can state the first contribu-
tion of this manuscript on the expected transportation cost of optimal matching
EMT (R,B):

Theorem 1. Let T = T (b, δ, λ) be a balanced HST, and R and B two ran-
domly chosen n-element submultisets of the set of leaves of T and define h =
min (δ, logb n). Then there exist positive constants K1 and K2 such that

K1

√
bn

h∑
k=1

(
√

bλ)k ≤ EMT (R,B) ≤ K2

√
bn

h∑
k=1

(
√

bλ)k.

Theorem 1 will also allow us to approach and duplicate the upper-bound
results of optimal matching for point sets distributed in [0, 1]d found in the
literature easily (see [7]), with a slightly loose result in the single (and most
interesting) case of d = 2. Since we use crude approximations of [0, 1]d by HSTs,
we cannot expect much more.
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On the other hand this method is general enough to attack the randomized
matching problem in general for finite metric spaces. It can always give upper
bounds (by using Theorem 2 or Corollary 1). If the metric space is sufficiently
symmetric (e.g., fractals), one can get reasonable lower bounds by applying the
theorem of Fakcharoenphol et al. ([5]) on approximating a finite metric space
by HSTs. We further extend the upper bound of the transportation cost to the
case of weighted point sets. This model is commonly used in texture mapping in
computer vision, see [11].

The final application of the newly developed machinery will include extending
upper-bound matching results to finite approximations of certain fractals. We
generalize Theorem 1 for non-uniformly distributed point sets and for subtrees
of balanced trees as well.

2 The Upper- and Lower-Bounds for Matching on HSTs

In this section, our modus operandi will be to prove upper- and lower-bounds
for the weight of the matching problems on HSTs. The trees considered in the
paper are a somewhat restricted variation of HSTs defined as follows:

Definition 1. Let b, δ be positive integers and 0 < λ < 1 be a real number.
We call a rooted tree T a balanced (b, δ, λ)-HST, if every edge parented to the
root has unit weight, every edge not parented to the root has weight λ times the
weight of the edge immediately closer to the root, every non-leaf node has the
same number of children (which we will call the branching factor b), and every
leaf has the same depth δ.

We remark that having the same depth δ for every leaf of T can be assumed
without loss of generality, and as we will see, in several cases the branching factor
is naturally bounded.

Given a balanced HST T , let R = {r1, ..., rn} and B = {b1, ..., bn} respectively
denote the multisets of n red and n blue points chosen among the leaves of T . We
define a matching between R and B as a one-to-one mapping σ between them.
The weight of optimal matching (optimal transportation cost) with respect to
T will be defined as MT (R,B) = minσ

(∑
1≤i≤n dT (ri, bσ(i))

)
, where dT (r, b) is

the length of the path between leaves containing points r and b in T . Note that
MT (R,B) is the Earth Mover Distance of R and B on the metric defined by
T . For a pair of matched points (r, b) under a mapping σ, belonging to distinct
leaves ur and ub in T , we will say the matched pair (r, b) results in a transit
at vertex v, if v is an ancestor of both ur and ub and the path between ur

and ub passes through v. We will also use τv to denote the total number of
transits at vertex v in an optimal matching between R and B. Any red-blue pair
that is mapped under a matching σ at a leaf of T contributes no weight to the
transportation cost. For a vertex v let δ(v) denote its level in the tree, that is,
the number of edges on the path from r to v. Observe that the weight of the
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optimal matching can be restated as follows:

MT (R,B) =
δ−1∑
k=0

∑
v:δ(v)=k

τvS(k, δ − 1), (1)

where S(i, j) = 2(λi + λi+1 + . . . + λj) ≤ Cλλi for 0 ≤ i ≤ j ≤ δ − 1, and
Cλ =

∑
j≥0 λj .

Our goal is to estimate tight bounds on the expected optimal transportation
cost EMT (R,B) for randomly chosen R and B. Throughout the paper we will
denote the standard deviation of a random variable X by DX. The following
pair of observations will be useful in the proof of Theorem 1:

Observation 1 Given a balanced (b, δ, λ)-HST tree T , and multiset R of n red
points and multiset B of m blue points distributed among the leaves of T , we
have MT (R,B) ≤ min(n, m)S(1, δ).

Lemma 1. Let X be the sum of a finite number of independent bounded random
variables. Then E |X −EX| = Θ(DX).

We omit the details, but comment that to show the upper bound of Lemma 1,
one can repeatedly use Chebyshev’s inequality, while the lower bound is the
consequence of Hölder’s inequality.

