
A randomized algorithm for the on-line weighted bipartite

matching problem ∗

Béla Csaba† András Pluhár‡

Preliminary Version

Abstract

We study the on-line minimum weighted bipartite matching problem in arbi-
trary metric spaces. Here n, not necessary disjoint, points of a metric space M
are given, and to be matched on-line with n points of M revealed one by one.
The cost of a matching is the sum of the distances of the matched points, and
the goal is to find or approximate its minimum. The competitive ratio of the
deterministic problem is known to be Θ(n), see [7, 11]. It was conjectured in [8]
that a randomized algorithm may perform better against an oblivious adversary,
namely with an expected competitive ratio Θ(log n). We prove a little weaker
result by showing a o(log3 n) upper bound on the expected competitive ratio. As
an application the same upper bound holds for the notoriously hard fire station
problem, where M is the real line, see [6, 12].

1 Introduction

Finding a minimum weight matching in a weighted graph G is a well studied problem
in graph theory. Much less is known about its on-line version; here we briefly introduce
the set-up and the most important results. For more thorough references see [7, 8,
11, 12].

Let G be an arbitrary weighted graph, and two players, A and B, we consider the
following on-line matching game on G: First, A picks the multiset S = {s1, . . . , sn} of
V (G), these are the servers. Then, one by one, A discloses the requests, that is again
a multiset R = {r1, . . . , rn} of V (G). When an element of R is requested, B has to
match it with some unmatched element from S, and B wishes to minimize the cost
of the resulted matching.

It is clear that usually B cannot reach the offline minimum, and the competitive
ratio, that is the online cost/offline optimum is infinite if one has no further assump-
tion on G, see Kalyanasundaram and Pruhs, and Khuller et al in [7, 11]. It was
assumed in both papers that the weights are nonnegative, and satisfy the triangle
inequality, so one may refer to the graph G as a metric space M = (X, d) with under-
lying set X and distance function d, while the multisets S and R are repeated points

∗The authors were partially supported by OTKA grants T034475 and T049398.
†Bolyai Institute, University of Szeged, email: bcsaba@math.u-szeged.hu
‡Department of Computer Science, University of Szeged, email: pluhar@inf.u-szeged.hu

1

of M. Then the best competitive ratio is exactly 2k − 1. This is achieved for K1,k,
the so-called star metric space, where the weights are all ones.

The randomized setup for the above on-line game is the following: first, A has to
construct S and R in advance and disclose S. Then A gives the points of R, one by
one, but this time he has no right to make any changes in the requests, no matter
how B is playing. That is, not only R but the ordering in which the points of it
are requested are determined in advance. In this setup B has the advantage of using
randomness when deciding which point of S to be matched with the newly requested
point. Let opt(ρ) be the total weight of the optimum matching for a sequence of
requests ρ. We say that B’s randomized strategy is c–competitive if for every request
sequence ρ

E[B(ρ)] ≤ copt(ρ),

where E[B(ρ)] denotes the expected total weight of the matching B finds for ρ. Find-
ing good randomized algorithms for the on-line minimum matching problem was first
addressed by Kalyanasundaram and Pruhs in [8]. They stated that optimal competi-
tive ratio for a star metric space is 2Hk−1, and conjectured an O(log n) upper bound
on the best competitive ratio for arbitray metric spaces. Here and later n stands for
the number of servers (or requests).

Our goal is to show the following theorem.

Theorem 1 There is a randomized on-line weighted matching algorithm for arbitrary
metric spaces which is O(log3 n/ log log n)–competitive.

The strategy of the proof is the following. First we show that it is enough to
consider the case when the metric space M is a finite space, indeed X is the set of
servers. This will cost only a constant factor of at most 3. Then we develop a ran-
domized weighted greedy matching algorithm, shortly RWGM that has competitive
ratio O(log n) if M is of special structure. Namely, the points of M are the leaves
of a hierarchically well separated tree, or HST. Here the distance d(x, y) is defined
by adding up the weights on the edges of the unique paths connecting x and y, and
the edge weights are growing exponentially by the levels of the tree. In our case the
smallest weights are of size O(log n). In order to use this special case, we recall earlier
results on probabilistically approximating arbitrary metric spaces by such trees next.
This approximation involves a O(log2 n/ log log n) factor in the competitive ratio, so
finally we arrive to an algorithm of competitive ratio O(log3 n/ log log n).

