
A Randomized On–line Algorithm for the

k–Server Problem on a Line ?

Béla Csaba??1 and Sachin Lodha2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany.
2 Tata Research Development and Design Center, Pune, India.

{csaba@mpi-sb.mpg.de, sachinl@pune.tcs.co.in}

Abstract. The k–server problem is one of the most important and well
studied problems in the area of online computation. Its importance stems
from the fact that it models many practical problems like multi-level
memory paging encountered in operating systems, weighted caching used
in the management of web caches, head motion planning of multi-headed
disks, robot motion planning, etc. In this paper, we investigate its ran-
domized version for which Θ(logk)–competitiveness is conjectured, and
yet hardly any < k competitive algorithms are known, even for the sim-
plest of metric spaces of O(k) size.

We present a O(n
2

3 log n)–competitive randomized k–server algorithm
against an oblivious adversary when the underlying metric space is given
by n equally spaced points on a line (L(n)). This algorithm is < k com-
petitive for n = k + o((k

log k
)3/2). Thus it provides a super–linear bound

for n with o(k)–competitiveness for the first time, and improves the best
results known so far for the range n − k ∈ [o(k), o((k

log k
)3/2)] on L(n).

1 Introduction

The k–server problem was introduced by Manasse, McGeoch and Sleator in [25].
It is defined as follows: We are given k mobile servers that occupy k points of
a metric space M. We assume that M is finite, |M| = n > k, and k > 1. At
each time step a request, a point of M, appears. An algorithm A must serve this
request by moving one of its servers to the requested point (if that is vacant).
A is charged for a cost which is equal to the distance moved by the server. The
algorithm A is on–line if it serves the request without knowing what the future
requests will be. An obvious goal is to design an on–line algorithm A that would
serve any request sequence ρ most economically.

The standard way of measuring the performance of an on–line algorithm is
competitive analysis [11, 18]. This measure first appeared in the seminal paper of

? Part of this work was done when both the authors were graduate students at Rutgers
University, NJ, USA. The research was also partially supported by DIMACS, see [17].

?? Research supported in part by the IST Programme of the EU under contract number
IST-1999-14186 (ALCOM-FT), and by OTKA T034475.

Sleator and Tarjan [28] for the paging problem. Its adaptation for the k–server
problem gives following definition of competitiveness [25].

Definition 1. An on–line algorithm A for the k–server problem is c–competitive
if for any initial configuration C0 and any request sequence ρ,

A(ρ) ≤ c · opt(ρ) + I(C0),

where A(ρ) is the cost incurred by A on ρ, opt(ρ) denotes the optimal off–line
cost of servicing ρ starting at C0, and I is a non-negative function depending
only on the initial configuration.

Manasse et al. [25] proved that the competitive ratio of any deterministic
on–line k–server algorithm is at least k. They formulated the famous k–server
conjecture: There exists a deterministic k–competitive on–line algorithm for ev-
ery metric space M. This conjecture is still unsettled, the best upper bound for
an arbitrary metric space being 2k−1 for WORK FUNCTION algorithm due to
Koutsoupias and Papadimitriou [23]. However k–competitive on–line algorithms
are known for some special cases. Examples are line [14], tree metric spaces [15],
any metric space with n = k + 1 [25, 16] or n = k + 2 [24, 6], manhattan plane
with k = 3 [7], etc.

Compared to its deterministic counterpart, the randomized k–server prob-
lem has yielded very little, especially against oblivious adversaries [11, pp. 182].
In the oblivious adversary model [8], there is an adversary who, knowing the
randomized algorithm R, but without the knowledge of its random choices, con-
structs the request sequence ρ, and pays optimally for it (i.e. opt(ρ)). In this
model, the randomized competitive ratio is defined as follows.

Definition 2. A randomized on–line algorithm R for the k–server problem is
c–competitive against an oblivious adversary if for any initial configuration C0

and any request sequence ρ,

E[R(ρ)] ≤ c · opt(ρ) + I(C0), (1)

where E[R(ρ)] denotes the expected cost incurred by R on ρ, opt(ρ) denotes
the optimal off–line cost of servicing ρ starting at C0, and I is a non-negative
function depending only on the initial configuration.

Less famous, but equally frustrating, randomized k–server conjecture states
that there is a O(log k)–competitive randomized k–server algorithm against an
oblivious adversary for every metric space. Yet after substantial efforts, only
few results are known, and the best ones are possible for some special metric
spaces alone. For the uniform metric space, matching upper and lower bounds of
Hk = 1+ 1

2 + · · ·+ 1
k ≈ log k are known. McGeoch and Sleator [26] presented the

upper bound with highly sophisticated PARTITION algorithm, and Fiat et al.
[19] provided the lower bound. For the case of 2 servers on an isosceles triangle,
Karlin et al. [22] showed matching upper and lower bounds of e

e−1 . Blum et

2

al. [9] studied (among others) the case of p(n)–unbalanced metric spaces, and
proved Θ(log k) competitiveness for the same. Recently, using unfair metrical
task systems technique, Seiden [27] has presented a O(polylog(k))–competitive
randomized algorithm for metric spaces which can be separated into a small
number of widely separated sub-spaces.

Otherwise situation is not very pleasant, and we do not even know random-
ized algorithms with competitive ratio < k for very simple metric spaces, e.g.
line! All the best known results have been obtained as corollaries of results for the
metric spaces ([1, 2]) and the metrical task system (MTS) problem ([12, 1, 3, 9,
20]). Translating these results for the k–server problem, the smallest randomized
competitive ratio for general metric spaces is min(2k−1, O(log

(

n
k

)

·polylog(n)))
due to Fiat and Mendel [20]. Note that it has a large divide with the best known
lower bound of Ω(log k

log2 log k
) given by Bartal, Bollobás and Mendel in [4], and

even for n = O(k), this competitive ratio is no better than O(k).

In this paper we investigate the randomized k–server problem for the special
case when the underlying metric space is given by n equally spaced points on a
line, the metric space we denote by L(n). A line (or L(n)) as the metric space
has received special attention in literature for its simplicity and importance in
robot motion planning problem [10, 9], motion planning of 2-headed disks [13],
etc. In fact, Blum et al. [9] prove the lower bound of log k

log log k on the randomized

competitive ratio for L(n) which is pretty close to conjectured log k bound, and
yet hardly any < k competitive randomized algorithms are known for line (or
L(n)) even after restricting k. The best known results are as follows: For the
case when the underlying metric space is the real line and k = 2, Bartal et al.
[5] present an algorithm with competitive ratio 155

78 < 2. Next natural case of
3 servers on real line remains challenging open problem. For L(n), there is a
randomized strategy due to Fiat and Mendel [20] based on their MTS result.
It has competitive ratio O(log

(

n
k

)

log n) which is < k competitive only if n =
k + o(k).