The process of randomly and uniformly choosing the leaves of a balanced
HST T with branching factor b to host the points in R and B can be stated as
follows: starting from the root, choose a child of the current vertex uniformly at
random among its b children; if the new vertex is not a leaf, repeat this random
selection process. Otherwise, this leaf is our random choice. We will distribute
the “random” sets R and B among the leaves of T by repeating this procedure
independently for every point of R∪B. It is obvious that this procedure results in
two random submultisets of the set of leaves of T . For an arbitrary vertex v ∈ T
let Rv and Bv, respectively, denote the cardinality of the set of red (respectively,
blue) points that when distributed reach their host leaves in T on a path from
the root through v. In particular, Rl is the number of red points assigned to the
leaf l, and Bl is the number of blue points assigned to l.

Next, we will estimate the number of transits, τr, at root r of a star (HST-)
tree T with b leaves L = {u1, u2, . . . , ub} when n red and n blue points are
distributed randomly among the elements of L. Let Xu = Ru − Bu for the leaf
u, then

∑
u∈L Xu = 0 and

τr =
∑
u∈L

max{Xu, 0} = −
∑
u∈L

min{Xu, 0}.

It follows that
∑

u∈L |Xu| = 2
∑

u∈L max{Xu, 0}, and hence

Eτr =
1
2

∑
u∈L

E|Xu|.
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Observe that Xu is the combination of 2n independent indicator random vari-
ables

Xu =
n∑

j=1

Ru(j)−
n∑

j=1

Bu(j),

where Ru(j) = 1 if and only if the jth red points reaches leaf u; similarly, we
define Bu(j). Hence, EXu = 0, and Lemma 1 can be applied. Setting β =
(1/b − 1/b2), it is an easy exercise to verify that DRu(j) = DBu(j) =

√
β for

every 1 ≤ j ≤ n, and hence DX =
√

2nβ. In summary, we have

Lemma 2. There exist positive constants c1 and c2 such that c1b
√

nβ ≤ Eτr ≤
c2b

√
nβ for a star T with root r on b leaves, when n red and n blue points are

distributed randomly and uniformly among its leaves.

We note that Lemma 2 proves Theorem 1 when δ = 1. We need a generaliza-
tion of the above, when

∑
u∈L(Ru −Bu) = ∆ 6= 0. In this case there will be |∆|

points which will remain unmatched in the star tree. The number of transits at
r is easily seen to be

τr =
1
2

(∑
u∈L

|Xu| − |∆|

)
,

thereby we get

Lemma 3. The expected number of transits at root r of a star with leaf set L is

Eτr =
1
2
E

(∑
u∈L

|Xu| − |
∑
u∈L

(Ru −Bu)|

)
.

Next, we present the proof of Theorem 1 for two randomly chosen n-element
submultisets R and B among the leaves of a balanced (b, δ, λ)-HST T . The
following simple combinatorial lemma is crucial for the proof.

Lemma 4. Let R,B and T be as above, and let k ≥ 1. Then Tk−1, the total
number of transits at level k − 1 is

Tk−1 =
∑

δ(v)=k−1

τv =
1
2

∑
δ(u)=k

|Xu| −
1
2

∑
δ(u′)=k−1

|Xu′ |.

Proof: The lemma follows easily by induction on the depth of the tree, we omit
the details. �

Now we are ready to prove our main result
Proof of Theorem 1: Since MT (R,B) is a finite sum (see Equation 1), we can
restate it as the sum of the expectation at each level of tree T , i.e.,

EMT (R,B) =
δ−1∑
k=0

∑
v:δ(v)=k

EτvΘ(Cλλk).
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Applying Lemma 4 we get

EMT (R,B) =
δ−1∑
k=0

Θ(Cλλk)E

 ∑
δ(u)=k

|Xu| −
∑

δ(u′)=k−1

|Xu′ |

 .

Therefore, it suffices to compute E|Xu| for every u ∈ T. Notice that we
are in a situation very similar to that of the star tree. At level k we have bk

vertices, hence the expected number of transits at level k is bkE|Xu|, where u is
an arbitrary vertex at level k. Let βk = 1

bk (1 − 1
bk ). Applying Lemma 1 we get

that the expected number of transits at level k is of order

Tk = bk−1
√

n(b
√

βk −
√

βk−1).

Simple calculation shows that

bk/2

√
nb

2
≤ Tk ≤ 2bk/2

√
nb.