2 Discretizing the game

Assume, that we have an on-line matching algorithm MA, that is c-competitive in
the possibly infinite metric space M in case R ⊂ S (multiplicities allowed). In this
subsection we will show, that with a small loss in the competitive factor MA can
easily be extended to an on-line matching algorithm MAI which works for arbitrary
S, R ⊂ M. The extension of the algorithm is based on a transformation of R which
we call discretization.

Given S assume that the elements of R appear after each other. For ri ∈ R we
assign a new point g(ri) ∈ S. We determine g(ri) in a greedy fashion: if d(s0, ri) =

2

mins∈S d(s, ri), then g(ri) = s0 (breaking ties arbitrarily). Clearly, we can find g(ri)
on-line. For s ∈ S denote rms the number of requests which are assigned to s by g.
The new multiset of requests is called R′, in which every s ∈ S appears rms times.
R′ is the discretized version of R.

As above, assume that MA is a c-competitive on-line algorithm in case R ⊂
S. Clearly, after the discretization we arrive to an R′ such that R′ ⊂ S. We give
another on-line algorithm MAI in the following way: we play another, auxiliary on-
line matching game on M by MA, and use MA’s decisions to determine which server
MAI would choose to serve a request. Suppose that a request r ∈ R appears. We
determine g(r), and serve this request by MA. If MA chooses s ∈ S to serve g(r),
then MAI will serve r by s.

Lemma 2 If MA is c-competitive, then MAI is (2c + 1)-competitive for arbitrary
S, R ⊂M.

Proof: We start with some more notation. For a matching algorithm A denote
A(ri) the distance of ri and s if A serves this request by s. Denote OM the optimal
cost matching between S and R, and let opt = cost(OM). OM induces a matching
OM ′ (not necessarily of minimum cost) between S and R′ in the obvious way: if
(ri, sj) ∈ OM , then (g(ri), sj) ∈ OM ′. Finally, let us denote by opt′ the total cost of
the minimum matching between S and R′.

We have a trivial lower bound on the optimum:
∑n

i=1 d(ri, g(ri)) ≤ opt. By the
triangle inequality MAI(ri) ≤ MA(g(ri)) + d(g(ri), ri), hence, MAI(ri) ≤ MA(ri) +
opt(ri). Again by the triangle inequality: cost(OM ′(ri)) ≤ cost(OM(ri))+d(g(ri), ri).
Since cost(OM ′(ri)) ≥ opt′(ri), we have that opt′(ri) ≤ cost(OM(ri)) + d(g(ri), ri).
Summing up for every ri we get the inequality opt′ ≤ 2opt.

MA is a c-competitive on-line algorithm by assumption, i. e.,
∑n

i=1 MA(ri) ≤
copt′. We know, that MAI(ri) ≤ MA(ri) + opt(ri), therefore,

∑n
i=1 MAI(ri) ≤

copt′ + opt ≤ (2c + 1)opt. 2

Remark. Lemma 2 gives an alternative proof of the theorem of Kalyanasundaram
and Pruhs [7], that the competitive ratio of the greedy algorithm is at most 2n − 1.
Indeed, let MA and MAI be the greedy algorithm for n − 1 and n element input,
respectively, and use induction.

3 The algorithm RWGM

Our algorithm, the randomized weighted greedy matching algorithm, or RWGM
algorithm is first developed for special metric spaces. Assume that the metric space
M = (X, d) is defined by a weighted tree T . The set of the leaves of T is L ⊂ X, and
the distance d(x, y) for the leaves x, y is the sum of the weights on the (unique) path
connecting x and y.

Let λ ≥ 1 be a real number.