Our contribution is a O(n
2

3 log n)–competitive randomized on–line algorithm
R for L(n). In fact, for any request sequence ρ, we show that the expected cost
of R,

E[R(ρ)] < O(n
2

3 log n) · opt(ρ) + o(n2).

Note that the additive term o(n2), denoting the function I in the equation
(1), depends on the size of the metric space, i.e. n, itself. Since n is finite, it is
a constant independent of the initial configuration.

R is < k competitive for n = k + o((k
log k)3/2). Thus it provides a super–

linear bound for n with o(k)–competitiveness for the first time, and improves
the best results known so far for the range n − k ∈ [o(k), o((k

log k)3/2)] on L(n).
It also works well for few other special metric spaces, improving results therein.
Examples are circle with equally spaced n points, ladder, etc. We remark that
our method is directly suited for the k–server problem, we do not use previous
results of the MTS.

3

2 Outline

We sketch a brief outline of the paper here. The evader problem and oblivious
adversary model are described in section 3, for we will define and analyze our
algorithm as a randomized evader algorithm. In section 4, we introduce basic
ideas of our algorithm through the simplest case n = k+1. It serves as a launch-
pad for section 5 which details the main algorithm R. We describe the notation
for remainder of the paper in section 6. Sections 7 and 8 are devoted to analysis
of R where we find upper bound for expected cost of R in terms of jumping
evaders. We analyze the lower bounds for optimal cost in section 9 and relate
them to the expected cost of R in section 10, finally proving our competitiveness
result.

3 Model

Throughout the paper, we consider the k–server problem in an equivalent form
of l–evader problem [24]: There are l = n−k evaders on the metric space M with
n points. When there is no server on a point x ∈ M , then there is an evader on
x, and vice versa. While in the k–server problem the satisfaction of a request is
moving a server there, in the l–evader problem we must move away the evader
residing on the request. Off–line and on–line algorithms, competitiveness are
defined in the same way as in the k–server setup. Note that no two evaders
can occupy the same point of M since that would result in more servers. It
is easy to see that the l–evader problem is an equivalent formulation of the
k–server problem. We will define and analyze our algorithm as a randomized
l–evader algorithm. We will also like to remind the reader that we are working
exclusively against an oblivious adversary [8].

4 Warm-up

In this section we illustrate the underlying ideas of the algorithm R in its simplest
form. In fact, we present a randomized algorithm Q, forerunner of R, for the
special case k = n − 1, i.e. the case of only 1 evader. We denote this evader by
symbol q. Please note that this description of Q is not very formal or precise,
its purpose is to develop insight and facilitate understanding of R.

The idea of Q (or R) is to break the L(n) into a collection of equal–size line
segments or blocks, and keep the evader q in a block until the block becomes
saturated with requests. Then Q marks the saturated block, randomly chooses
a new unsaturated block and moves q to this block, and so on. This idea is
similar to the one used by Borodin, Linial and Saks [12] in their randomized
MTS algorithm. It also appears in the CIRC2 algorithm [11, pp. 184-5] which is
an adaptation of a line algorithm due to Blum et al. [10].

Incidently CIRC2 algorithm is designed for the 1–evader problem on a cir-
cle having equally spaced n points. It differs from Q in its strategy of servicing
requests inside a block. CIRC2 uses any k–competitive deterministic algorithm,

4

such as DOUBLE–COVERAGE [14], inside a block till the block gets satu-
rated, whereas Q uses a very naive and simple strategy for the same. The two
also differ in their block partitioning strategy, CIRC2 does it deterministically
whereas Q introduces randomness in it. In final analysis, both the algorithms
are O(

√
k log k)–competitive.

4.1 Algorithm Q

We develop algorithm Q now. We start by partitioning the line segment L(n) of
length n into t =

√
n1 contiguous blocks, namely B1, B2, · · · , Bt, each having

b = n/t =
√

n points. Thus the block Bi contains the points {(i − 1)
√

n, (i −
1)
√

n + 1, . . . , i
√

n − 1}, where 1 ≤ i ≤ t. Without loss of generality, we may
assume that two consecutive points of L(n) are unit distance apart. So each
block has length b =

√
n.

The possible motions of q can be either taking steps inside a block, or jumping
from a block into another one. Let us describe how q moves inside a block B.
In the beginning, say, q is at the leftmost position of the block, and its starting
direction is “right”. If a request comes which forces q to move2, then it takes
one step to the “right”, if its current position is not the rightmost point of B.
Otherwise q changes its direction from “right” to “left”, and takes one step to the
left. After several requests, if q reaches the other endpoint, the leftmost position
of B, then it changes direction again. In general, q changes direction whenever
it reaches an endpoint of B. We say that q moved a round if it switches its
direction from “left” to “right”. If q completes

√
n rounds in block B, that is,

O(n) steps, then Q marks B (as saturated) and moves q to another unmarked
available block.

Let’s consider the situation where the only evader a of the adversary A and q
both are residing in the same block B. Then during each round of q in B, a would
need to move at least twice inside B! Hence, by the time Q marks B, a must
have moved Ω(

√
n) times. This, in nutshell, implies O(

√
n)–competitiveness.

This would work fine if Q knew a’s current position! But, being online,
Q doesn’t know a’s whereabouts. Therefore it needs to explore the entire block
structure. Rather than keeping q in the same block forever, Q moves q to a ran-
domly chosen unmarked block, but only after q has done enough work in B to
justify this jump. Ski Principle [21, pp. 522] comes into picture here: To account
for jump out cost of O(n) (since two blocks can be O(n) away), q does O(n)
work in a block, Q marks that block (as saturated), and then q jumps out into
an unmarked block.

If q moves through each and every block, then we are once again in trou-
ble. We end up paying Θ(n

√
n), while A pays only Ω(

√
n), that is, O(n)–

competitiveness in worst case. In fact, while q is exploring a particular block

1 Without loss of generality, and for simplicity of notation and discussion, we assume
that

√
n is a whole number.

2 Q is a lazy algorithm. If the request is not for the current position of q, then it makes
no moves.

5

B, lots of requests are being placed in other blocks as well. We would want to
take advantage of this and reduce the number of blocks being explored by q.
How do we achieve this? We do following: In order to keep track of requests
made in Bi, we associate one auxiliary block, say Ai, with it. Like Bi, Ai has
b points. An auxiliary block is used for book-keeping purpose alone and is not
part of the L(n). Ai contains one evader and rest all servers, that is, image of
Bi containing q. Whenever a request is made to a point in Bi, we satisfy it in
Bi as well as in Ai. Thus we can keep account of requests made and amount of
work being done in Bi irrespective of whether q is in Bi or not. And we use the
work done in Ai as an indicator for saturation of Bi! That is, Q marks Bi if

√
n

rounds are completed in Ai. Notice that if a were in Bi, then Ω(
√

n) bound on
A’s cost remains true, irrespective of q itself being in Bi or not.