This will allow us to conclude that

K1

√
bn

δ−1∑
k=0

(λ
√

b)k ≤ EMT (R,B) ≤ K2

√
bn

δ−1∑
k=0

(λ
√

b)k. (2)

If δ ≤ logb n then the above proves Theorem 1. So, assume that δ > logb n.
In this case there is at least one vertex w such that δ(w) = logb n. Then using
Observation 1 the expected transportation cost of the matching for the subtree
Tw rooted at w can be bounded as

MTw(Rw, Bw) ≤ min(|Rw|, |Bw|)S(δ(w), δ).

Therefore, we get the following upper-bound for the expected matching length
in Tw:

EMTw(Rw, Bw) ≤ Cλλlogb n
n∑

k=0

Pr(Rw = k)× k

= Cλλlogb n
n∑

k=0

k

k!

≤ eCλλlogb n.

Here we used the fact that if δ(w) = logb n then Rw has Poisson distribution.
Observing that there are bk vertices at level k, we have

EMT (R,B) ≤ K2

√
bn

logb n−1∑
k=0

(λ
√

b)k + eCλnλlogb n.
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Now we are in the position to estimate the precise upper-bound on EMT (R,B).
We will consider three distinct cases, depending on the value of

√
bλ:

Case I: If
√

bλ < 1 then λlogb n < n−1/2, and hence, neCλλlogb n < eCλ
√

n.
Since in this case

∑
k=0(λ

√
b)k is a constant, we get the desired upper-bound.

Case II: If
√

bλ = 1 we will have

logb n−1∑
k=0

(λ
√

b)k = logb n,

and λlogb n = n−1/2, which again gives us the upper-bound of the theorem.
Case III: If

√
bλ > 1 then

√
n

logb n−1∑
k=0

(λ
√

b)k =
√

n
(λ
√

b)logb n − 1
λ
√

b− 1
= O(nλlogb n),

which implies the desired upper-bound.
The lower bound of Theorem 1 follows trivially from the fact that if truncating
the lower-bound of the sum in (2) at the logb n-th term (which has only non-
negative elements) will result in the desired lower-bound. �

An important generalization emerges when the points of R and B are not
necessarily uniformly distributed among the leaves of T . Given any non-leaf
vertex of T we can distribute the red and blue points among its children according
to an arbitrary probability distribution. Conversely, it is easy to see that given
any probability distribution on the leaves one can find appropriate probabilities
for every non-leaf vertex of T in order to arrive at the desired distribution of the
red and blue points at the leaf-level. This gives rise to the following theorem:

Theorem 2. Let T = T (b, δ, λ) be a balanced HST, and P a probability distri-
bution on the leaves of T . Let R and B be two n-element submultisets of the
set of leaves of T chosen randomly, independently from P. Then there exist a
positive constant K3 (depending only on λ) such that

EMT (R,B) ≤ K3

√
bn

δ−1∑
k=0

(
√

bλ)k.

Sketch of the proof: The proof follows the same line of argument as The-
orem 1, except that in addition we use the following elementary inequality: if
a1, a2, . . . , at ∈ [0, 1],

∑
ai ≤ 1 then∑

1≤i≤t

√
ai(1− ai) ≤ t

√∑
ai/t(1−

∑
ai/t).

Applying the above inequality we can perform the following balancing algo-
rithm: first, we make the probability of choosing an arbitrary child of the root
equal to the reciprocal of the number of its children, that is, we choose uniformly
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among the children of the root. Then we repeat the above for all the subtrees
originating from these children. Proceeding top-down, at the end we achieve
that every leaf of the tree has the same chance to be chosen, moreover, we never
decreased the expected number of transitions at any intermediate vertex. This
implies the theorem. �

We also note the following consequence of Theorem 2, which follows by choos-
ing certain edge probabilities to be 0.

Corollary 1. If T ′ is an arbitrary subtree of a balanced (b, δ, λ)-HST T , then
the expected optimal transportation cost on T ′ is upper bounded by the expected
optimal transportation cost on T .

Observe that one cannot expect any reasonable general lower bound in case
of a non-uniform distribution or for subtrees: if the subtree T ′ is a path, the
transportation cost is zero.

3 The Case of Matching in [0, 1]d

As a first application of the theory we developed in Section 2 we reproduce
the results of [7] concerning the expected optimal transportation cost in the
d-dimensional unit cube. We remark that for finding nearest neighbors in the
Euclidean space Indyk and Thaper [6] used similar ideas for approximating the
d-dimensional unit cube with HSTs.