Definition 1 A λ–hierarchically well separated tree (λ–HST) is a rooted weighted tree
with the following properties:

3

• the edge weight from any node to each of its children is the same,

• the edge weights along any path from the root to a leaf are decreasing by a factor
of at least λ.

We define the RWGM algorithm first, then show it in steps that it is O(log n)–
competitive on a metric space determined by a O(log n)–HST.

3.1 RWGM - a randomized weighted matching algorithm for hier-
archically well separated trees

Let us consider a log n-HST, denote it by T = T (V,E, r), where V is the vertex set, E
is the edge set of T , and r is the root. When playing the matching game only leaves
of T will be matched to leaves of T . We denote the set of leaves by L. We will need
the notion of a subtree: given v ∈ V , the vertex u ∈ V belongs to the subtree Tv if
the only path from r to u contains v. Clearly, T = Tr, and if w ∈ L, then Tw contains
only the leaf w. We have the relation “≤” among the subtrees containing a certain
leaf w: Tu ≤ Tu′ if |Tu| ≤ |Tu′ |, and w ∈ Tu, w ∈ Tu′ .

In order to get an easier formulation of RWGM, we assume that if u is a non-leaf
vertex of a log n-HST, then all of its children are non-leaves or all are leaves. This
can be achieved by inserting “dummy” vertices in the tree. We can also assume that
the edge weights on a level are equal. (See also in [5].)

During the course of satisfaction of the requests, certain vertices will be painted
green, and leaves may have multiplicities. The colors and multiplicities of the vertices
may change in time. We try to follow the greedy algorithm, and break ties by random
selection by levels.

Formal description of RWGM

In the beginning the adversary A picks leaves of T with multiplicity, corresponding
to the servers S = s1, . . . , sn. (That is if a leaf x is provided m times as a server then
x has multiplicity m.)

We color a vertex u of T green if Tu contains a leaf with positive multiplicity, and
will call such subtrees green subtrees.

Then A will give us the requests of R one-by-one, denote them by r1, . . . , rn.
Set i = 1.

• Step 1. The new request is ri. B looks for the smallest subtree Tu which contains
ri, and u is green.

• Step 2. Pick a leaf of Tu among the leaves of positive multiplicity by the algo-
rithm Pick-a-leaf with input u. This leaf is x, let si (perhaps after reordering)
be an unused server corresponding to it, and si is the server which is matched
to ri. Decrease the multiplicity of x by one.

• Step 3. For every green w ∈ V check whether Tw contains a leaf with positive
multiplicity. If not, erase w’s color.

4

• Step 4. If i ≤ n− 1, then set i = i + 1, then go to Step 1.

• Step 5. If i = n, then STOP.

Algorithm Pick-a-leaf(u)

• Step 1. If the children of u are leaves, then pick randomly, uniformly a leaf
among those of positive multiplicity. This is the leaf we have chosen. STOP.

• Step 2. If the children of u are not leaves, then denote u1, u2, . . . , ut the green
children of u. Pick one randomly, uniformly among them, say, it is ui. Apply
Pick-a-leaf(ui).

Theorem 3 The algorithm RWGM is O(log n)–competitive on a metric space de-
termined by a O(log n)–HST.

3.2 Proof of Theorem 3

We prove Theorem 3 in steps. First we consider the case of uniform metric space
where the multiplicities are all ones, but the sizes of S and R may not be equal.
Then we discuss the case of before with arbitrary multiplicities. Finally we prove the
general statement for HST’s; here the previous cases provide a basis for induction
arguments.

3.2.1 Uniform case

Assume that U is the uniform metric space on u points. Let S = {s1, . . . , sq} and
R = {r1, . . . , rt}. We also assume that the points of R are requested in increasing
order, first r1, then r2, etc., and finally rt.

Definition 2 We say that si ∈ S has a pair if si = rj for some rj ∈ R. Similarly,
rj ∈ R has a pair if si = rj for some si ∈ S.