Naturally Q works in phases. At the start, all blocks are unmarked, and
therefore available. During satisfaction of a request sequence, blocks get marked.
q must always be in an unmarked block. So whenever its current block gets
marked, it has to choose an unmarked block randomly and uniformly, and jump
into it. When all the blocks are marked and q has no block to jump into, Q erases
all the marks, resets cost counter for each block to zero, and starts a new phase.
Note that, for a given request sequence, phases start and end independently of
Q’s random choices. This is true since marking depends only on the request
sequence. Hence one can calculate the expected number of jump–outs of q in a
phase. Intuitively the number of unmarked blocks get halved between consecutive
jump–outs of q. Therefore the expected number of jump–outs of q in a phase
should be O(log t) � t. Rigorous analysis shows that this number is, in fact, the
tth harmonic number Ht = 1

2 log n + O(1). Therefore the expected cost of Q in
a phase is O(n log n).

What is the cost of A in a phase? If we assume that a remains in one block
for the whole phase, then it must move Ω(

√
n) steps. But this assumption is

artificial. In fact a can change blocks too, and the cost of A can be as small as 1
in a phase: Consider case when a is at the leftmost position of B2 at the start of
a phase. A gives a request sequence which forces Q mark B1 right away. Then
a moves only 1 step to its left and sits in B1 right till the end of the phase!

This strategy of A is based on its knowledge of block boundaries. Therefore
we hide this information from A. Before any request appears, Q picks a random
shift s uniformly from the set {0, 1, 2, . . . ,√n−1} and shifts the block system, i.e.
the ith block will contain the points {(i−1)

√
n+s, (i−1)

√
n+s+1, . . . , i

√
n+s−1}

for 2 ≤ i ≤ t − 2. Points {0, 1, . . . ,√n + s − 1} constitute the 1st block while
points {(t − 2)

√
n + s, (t − 2)

√
n + s + 1, . . . ,

√
n} constitute the final (t − 1)th

block. Thus, all the blocks are of length O(
√

n).

After this initial shift, Q acts the same way as described above. It moves
O(n log n) steps on average in a phase. On the other hand, we expect A to work
Ω(

√
n) during a phase owing to its ignorance about shift s. Careful computation

shows that Q is indeed a O(
√

n log n)–competitive randomized 1–evader algo-
rithm on L(n). In other words, Q is O(

√
k log k)–competitive k–server algorithm

on L(k + 1).

6

Remark: Note that Q is outperformed by many others in the literature. The

original line version of CIRC2 [10] is 2O(
√

log k. log log k)–competitive. Fiat and
Mendel [20] present O(log2 k)–competitive algorithm for the same case. Though
inferior, Q provides foundation for our main algorithm R described in the next
section. R is o(k)–competitive even when n � k.

5 Algorithm R

5.1 Partitioning L(n)

We start by determining a block system on the line segment. First of all, we
partition it into n

b blocks, each of length b = n
1

3 .3 Secondly, we pick a random
number s uniformly from the interval [0, b−1] and shift the blocks by this number.
We glue together the first two and the last two blocks so that the length of the
leftmost block is b + s, the length of the rightmost block is 2b − s, all the other
blocks have the same length b. Thus total number of blocks is t ≈ n

b . We denote
the length of block B by notation |B|. Note that b ≤ |B| < 2b always.

5.2 Evader Motion Rules

During the satisfaction of a request sequence ρ, the evaders of R will have two
type of motions: steps inside a block or randomly jumping out into one of the
available blocks. The rules for what makes a block available will be discussed
later.

Let us provide the rules for taking steps inside a block. Assume that there
are r evaders in block B. We will consider first the case r < |B|, the other case,
r = |B|, will be handled differently. Let ρ be a request sequence. If the ith request
of ρ, ρi, is not in B, then no evader will move in B. Otherwise, if ρi ∈ B and there
is an evader on ρi, that evader will go to the closest vacant position according
to its direction. Every evader has a direction. It is “right” in the beginning, and
from time to time, it changes from “right” to “left” and vice versa. Suppose that
evader e is residing on ρi and its direction is “right”. Then e will move to the
closest vacant position to the right of ρi. If there is no such position, e changes
its direction to “left” and will go to the closest vacant position to the left of
ρi. Similarly, e switches direction from “left” to “right”, if it has to move, and
there is no vacant position on the left. These are the only cases an R–evader
changes its direction. We say that e moved a half–round whenever it switches
its direction. We say that e moved a round when it switches its direction from
“left” to “right”. Note that we have ensured that no two evaders will take the
same position in any block.

When r = |B| and there is a request for a position in B, that evader residing
on the request will jump out into an available block.

3 Without loss of generality, and for simplicity of notation and discussion, we assume

that n
1

3 is a whole number.

7

5.3 Auxiliary Blocks and Marking Procedure

R divides the course of satisfaction into phases. At the start of a phase, all blocks
are available. The phase ends when all blocks become unavailable. For deciding
which are the available blocks and how to change blocks for evaders, we assign
|B| auxiliary blocks AB1, . . . , AB|B| to each block B. Each of them has length
|B|. As in case of Q, auxiliary blocks are used for book-keeping purpose alone
and are not part of the L(n). Also note that R does not pay for work done in
any of the auxiliary blocks. During a phase, every block gets marks based on
working of auxiliary evaders moving in corresponding auxiliary blocks. These
marks not only help R to decide on the availability of a block where an evader
can jump–out to, but also lower bound the cost of an adversary as we shall see
in Lemma 9.

Right at the start of the algorithm, R puts x evaders into the auxiliary block
ABx for 1 ≤ x ≤ |B|. The evaders in ABx are placed on the leftmost x positions
in ABx and their starting direction is “right”. These auxiliary evaders move in
ABx satisfying ρ in the same manner as we described above for the R–evaders.
Of course, the auxiliary evaders don’t jump out anywhere! We count the number
of rounds taken by all the auxiliary evaders of ABx from the beginning of the
phase. If the sum of these rounds in ABx reaches 8b2, then the block B is x–
marked. For technical purpose, block B is |B|–marked immediately when the
first request for a point inside it appears during the phase. Note that a block
can have several marks. We always consider the smallest one, and denote it as
m(B). Thus, for each block, its mark, m(B), is monotonically decreasing with
time during a phase. Observe that the marking procedure is deterministic, there
is no random choice in it.

5.4 Description of R

Initialization: R chooses a random shift s ∈ [0, b − 1] and determines the
block system as described in subsection 5.1. R places its evaders on the left-
most positions inside their blocks. The auxiliary evaders also take the leftmost
positions in the auxiliary blocks.

Description of a Phase:

– If there is a request for a position in block B, take steps in B and in ABj

(1 ≤ j ≤ |B|) according to the rules described in subsection 5.2 and update
B’s mark, m(B), if necessary (as mentioned in subsection 5.3).

– If there are r ≥ m(B) evaders in B, then select r − m(B) + 1 evaders for
ejection from B — if possible, choose among those which already changed
block during this actual phase, and order them using First In First Out
policy.4

4 These are only technical matter that are needed for cost accounting later. Relabelling
of evaders can easily achieve these goals.