We begin by presenting the general idea for approximating [0, 1]d by a bal-
anced HST. The number of iterations of this proces will be equivalent to the
depth δ of the tree. In the jth step we construct a grid Gj with 2jd cells, the
edge length of a cell is 2−j . Gj is a refinement of Gj−1 for every j: we obtain the
cells of Gj by dividing each cell of Gj−1 into 2d subcells of equal volume. We
stop when j = δ. The tree is going to have 2jd vertices at level j, each vertex
corresponds to a cell of Gj . A vertex v at level j will be adjacent to a vertex w
at level j + 1 if and only if the cell of v in Gj contains the cell of w in Gj+1.
The weight of edge (v, w) will be 21−j . Clearly, the construction will result in a
balanced (2d, δ, 1/2)-HSTs. Moreover, the resulting HST will dominate the dis-
tances of the lattice points of Gδ: the Euclidean distance of any two lattice points
is at most as large as their distance in the HST. Finally, we will approximate a
set of points in [0, 1]d by discretizing the point set: for every point we assign it
to the closest available lattice point.

We will first consider the case of the unit interval, i.e., d = 1:

Proposition 1. Given n red points and n blue points distributed uniformly at
random on [0, 1], the expected weight of an optimal matching is O(

√
n).

Proof: We approximate the [0, 1] interval with an equidistant set of O(n2) lat-
tice points, as is described above. We will approximate this metric space by
a balanced (2, 2 log n, 1/2)-HST T , whose leaves are the lattice points. The dis-
cretization overhead associated with approximating the red and blue points with
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the leaves is no more than the cost of moving each point to the nearest leaf, i.e.,
2n · 1/(2n) = 1. Applying Theorem 1 with parameters b = 2 and λ = 1/2, will
result in the desired bound. �

In the plane our HST technique offers loose results. Ajtai et al. [1] showed
that the expected weight of the optimal matching in [0, 1]2 is Θ(

√
n log n). In

Proposition 2, we use Theorem 1 to obtain the bound of O(
√

n log n).

Proposition 2. Let B = {bi}n
i=1 and R = {ri}n

i=1 be sets of blue and red points
distributed uniformly at random in [0, 1]2 and let Mn be the expected weight of
an optimal matching of B against R. Then EMn = O(

√
n log n).

Proof: As discussed in the general process, we construct the 2-dimensional grid,
then the balanced (4, 1/2, 2 log4 n)-HST T . The discretization overhead associ-
ated with approximating the red and blue points with the leaves of T is again
negligible for δ ≥ 2 log4 n. Applying Theorem 1 with parameters b = 4 and
λ = 1/2, we get the upper bound of O(

√
n log n). �

We now jump to real dimension 3 and above, showing (Proposition 3) that
expected weight of optimal matching is O(n(d−1)/d),

Proposition 3. Let B = {bi}n
i=1 and R = {ri}n

i=1 be sets of blue and red points
distributed uniformly at random in [0, 1]d, d ≥ 3, and let Mn be the expected
weight of an optimal matching of B against R. Then EMn = O(n(d−1)/d).

Proof: As before, we construct a sufficiently dense grid. Its lattice points will
be used to aproximate the real vectors of [0, 1]d. The finite metric space of the
lattice points will be dominated by a balanced HST T = T (2d, 3 log2d n, 1/2).
We are in the position to apply Theorem 1 with parameters b = 2d and λ = 1/2,
and get the bound of O(n(d−1)/d). �

Observe, that for d 6= 2 our seemingly crude approximations by HSTs result
in tight bounds up to a constant factor (see e.g., [1]).

4 Optimal Matching for Weighted Point Sets

In this section we will estimate the expected weight of the optimal weighted
matching for point sets R = {r1, ..., rn} and B = {b1, ..., bn} distributed uni-
formly and at random among the leaves of an HST T . We assume that ev-
ery leaf u of T is associated with a randomly and independently chosen mass
m(u) ∈ [0, 1]. Then the total transportation cost is defined to be

MT,m(R,B) = minσ

 ∑
1≤i≤n

dT (ri, bσ(i)) min{m(ri),m(bσ(i))}


We will use the following folklore result: if x and y are chosen randomly,

independently from [0, 1], then their expected distance is E|x− y| = 1/3.
Then we have the following
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Theorem 3. Let T = T (b, δ, λ) be a balanced HST with set of leaves L, and R
and B two randomly chosen n-element submultisets of L. Let m : L → [0, 1] be
a function, its values are drawn randomly and independently, and define h =
min (δ, logb n). Then there exist positive constants K4 and K5 such that

K4

√
bn

h∑
k=1

(
√

bλ)k ≤ EMT,m(R,B) ≤ K5

√
bn

h∑
k=1

(
√

bλ)k.