We will give an ordering of the points of S using the ordering on R. Firstly if
there exist rj and rl such that si is the pair of rj and sk is the pair of rl where j < l,
then si < sk. If si has a pair and sk has no pair, then si < sk. Finally, we fix an
arbitrary ordering among those points of S which has no pair in R. Notice, that we
can extend the orderings of S and R into an ordering “<” of S ∪ R. It is done by
such that if ri is the pair of sj then ri < sj , and for rk > ri we have sj < rk.

Given ri ∈ R we associate a weight w(ri) with it. Let us assume that ri has no
pair, then

vi = |{sj : sj > ri}| − |{rk : rk < ri and rk has no pair}|.

If ri has a pair, then let vi = 0. Then we define w(ri) = Hvi (we let Hf = 0 if
f ≤ 0).

We need the following useful lemma.

5

Lemma 4 For n ≥ 1, Hn = 1 + Hn−1+...+H1

n .

Proof: Trivial computation. 2

Lemma 5 Let δ = |R − S|. Then in the case above the expected cost of RWGM is
at most Hq + Hq−1 + . . . + Hq−δ+1.

Proof: We proceed by induction on q. Notice that we may assume that r1 has no pair,
otherwise we can immediately apply the induction hypotheses. Now r1 is matched to
some randomly chosen sj ∈ S. One checks that the weights of the elements of R\{r1}
are invariant if sj had no pair. If sj had the pair ri then the expected new weight of
ri is at most (Hq−1 + . . .+H1)/q. Now by induction one can see that for the resulting
smaller subproblem the random algorithm has expected cost Hq−1 + . . . + Hq−δ+1.
Matching of r1 to sj has costed one, hence, the expected cost of the algorithm is at
most

1 +
Hq−1 + . . . + H1

q
+ Hq−1 + . . . + Hq−δ+1 = Hq + Hq−1 + . . . + Hq−δ+1,

by Lemma 4. 2

3.2.2 The case of multiplicities

We want to handle the case when both the servers and the requests have various
multiplicities. Note, that a server with zero multiplicity simply means that there
is no server at that point. If U = x1, . . . , xu, then let ms(xi) and mr(xj) are the
multiplicities of servers and requests in point xi and xj , respectively. Let diff(xi) =
max{0,mr(xi)−ms(xi)}, δ =

∑u
i=1 diff(xi).

Lemma 6 The expected cost of RWGM is at most Hq + Hq−1 + . . . + Hq−δ+1.

Proof: Fix a maximum matching between servers at requests which belong to the
same point. Pretend the equal servers, requests to be different if they are not matched,
and apply Lemma 5. 2

Remark. Note the following: if q ≥ t, then RWGM is a O(log n)-competitive algo-
rithm for uniform metric spaces, even if multiplicities are allowed.

3.2.3 General HST trees

We proceed by induction on the height of the HST tree. First of all we need a more
technical form of the hypotheses and some definitions.

Definition 3 Given s ∈ S and r ∈ R, which are matched in some matching M ,
consider the path connecting them in the HST tree. Call the point at the highest level
of this path the turning point of s and r, shortly tM (s, r). For a point u of the tree let
τM (u) be the number of (s, r) matched pairs in M for which u is a turning point.

6

Given a point u, h(u) will denote the height of u. Observe that τM (u) is the same
for any optimal matching M , hence we suppress subscript M . Note, that τ(u) is
obvious to compute. Moreover, one can express the optimal cost:

opt = 2
∑
u

τ(u)
h(u)∑
i=1

(log n)i.

For trees of height less than d our induction hypotheses is the following inequality:

E[RWGM] ≤ 4
∑

u:h(u)>1

τ(u)log n

h(u)∑
i=1

(log n)i + 2
∑

u:h(u)=1

τ(u) log2 n. (1)

For trees of height one the statement follows from Lemma 6 and its remark.
Consider a tree T of height d. We make a new tree T ′ and a new instance S′ and

R′. T ′ comes from T by pruning the leaves, and for a u ∈ T , h(u) = 1 we associate the
server and request multiplicities that of the sum of the server and request multiplicities
of its descendants in T .