8

– Determine the available blocks: A block having r′ R–evaders is available if
its mark m(.) > r′+1. Pick randomly, uniformly a block C from the available
ones. Let’s suppose it has r′′ evaders. The first of the to-be-ejected evaders
jumps into it. Rearrange the evaders of the block C to have the configuration
of the evaders of the auxiliary block ACr′′+1. Rearrange the evaders in block
B according to the configuration of the evaders of the auxiliary block ABr−1.
For each of the remaining to-be-ejected evaders, repeat the above process:
Randomly pick an available block for jumping in, the evader jumps into it,
then rearrange the evaders in this new block and those in block B according
to the actual configuration of the evaders in the appropriate auxiliary blocks.

– If there is no available block for a to-be-ejected evader, the phase ends. Erase
marks of all the blocks and begin a new phase.

We finish the definition of R. As we already stated, R starts by determining
the block system on the line segment before the first request appears. The shift
s is not known to A. The evaders are placed according to the initial configura-
tion. R rearranges them to their leftmost positions inside each block. Then the
first phase starts when the first request appears. Please note that there is no
rearrangement of R–evaders (to any specific configuration) inside the blocks at
the start of any subsequent phase.

Remark: Note that the marking procedure has been designed to ensure follow-
ing: Whenever some evader jumps out of block B at some time in a phase, then
B becomes unavailable for the rest of that phase, i.e. there will be no evader
jumping in B during the rest of the phase. Essentially evader jump–outs from
block B imply it being already saturated with requests. So we do not send any
more evaders there! This fact plays very crucial role in the analysis of R.

6 Notation

We use following notation throughout the remainder of the paper.

– We assume that our blocks are arbitrarily numbered from 1 to t. So we can
talk about ith block, Bi.

– Cp denotes the block–wise configuration of the adversary evaders at the end
of Phase p, i.e. Cp is a t–tuple: It has the number r in the ith position,
Cp(i) = r, if at the end of Phase p there are r A–evaders in Bi.

– Similarly Dp denotes the block–wise configuration of the R–evaders at the
end of Phase p.

7 Analysis of R

We are going to prove the following theorem.

9

Theorem 1 For any initial configuration and for any request sequence ρ,

E[R(ρ)] < O(n
2

3 log n) · opt(ρ) + o(n2).

Thus R is a O(n
2

3 log n)–competitive randomized k–server algorithm on L(n).
It is o(k)–competitive for n = k + o((k

log k)3/2).

7.1 R Is Distribution Invariant

Once we fix the shift s of the block system, we can think of R as an algorithm
that moves from the current arrangement of the l evaders on L(n) to another
one in response to the request ρi depending on the outcome of coin-tosses as
well as the current marks of the blocks. Given c0 as the initial arrangement of
the evaders on L(n), a sequence (c0, c1, c2, . . . , c|ρ|) of arrangements is called a
ρ–satisfying run (or sometimes only run) of R if there exist coin-tosses that make
R move from arrangement ci−1 to ci in response to the request ρi for 1 ≤ i ≤ |ρ|.
Thus there can be many ρ–satisfying runs due to R’s random choices. We show
that, despite this apparent randomness, the distribution of R’s evaders is the
same for all runs at the end of each phase for a fixed shift.

Lemma 1 Fix the shift s of the block system and let ρ be an arbitrary request
sequence. Let B be a block. Suppose that for one run of R there are r evaders in
B at the end of Phase p when satisfying ρ. Then,

– B contains exactly r evaders at the end of Phase p for all ρ–satisfying runs
of R, and

– each and every phase ends at the same time (i.e. after the same request) for
all runs.

Proof: We prove the statement by induction on the phase number. It is trivially
true before the first request appears because R starts in the initial configuration
in each of its runs. Assume that the lemma is true up to Phase p − 1. Assume
that we are now at the end of Phase p for the run f1 and B has r evaders inside.
We also assume that f1 is the first run which finished Phase p, i.e. other runs
may not have finished the Phase p so far.

We will denote the (smallest) mark of block j by m(j). ex(j) will track the
current number of evaders in block j in run x. Recall that m(j) is invariant of
random choices of algorithm, i.e. different runs, for a given request sequence ρ.
The current available space in block j in run x is sx(j) = m(j)− ex(j)− 1. Note
that sx(j) ≥ 0 for any x, j always. We end phase when we cannot fulfill above
requirement for every block j.

Since f1 is the first run to end Phase p, there must be some block i0 such
that its latest mark m(i0) caused e1(i0)−m(i0)+1 evaders to jump out of block
i0 and there is no space left for them. Mathematically, the available space

S1 =

t
∑

j,j 6=i0

s1(j) < e1(i0) − m(i0) + 1.

10

Note that S1 can also be written as

S1 =
t

∑

j,j 6=i0

m(j) −
t

∑

j,j 6=i0

(e1(j) + 1)

=

t
∑

j,j 6=i0

m(j) − (l − e1(i0) + t − 1)

=





t
∑

j,j 6=i0

m(j) − l − t + 1



 + e1(i0), (2)

where the first term in equation (2) is same for different runs owing to deter-
ministic marking procedure.

Let’s examine situation in run f2 when jump–outs start in block Bi0 in run
f1. We consider three cases:

1. e1(i0) = e2(i0): In both the runs, evaders start jumping out of block, one by

one, simultaneously. Suppose we have problem for wth evader jumping out
in the run f1. At this point in time, S1 = 0. That means e1(j) = m(j)−1 for
all j (j 6= i0). Corresponding sum S2 is also 0, owing to the fact that marks
are same and the current number of evaders in block i0 is same for both f1

and f2. So f2 also ends and for any block j, e1(j) = e2(j).
2. e1(i0) > e2(i0): Here we have to distinguish two cases

(a) e1(i0) ≥ m(i0) > e2(i0): There are no jump–outs in f2, and yet S1

becoming 0 after wth jump–out in f1 indicates that S2 was already
negative to begin with — a contradiction!

(b) e2(i0) ≥ m(i0): There will be jump–outs in f2 now. We can envision this
as f2 waiting for f1 to bring its e1(i0) value to e2(i0) and then starting
its own jump–outs. If, at all, e1(i0) could be reduced to e2(i0), then we
are in case 1. If not, then we have S2 < S1 = 0 — a contradiction!

3. e1(i0) < e2(i0): There are jump–outs in both f1 and f2. We can envision this
as f1 now waiting for f2 to bring its e2(i0) value to e1(i0) and then starting
its own jump–outs. Again we are in case 1!

This finishes the proof of the lemma. ut

Remark: This is a very important lemma which allows us to calculate the exact
number of evaders that changed blocks during any Phase p. This number is

mp =
t

∑

i=1

max{0, Dp−1(i) − Dp(i)}.