Sketch of the proof: The proof follows the same line of arguments of Theo-
rem 1, except that when computing the expected transportation cost, one has
to multiply the number of transitions not only by the edge weight of T but the
expected mass which is to be moved. Since this latter number is 1/3 on the
average and was chosen independently from the distribution of the points, we
conclude the theorem. �

5 The Case of Finite Approximation of Fractals

The machinery developed in Section 2 is general enough to consider matching on
a finite approximation of a self-similar set. The notion of a finite approximation
of fractals is best explained through an example. Recall that, the Cantor set is
formed by repeatedly removing the open middle third of each line segment in a
set of line segments, starting with [0, 1]. If we stop this process after α iterations,
we will refer to the resulting set as an α-approximation of the Cantor set.

Next, consider sets R = {r1, ..., rn} and B = {b1, ..., bn} of red and blue
points respectively, distributed uniformly at random on the δ-approximation of
the Cantor set, with δ ≥ 2 log n. We are interested in the expected weight of
an optimal matching between R and B. We can think of the δ-approximation
of the Cantor set as being embedded into a balanced (2, δ, 1/3)-HST T over
the unit interval. We have b = 2 since at every step we double the number of
subintervals, and λ = 1/3, because the length of these subintervals shrink by a
factor of 1/3. The discretization overhead associated with approximating the red
and blue points with the leaves is no more than the cost of moving each point
to the nearest leaf: ≤ 2n · 1/(2n) = 1. We can apply Theorem 1 with parameters
b = 2 and λ = 1/3, and conclude that EMT (R,B) = O(

√
n).

The tree metric of T (2, δ, 1/3) dominates the Euclidean metric on the Can-
tor set. Therefore, the expected optimal matching weight of n blue and n red
points distributed randomly on the Cantor set is no heavier than the same points
distributed on [0, 1] itself. We have proved the following

Theorem 4. Let R = {r1, ..., rn} and B = {b1, ..., bn} be sets of red and blue
points distributed uniformly and at random in the δ-approximation of the Cantor
set process with δ ≥ 2 log n. Then the expected weight of an optimal matching
between R and B is O(

√
n).

Next, we consider the log3 n-approximation of a Sierpinski triangle. Here
a balanced HST with branching factor b = 3, λ = 1/2, and depth δ (δ ≥
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2 log3 n) dominates the Euclidean metric, and provides a good approximation
after discretization. A similar argument to Cantor set will allow us to prove the
following

Theorem 5. Let R = {r1, ..., rn} and B = {b1, ..., bn} be sets of red and blue
points distributed uniformly and at random in the interior of the δ-approximation
of a Sierpinski triangle for δ large enough. Then the expected weight of an optimal
matching between R and B is O(

√
n).

Note the lack of the log n factor in the upper-bound. The expected optimal
matching weight in a triangle would be O(

√
n log n) by the result of Ajtai et al.

As a final example for the application of Theorem 1 on fractals, we will
consider the Menger sponge. A Menger sponge results from recursively dividing
the unit cube into 33 = 27 sub-cubes, removing the middle cube on each face
and the cube in the center, then recursing on each sub-cube. To find an upper
bound on the expected weight of matchings on the Menger sponge, consider
a balanced HST T with λ = 1/3 (the diameter decreases by a factor of 1/3
at every recursion step), branching factor b = 20, and depth δ ≥ 3 log20 n (this
depth is sufficiently large to provide good approximation in the discretization). T
is dominating, therefore, an upper bound on the expected weight of the optimal
matching is stated in the following

Theorem 6. Let R = {r1, ..., rn} and B = {b1, ..., bn} be sets of red and blue
points distributed uniformly and at random in the interior of the 3 log20 n- ap-
proximation of a Menger sponge. Then the expected weight of an optimal match-
ing between R and B is O(n1−log20 3).

6 Conclusions

In this paper we presented a tight bound on the expected weight of transporta-
tion cost for matching of points on balanced HSTs. We extended our upper-
bounds for subtrees of balanced HSTs, and for non-uniform distributions. Using
low-distortion embedding of Rd to HSTs, we reproduce the results concerning
the expected optimal transportation cost in the [0, 1]d, except for the case of
d = 2 for which we have a discrepancy of a factor of

√
log n. We also proved

upper-bounds on several sets for which showing reasonable matching results
would previously have been intractable. By existing approximation theorems for
finite metric spaces we could give bounds on the expected transportation cost
in any finite metric space. We plan to consider the analogues of other related
matching problems, for example up-right matchings, etc.
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