One can cut the optimal cost for S, R and T in two parts. The first part is the
optimal cost of S′, R′ and T ′, which we call opt′. The second part is the cost incurring
on T \T ′, this is opt∗. Here we have to take care of cases when the number of requests
are greater than the number of servers in a subtree Tu (h(u) = 1). Then we consider
the partial optimal matching using that servers. Let us call the cost of this partial
matching, opt∗u the optimal for this case. Analogously, we can define τ ′(u) if h(u) > 1
and τ∗(u) for h(u) = 1.

Clearly, opt∗ =
∑

u:h(u)=1 opt∗u, and one concludes that opt = opt′ + opt∗. On the

same way, opt∗ =
∑

u:h(u)=1 2τ∗u log n, and opt′ = 2
∑

u:h(u)>1

∑h(u)
i=2 (log n)iτ ′u.

One checks that (1) and the above expressions for the optimal cost imply Theo-
rem 3. Hence if we prove (1), we are ready.

Unfortunately, the on-line cost on T is not the sum of the on-line costs of the parts
if we handle the parts separately, but they are closely related.

For this reason we have to take care of the costs occurring in T \ T ′ when two
points are matched which do not belong to the same height-one subtree. This extra
cost comes from two sources. Consider a subtree Tu of height one in which the number
of requests, t exceeds the number of servers, q in the beginning. In this case even the
optimal matching algorithm have to find t− q servers outside of Tu. Let us denote by
RWGMu the cost of RWGM inside Tu.

Lemma 7 2(opt∗u + (t− q) log n) ≥ E[RWGMu] + (t− q) log n.

Proof: Throughout the proof we will assume, that opt∗u = 0. There are two cases
to consider. When t − q ≥ q, then RWGMu ≤ q trivially. Then the statement
translates to the true inequality 2(t − q) log n ≥ q + (t − q) log n. If t − q < q, then
E[RWGMu] ≤ (t − q) log q by Lemma 6. Now the statement turns to the inequality
2(t− q) log n ≥ (t− q) log q + (t− q) log n. 2

The other kind of extra cost is caused when a request r from outside is matched
to a server s of Tu. We use the notation of Lemma 6.

7

Lemma 8 E[RWGMu] ≤
∑δ

i=0 Hq−i.

Proof: The proof follows the same line of arguments as Lemma 6, the details are
omitted. 2

In order to finish the proof we put together the pieces. E[RWGM] is less than the
expected on-line cost on T ′ and on T \T ′ and the extra costs controlled by Lemmas 7
and 8. Using the induction hypotheses it develops to

E[RWGM] ≤ 4
∑

u:h(u)>2

τ(u)log n

h(u)∑
i=2

(log n)i+

2
∑

u:h(u)=2

τ(u)(log2 n + log n) + 2
∑

u:h(u)=2

τ(u)(log2 n + log n)+

2
∑

u:h(u)=1

τ(u) log n =

4
∑

u:h(u)>1

τ(u)log n

h(u)∑
i=1

(log n)i + 2
∑

u:h(u)=1

τ(u) log2 n.

Here the first and second terms are the cost spent on T ′ by the induction hypothe-
ses. The third and fourth are the cost on T \ T ′ plus the extra costs, since Lemmas 7
and 8 relate the cost on T \ T ′ plus extra cost to the optimal cost on T \ T ′, and the
latter one is expressed in terms of function τ . 2

4 Approximating by hierarchically well separated trees

The idea, the first results and applications of hierarchically well separated trees are
due to Bartal, see in [2, 3]. It generalized the earlier works of Karp [10] and Alon et
al [1] in which they approximated the distances in certain graphs by using randomly
selected spanning trees.

Definition 4 A metric space M = (X, dM) dominates a metric space N = (X, dN)
if for every x, y ∈ X we have dN (x, y) ≤ dM (x, y).