Since l =
∑t

i=1 Dp−1(i) =
∑t

i=1 Dp(i), we can also write following expression
for mp

mp =
1

2

t
∑

i=1

|Dp−1(i) − Dp(i)|. (3)

11

Note that every block and its corresponding all auxiliary blocks have exactly the
same configuration at the end of a phase irrespective of random choices made
during the phase. Once we fix s and ρ, we fix Dp’s. We will like to figure out
how quickly we move from Dp−1 to Dp in R. We answer it in the next section.

8 Expected Cost of R

We now prove a series of lemmas to estimate the expected cost of R.

8.1 Initial Cost

Lemma 2 R spends at most O(bn) during the Initialization.

Proof: R rearranges all the evaders in each and every block during the Initial-
ization. This could be done in O(b2) cost per block. Summing over all blocks,
cost paid by R is at most O(b2) · t = O(bn). ut

Note that this is a one–time cost and it can be absorbed in the constant
function I of equation (1).

8.2 Cost Associated with Jump–outs

Let us now consider a simple game related to the analysis of R. Suppose the
adversary has a permutation σ of the first t positive integers [t]. σ(i) denotes
ith element of σ and, therefore, σ−1(i) denotes the position of i in σ. We don’t
know σ. In the first round, we randomly, uniformly pick one element of [t]: t1.
Let p1 = σ−1(t1). Then adversary shows us first p1 elements of σ and discards
them. In the second round, we randomly, uniformly pick one element from the
remaining ones, denote it by t2. In general, in the (i + 1)th round, we pick a
number randomly, uniformly from the set {σ(pi + 1), σ(pi + 2), . . . , σ(t)} and
denote it by ti+1. We stop whenever we run out of elements, i.e. reach σ(t).
Let’s denote the number of rounds in one possible outcome of the game by lt —
this is a random variable. Let’s denote its expectation, E[lt], by Lt.

Lemma 3 Lt =
∑t

i=1
1
i . That is, Lt = log t + O(1).

Proof: We prove the statement by induction on t. It is trivially true for t = 1.
Assume now that the lemma is true up to t. Consider the set {1, 2, . . . , t, t +
1}. Pick t1 and let p1 = σ−1(t1). p1 can be anything between 1 and t + 1
with the same probability 1

t+1 . From this, we can write recurrence: Lt+1 =
1

t+1

∑t+1
r=1 (1 + Lt+1−r); (L0 = 0). Using the induction hypothesis and simple

rearrangement, we get

Lt+1 = Lt +
1

t + 1
= 1 +

1

2
+

1

3
+ . . . +

1

t + 1
=

t+1
∑

i=1

1

i
.

ut

12

Remark: Note that Lemma 3 is valid even if we allow adversary following
freedom: After we pick an element in any round, adversary can pick some per-
mutation of the remaining elements from any probability space defined on the
set of possible permutations of those remaining elements for the next round. This
is clearly due to our unawareness of both: the σ itself and adversary’s choice of
probability space.

Recall that when an R–evader has to jump out of a block, that evader jumps
out which is among the ones that jumped into the block in the actual phase,
if there is such an evader. This allows us to talk about the number of evaders
changing block during a phase. We will like to relate the number of jumping
evaders and the expected number of jump–outs during a phase.

Let’s consider the jth request, say ρj . Suppose it is in block Bi. When R serves
it, that might possibly change mark of Bi depending on work done in Bi’s auxil-
iary blocks. So if we keep track of these changes in the marks of the blocks while
serving ρ, we get a unique marking sequence corresponding to ρ. Even though
the marking sequence is deterministic, randomization comes into play when we
choose arbitrary available block for a jumping evader. So any marking sequence
will have lots of possible runs. From Lemma 1, we know that all these runs
start and end all phases at the same time and have exactly same distribution of
evaders at the end of each and every phase. This allows us to consider restriction
of the marking sequence, and therefore associated runs, to any one particular
Phase p. From the remark at the end of Lemma 1, we know that total number
of evaders that change block during Phase p is

mp =
1

2

t
∑

i=1

|Dp−1(i) − Dp(i)|.

Let Mp be a random variable which counts the number of jump–outs during
Phase p. Mp may take different values depending on the run. We will prove
following lemma that finds the expectation of Mp.

Lemma 4 Suppose there are mp evaders which change block during Phase p. All
the others stay in their respective blocks for the whole phase. Then the expected
number of jump–outs in Phase p, E[Mp], is O(mp log n).

Proof: There are mp jumping evaders, let’s use random variable Yi to count the
number of jump–outs of ith jumping evader in Phase p. Then, Mp =

∑mp

i=1 Yi.
We will first find out E[Yi]. Let’s consider the original block, say Bj , from

which our ith evader, ei, starts jumping out. There are precisely bj = Dp−1(j)−
Dp(j) evaders that start their jump–outs from Bj . Let ei be wth evader, 1 ≤ w ≤
bj , that jumps out from Bj . Then it is clear that, irrespective of the run, ei will
start jumping out only when the mark of Bj drops below Dp(j) + w + 1 for the
first time. Let’s denote the time of this event in the marking sequence by Ti.

At Ti, depending on the run we had so far, there is a certain configuration of
evaders in different blocks. Let’s suppose that x(< t) blocks are available for ei

to jump into, namely, Bi1 , Bi2 , . . . , Bix
, and the block Biq

has riq
evaders, where

1 ≤ q ≤ x.

13

Recall that we use FIFO rule for ejecting evaders from any block: An evader
will not jump out of a block unless those which jumped into the same block after
it have already jumped out.

This will mean that if ei chooses a block Biq
to jump into, 1 ≤ q ≤ x, then it

will jump out only when mark of the block Biq
drops below riq

+ 2 for the first
time. Let’s denote the time of this event in the marking sequence by Tiq

.

It is easy to see that we are in the situation described for the game of Lemma
3. The original σ in Lemma 3 corresponds to the permutation of i1, i2, . . . , ix
that sorts Ti1 , Ti2 , . . . , Tix

in the increasing order. This is the order in which
blocks become unavailable irrespective of whatever random choices made by
other jumping evaders. The evader ei has no idea about σ and picks any one
of the x available blocks. On the other hand, adversary has no inkling of ei’s
random choices. Therefore the expected number of jump–outs of ei for the set
of possible runs hereafter is at most log x + O(1) = O(log t). Averaging over set
of all initial runs (till the start of ei jump–out), E[Yi] = O(log t).

Please note that ei might not have to jump out even if adversary hits its
block. Secondly, some blocks might become unavailable even before their time
comes as indicated by σ! Both these observations strengthen our claim made
above. Now it trivially follows that

E[Mp] =

mp
∑

i=1

E[Yi] = O(mp log t) = O(mp log n).

ut

Lemma 5 If there are mp evaders during Phase p which change block, then the
expected cost of R associated with jump–outs during Phase p is O(mpn log n).

Proof: Let’s fix a run and say there are Mp jump outs during Phase p. We can
associate following costs to a jump out:

1. the work done inside the block before a jump–out — it is O(n). Reason:
Jump–out from block B takes place when its mark, m(B), becomes less
than or equal to the current number of evaders, say r, in it. This means that
auxiliary block ABm(B) finished O(b3) = O(n) work since start of the Phase
p. Since we keep the smallest mark, work done in ABr (which is exact replica
of B!) since start of the Phase p is at most O(n).

2. the distance the evader jumps — it is O(n); and

3. the cost of rearranging the blocks — it is O(b2) = o(n).

So overall cost is O(n) per jump–out and the cost associated with jump–outs
during Phase p is O(Mpn).

But notice that Mp is a random variable and, from Lemma 4, E[Mp] =
O(mp log n). Therefore, the expected cost of R associated with jump–outs during
Phase p is O(mpn log n). ut

14

8.3 Overhead Cost

Mere jump–outs don’t account for entire cost paid by R. We have to account for

1. work done in a block after final jump–out out of it,
2. work done in a block after final jump–in into it, and
3. work done in a block with no jump–ins and jump–outs.

Each type of work is of order O(n). Work of type 1 and 2 could be easily ac-
counted into cost associated with jump–outs (this will just add at most 2 to the
multiplicative constant in Big–Oh notation of Lemma 5). So we only have to
worry about work of type 3.

Definition 1 A block Bi is called unchanged in Phase p if Dp−1(i) = Dp(i).

Let Up be the set of indices of the unchanged blocks in Phase p, i.e.

Up = {i|Dp−1(i) = Dp(i)}.

Note that, in the light of Lemma 1, Up is uniquely determined by a fixed s
and ρ. Let up = |Up|. Then, in any run, work of type 3 costs at most O(upn).
We have following lemma.

Lemma 6 The expected cost of R during Phase p is O(mpn log n + upn).

9 Analyzing Adversary Cost

Now we are going to estimate the cost of A in a phase. Consider two copies of a
block B, B1 and B2. Assume that A has a evaders in B1, and R has r evaders
in B2. We also assume that a ≥ r. Let ρ be a request sequence composed of
positions in B. We allow any kind of movements for the A–evaders in B1 which
satisfy ρ. The R–evaders in B2 will move according to our rules described earlier
in subsection 5.2. It is important to note that neither the A–evaders nor the
R–evaders will be allowed to jump out of their block. Then the following lemma
holds.

Lemma 7 Let B1, B2, a, r and ρ be as above. Suppose that the R–evaders in
B2 move T rounds combined when satisfying ρ. Then the A–evaders in B1 will
move a distance of at least aT

3r − 2r
3 combined.

Proof: Let’s assume that A is lazy.5 Further, to facilitate analysis, let’s de-
fine following order for satisfying a request: First R moves its evader in B2, if
necessary, and next A moves its evader in B1, if necessary.

While satisfying ρ, a R–evader and an A–evader may meet each other, i.e.
both of them momentarily occupy the same position in their respective blocks
while one or both of them are on the move. These meetings can be classified in
three types using following definitions.

5 In response to a request ρi, a lazy adversary must only move the evader residing at
ρi, if any, and no other evaders. This is not a real restriction. See [11, pp. 152].

15

Definition 2 A R–evader is said to catch an A–evader if one or both of them
move during satisfaction of a request and then stop at the same position in their
respective blocks.

Definition 3 A R–evader is said to be covering an A–evader during satisfac-
tion of a request if they both remain motionless at the same position in their
respective blocks.

Let x1, x2 denote any two R–evaders and y1, y2 denote any two A-evaders
in following discussion.

1. Jump–over: x2 cannot stop on a position in B2 because there is x1 on it,
and x1 is covering y1. We say x2 jumps over y1.

2. Leave: x1 and y1 are residing at the same position in their respective blocks,
but both leave the position when a request for it comes. We say x1 leaves
y1.

3. Cross–over: x1 and y1 cross each other when y1 moves during satisfaction
of a request and does not stop at x1’s position. We say that y1 crosses–over
x1. Note that a moving x1 can only catch or jump–over, it cannot cross–over
owing to movement rules described in subsection 5.2. Moreover, when y1

crosses–over x1, x1 may or may not be covering another A–evader.

Note that any meeting between a R–evader and an A–evader must be one of
these three types. We consider leave as a meeting-type rather than its precursor
catch event because leave implies some definite movement for the A–evader.

A–evaders move during leaves and cross–overs. Therefore we can prove lower
bound on the cost of A by estimating the same for the number of leaves and
cross–overs. We do so using accounting method. Initialization of cash balance,
associated money transactions, and relationships among R–A evaders (useful for
book–keeping) are described below.

Initialization: Every R–evader gets an initial amount of 2r dollars each, i.e.
R starts with 2r2 dollars overall. A starts with infinite cash.

Transactions: During satisfaction of ρ, there are following monetary transac-
tions:

– When x1 catches y1, y1 pays every R–evader (including x1) $1 each.
– x1 pays y1 $1 if x1 is covering y1 and x2 jumps–over y1.
– x1 pays y1 $1 and y1 pays x1 $2r when the two leave each other.
– If y1 crosses–over x1, x1 pays y1 $1 while y1 pays every R–evader (including

x1) $1 each.

Marriages: Every R–evader has a unique spouse among A–evaders at any given
moment. We denote the spouse of x1 by s(x1). Right at the start, s(x1) = y1

if x1 and y1 are at the same position in their respective blocks. Otherwise, we
randomly select any single A–evader as s(x1). Since a ≥ r, we can ensure that

16

every R–evader gets a unique spouse. Note that a − r A–evaders remain single.
Unlike real life, these marital relationships undergo very dynamic changes: during
satisfaction of ρ, whenever x1 catches s(x2), x1 and x2 swap their spouses!

Whenever a R–evader completes one round, it must meet each of the a A–
evaders at least once. Since R–evaders complete T rounds combined, there must
be then at least aT meetings between R–A evaders. Note that R pays $1 to
A per meeting. R starts with $2r2 initial amount, it collects $3r for every catch
and subsequent leave, and $r for every cross–over. Thus, the statement of the
lemma follows readily if we prove that R has a non–negative cash balance after
every meeting. In fact, we prove stronger statement below.

Claim. Every R–evader always has a non–negative cash balance.

Proof. Consider a R–evader x1. It starts out with $2r. As long as x1 jumps-over
or has cross–overs, it does not lose any money. Similarly, whenever x1 catches
an A–evader y1 and later leaves it, it collects $2r from y1. x1 loses money only
while it is covering y1. Therefore it suffices to show that x1 is never in more than
$2r loss while it is covering y1.