Definition 5 A set of metric spaces S over X α–probabilistically approximates a
metric space M over X, if every metric space in S dominates M , and there exists
a probability distribution over metric spaces N ∈ S such that for every x, y ∈ X we
have E[dN (x, y)] ≤ αdM (x, y).

The proof of Theorem 1 is based on the following theorem.

Theorem 9 [5, 4] Every weighted graph on n vertices can be α–probabilistically ap-
proximated by a set of λ–HSTs, where α = O(λ log n/ log λ).

8

As it was noted by Bartal [2] having an approximation of a metric spaceM by HST
trees and a good algorithm for such trees always results in good randomized algorithm
in that space. So, what we do is the following. First, preprocessing: given the set of
servers S, these points span a sub-metric space MS ⊂ M. Clearly, |MS | ≤ n, since
S is a multiset of n elements. We approximate MS by a set of O(log n)-HSTs. By
Fakcharoenphol et al. [5] there is a probability distribution P on these trees such that
the expected distortion is O(log2 n/ log log n). Choose one tree at random according to
P. This finishes the preprocessing. Whenever a request r ∈ R appears, we determine
g(r) (see Section 2), and use RWGM with this new request g(r). We proved in
Section 3, that RWGM is a O(log n)-competitive algorithm in this case. Applying
Lemma 2 and Theorem 9, we get that RWGM is O(log3 n/ log log n) competitive for
M. This proves Theorem 1. 2

Acknowledgment. We thank Endre Szemerédi and Kirk Pruhs for the fruitful
discussions.

References

[1] N. Alon, R. M. Karp, D. Peleg, D. West, A graph–theoretic game and its ap-
plication to the k-server problem, SIAM J. Comput. 24 (1) (1995) 78–100.

[2] Y. Bartal, Probabilistic approximations of metric spaces and its algorithmic
applications, in: IEEE Symposium on Foundations of Computer Science, 1996,
pp. 184–193.

[3] Y. Bartal, On approximating arbitrary metrics by tree metrics, in: STOC, 1998.

[4] Y. Bartal, M. Charikar and R. Raz, Approximating min-sum k-clustering in
metric spaces, Thirty-Third Annual ACM Symposium on Theory of Computing,
pages 11?20, 2001.

[5] J. Fakcharoenphol, S. Rao and K. Talwar, A tight bound on approximating
arbitrary metrics by tree metrics, J. Comput. System Sci. 69 (2004), no. 3,
485–497.

[6] B. Fuchs, W. Hochstättler, and W. Kern. Online matching on a line, In Hajo
Broersma, Ulrich Faigle, Johann Hurink, Stefan Pickl, and Gerhard Woeginger,
editors, Electronic Notes in Discrete Mathematics, volume 13. Elsevier, 2003.

[7] B. Kalyanasundaram and K. Pruhs, Online weighted matching, Journal of Al-
gorithms, 14(3) (1993) 478–488.

[8] B. Kalyanasundaram, K. Pruhs, On-line network optimization problems, in On-
line algorithms: The State of the Art, eds. A. Fiat and G. Woeginger, pages
268–280 Lecture Notes in Comput. Sci., 1442, Springer, Berlin, (1998)

[9] B. Kalyanasundaram, K. Pruhs, The online transportation problem, SIAM J.
Discrete Math. 13 (2000), no. 3, 370–383.

9

[10] R. Karp, A 2k-competitive algorithm for the circle. Manuscript, August 1989.

[11] S. Khuller, S. G. Mitchell, V. V. Vazirani, On-line algorithms for weighted
bipartite matching and stable marriages, Theoret. Comput. Sci. 127 (1994), no.
2, 255–267.

[12] E. Koutsoupias, A. Nanavati, The online matching problem on a line, Approx-
imation and online algorithms, 179–191, Lecture Notes in Comput. Sci., 2909,
Springer, Berlin, 2004.

[13] Y. T. Tsai, C. Y. Tang, Y. Y. Chen, Average performance of a greedy algorithm
for the on-line minimum matching problem on Euclidean space, Inform. Process.
Lett. 51 (1994), no. 6, 275–282.

10