We focus our attention on the jump–overs that y1 encounters while x1 is
covering y1. x1 pays y1 $1 for each jump–over. Let’s consider any other R–
evader, say x2, jumping over y1 for mth time since x1 caught/covered y1, m > 0.
This means x2 has moved ≥ m − 2 complete half–rounds since x1 covered y1.
Let’s consider any such half–round of x2, and let y2 = s(x2) when x2 starts this
half–round. Then one (or more) of the following must happen, and in each case,
x1 collects $1.

1. x2 catches y2.
2. x2 and y2 cross–over.
3. Another R–evader catches y2.

Overall x1 collects minimum m − 2 dollars owing to m jump–overs of x2.
Summing for all r − 1 evaders, x1 collects at least M − 2r + 2 dollars after M
total jump–overs, and gives away only $M , thus x1 is in at most 2r − 2 dollars
loss. This proves the claim, and therefore, the lemma. ut

We use T = 8b2 rounds as a threshold in marking procedure of R. Also
observe that the number of evaders r in any block is < 2b. We get following
Corollary of Lemma 7.

Corollary 1 Let B1, B2, a, r and ρ be as above. Suppose that the R–evaders
move 8b2 rounds combined when satisfying ρ. Then the A–evaders in B1 will
move a distance of at least ab combined.

Remark: If r > a, then it is possible that all the A–evaders are covered by
non–moving R–evaders. Hence A takes no steps while R moves any number of
rounds.

In the above we assumed that the A–evaders stay in their block. But we do
not have any control on them, they may change block too.

17

Definition 4 A takes an A–action in block B if either the A–evaders move b
steps inside B or one of them jumps out of B.

For example, in Corollary 1, we proved that A takes at least a A–actions in
B if R has r ≤ a evaders in B, the R–evaders move 8b2 rounds, and all the A–
evaders and R–evaders stay in B. According to our previous remark, if a− r +1
A–evaders jump out of B, then it is possible that no A–evaders move inside B.
But that would mean a − r + 1 A–actions.

Lemma 8 Let block B has a A–evaders and r R–evaders at the start of a phase,
and a ≥ r ≥ 1. R–evaders are not allowed to jump in or jump out. If the request
sequence forces the R–evaders to move 8b2 rounds during the phase, then there
are at least a − r + 1 A–actions in block B during the phase.

Proof: Suppose that x A–evaders jump out of block B during the phase. If
x ≥ a − r + 1, we are done. Otherwise, x ≤ a − r. That means B always has at
least a − x ≥ r A–evaders. So using Corollary 1, we have at least a − x more
A–actions. Total number of A–actions, therefore, is a − x + x = a ≥ a − r + 1.

ut
Notice that so far we have been insisting that R–evaders don’t jump out of

their block B. But we cannot assume that during the run of R. What we know
for sure though is that the auxiliary evaders in auxiliary blocks of B never jump
around! Also rules of their movement are same as those of actual R–evaders.
This allows us to relate the mark of block B at the end of phase and A–actions
in B during the phase using Lemma 8.

Lemma 9 Let a be the number of A–evaders in block B at the Start of Phase
p. Let r be the number of R–evaders in B at the End of Phase p. If a > r,
then there are at least a − r A–actions in B during Phase p.

Proof: Due to our marking procedure, the mark of B, i.e. m(B), at the end
of Phase p is at most r + 1.6 Consider copy of B in adversary algorithm, and
ABm(B), the m(B)th auxiliary block of B in R. m(B) being the mark of B, the
number of rounds in ABm(B) is at least 8b2. Since a ≥ r + 1 ≥ m(B) ≥ 1,
applying Lemma 8 on these two copies of B, we prove that the number of A–
actions in B during the phase is at least a − m(B) + 1 ≥ a − r. ut

Now we are ready to compare the number of A–actions with the expected
cost of R. Let’s fix shift s. Let mp denote the number of moving evaders and up

denote the number of unchanged blocks in Phase p. Let ap denote the number of
A–actions in Phase p by adversary. We will make following assumption for the
proofs of Lemma 10 and Theorem 1.

Assumption: For every p and its corresponding Up, following holds: If i ∈ Up,
then

|Cp−1(i) − Cp(i)| + |Cp−1(i) − Dp(i)| ≥ 1. (4)

6 In fact, it is one more than the number of evaders for all, but one, blocks!

18

Remark: Above assumption ensures nonzero A–actions in an unchanged block.
This is enough for competitiveness result since it counters the O(n) work done
by the R–evaders in absence of any jump–in or jump–out of such block (see
subsection 8.3). Otherwise consider a block Bi which is unchanged for consec-
utive phases p1, p1 + 1, . . . , p2, and violates the assumption in each of them,
i.e. Cp−1(i) = Cp(i) = Dp−1(i) = Dp(i) for p = p1, p1 + 1, . . . , p2.

7 Let’s fur-
ther assume that A–evaders don’t move in or move out of Bi during any of
these phases, since that ensures nonzero A-actions. Then the contribution of
Bi to A–actions can only come from the movement of A–evaders inside Bi.
Let’s suppose that R–evaders move total of T rounds combined over all these
p2 − p1 + 1 phases. Then, in the light of Lemma 7, competitive ratio of R in Bi

is O(b/(1 − 2r
T)) = O(n

2

3) if T > 2r, i.e. R performs better than O(n
2

3 log n) in
Bi during these phases. In case there are fewer than 2r rounds, R pays overhead
of at most O(rb + b2) = O(n

2

3) cost in Bi. It can be either absorbed in further
jump–ins (or jump–outs) of block Bi in Phase p2 +1 or adjusted against the A–
actions of Bi in Phase p2 +1. If p2 were the final phase, then it can be absorbed
in the constant function I of equation (1). Thus, we are assuming worse scenario
for analysis of R with the assumption (4). Now we have following key lemma.

Lemma 10 Fix the shift s. Let ρ be a request sequence for which R has F
phases. Then

∑F
p=1 ap + n

7b ≥ 1
7

∑F
p=1(mp + up).

Proof: Recall, from the remark at the end of Lemma 1, we have equation (3)

mp =
1

2

t
∑

i=1

|Dp−1(i) − Dp(i)|.

Similarly we can lower bound the number of A–actions by the number of
block changes

ap ≥ 1

2

t
∑

i=1

|Cp−1(i) − Cp(i)|. (5)

But ap is at least
∑t

i=1 max{0, Cp−1(i) − Dp(i)} by Lemma 9. Therefore,

ap ≥ 1

2

t
∑

i=1

|Cp−1(i) − Dp(i)|. (6)

Simple triangle inequality, and inequalities (5), (6) and (4) imply

ap ≥ 1

4

t
∑

i=1

|Cp(i) − Dp(i)| (7)

ap ≥ up

4
. (8)

7 Note that following must be true for Phase p1 − 1 and Phase p2 + 1: Bi is either not

unchanged or it satisfies the assumption.

19

Once again, simple triangle inequality, and inequalities (7), (8), (6) and equa-
tion (3) imply

6ap−1 + ap ≥ 1

2

t
∑

i=1

|Cp−1(i) − Dp−1(i)| + up−1

+
1

2

t
∑

i=1

|Cp−1(i) − Dp(i)|

≥ 1

2

t
∑

i=1

|Dp−1(i) − Dp(i)| + up−1

= mp + up−1. (9)

Using equation (9), summing over all phases from 1 to F , and noting that
a0 = u0 = 0 and up ≤ t = n

b , we get

F
∑

p=1

ap +
n

7b
≥ 1

7

F
∑

p=1

(6ap−1 + ap) +
n

7b

≥ 1

7

F
∑

p=1

(mp + up).

ut
Next we determine the expected number of A’s block changes and use that to

estimate the expected number of A–actions. The randomness is in the random
choice of the shift s.

Lemma 11 Let ρ be a request sequence, then the expected number of A’s block
changes is opt(ρ) · b−1.

Proof: We assume that the A–evaders always move one step at a time. This can
be achieved by possibly dividing the motion of an evader into individual steps of
length one, and if necessary, by switching role between evaders when one passes
the other. Consider the indicator random variables X1, X2, . . . , Xopt(ρ). Xi = 1
if in the ith step the moving A–evader changes block, otherwise it is zero. Then
clearly Pr(Xi = 1) = b−1 for all i. So the expected number of block changes is
E[

∑

i Xi] =
∑

i Pr(Xi = 1) = opt(ρ) · b−1. ut

Lemma 12 For a request sequence ρ, the expected number of A–actions is at
most 2 · opt(ρ) · b−1

Proof: By Lemma 11, the expected number of block changes during the sat-
isfaction of ρ is opt(ρ) · b−1. The same number is clearly an upper bound for
the number of other type of A–actions, viz. work done inside a block. So the
expected number of A–actions is at most 2 · opt(ρ) · b−1. ut

20

10 Proof of Theorem 1

We are ready to prove our main result, Theorem 1. Let ρ be a request sequence.
Let us denote by ms

p the number of moving R–evaders in Phase p when the shift
of the block system is s and the number of phases for shift s by ts. Let us

p denote
the number of unchanged blocks during Phase p for shift s. Random variable
R(ρ)s

p will denote the cost of R in Phase p with shift s and random variable
R(ρ)s will denote the cost of R on ρ with shift s.

By Lemma 12,

2 · opt(ρ) · b−1 ≥ E[Number of A–actions].

Lemma 10 implies that

E[Number of A–actions] +
n

7b
≥ 1

7b

b
∑

s=1

ts
∑

p=1

(ms
p + us

p).

By Lemma 6, the latter expression is bounded below by

1

7b

b
∑

s=1

ts
∑

p=1

(

E[R(ρ)s
p]

1

O(n log n)

)

.

By linearity of expectation, the above formula is

1

O(bn log n)

b
∑

s=1

E[R(ρ)s].

Taking the average for shifts and using above inequalities, we have

2 · opt(ρ) · b−1 +
n

7b
≥ E[R(ρ)]

1

O(n log n)
.

That is,

O(
n log n

b
)opt(ρ) + O(

n2 log n

b
) ≥ E[R(ρ)].

So the competitive ratio is O(n
2

3 log n). ut

Acknowledgment: The authors wish to thank Endre Szemerédi and Péter
Hajnal for their helpful remarks and discussions.

References

1. Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic ap-
plications. In Proceedings of 37th Annual IEEE Symposium on Foundations of

Computer Science, pages 184–193, October 1996.

21

2. Y. Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings

of 30th Annual ACM Symposium on Theory of Computing, pages 161–168, May
1998.

3. Y. Bartal, A. Blum, C. Burch, and A. Tomkins. A polylog(n)-competitive algo-
rithm for metrical task systems. In Proceedings of 29th Annual ACM Symposium

on Theory of Computing, pages 711–719, May 1997.
4. Y. Bartal, B. Bollobás, and M. Mendel. A Ramsey-type theorem for metric spaces

and its applications for metrical task systems and related problems. In Proceedings

of 42nd Annual IEEE Symposium on Foundations of Computer Science, pages 396–
405, October 2001.

5. Y. Bartal, M. Chrobak, and L. Larmore. A randomized algorithm for two servers
on the line. Information and Computation, 158:53–69, 2000.

6. Y. Bartal and E. Koutsoupias. On the competitive ratio of the work function
algorithm for the k-server problem. In Proceedings of 17th Annual Symposium on

Theoretical Aspects of Computer Science, pages 605–613, February 2000.
7. W. Bein, M. Chrobak, and L. Larmore. The 3-server problem in the plane. In

Jaroslav Nesetril, editor, Algorithms - ESA ’99, 7th Annual European Symposium,

Prague, Czech Republic, July 16-18, 1999, Proceedings, volume 1643 of Lecture

Notes in Computer Science, pages 301–312. Springer, 1999.
8. S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the power

of randomization in on-line algorithms. Algorithmica, 11:2–14, 1994.
9. A. Blum, H. Karloff, Y. Rabani, and M. Saks. A decomposition theorem for task

systems and bounds for randomized server problems. SIAM Journal on Computing,
30(5):1624–1661, 2000.

10. A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain.
SIAM Journal on Computing, 26:110–137, 1997.

11. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

12. A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task
system. Journal of the ACM, 39:745–763, 1992.

13. A. Calderbank, E. Coffman, and L. Flatto. Sequencing problems in two server
systems. Mathematics of Operation Research, 10:585–598, 1985.

14. M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server
problems. SIAM Journal on Discrete Mathematics, 4:172–181, 1991.

15. M. Chrobak and L. Larmore. An optimal algorithm for k servers on trees. SIAM

Journal on Computing, 20:144–148, 1991.
16. B. Csaba. Note on the work function algorithm. Acta Cybernetica, 14:503–506,

2000.
17. B. Csaba and S. Lodha. A randomized online algorithm for the k-server problem

on a line. Technical Report 2001-34, DIMACS, October 2001.
18. A. Fiat and G. Woeginger (Eds.). Online Algorithms: State of the Art. Springer-

Verlag, 1998.
19. A. Fiat, R. Karp, M. Luby, L. McGeoch, D. Sleator, and N. Young. Competitive

paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.
20. A. Fiat and M. Mendel. Better algorithms for unfair metrical task systems and

applications. In Proceedings of 32nd Annual ACM Symposium on Theory of Com-

puting, pages 725–734, May 2000.
21. S. Irani and A. Karlin. Online computation. In D. Hochbaum, editor, Approxima-

tion Algorithms for NP-hard Problems, pages 521–564. PWS Publishing Company,
1997.

22

22. A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Competitive randomized
algorithms for nonuniform problems. Algorithmica, 11:542–571, 1994.

23. E. Koutsoupias and C. Papadimitriou. On the k-server conjecture. Journal of the

ACM, 42(5):971–983, September 1995.
24. E. Koutsoupias and C. Papadimitriou. The 2-evader problem. Information Pro-

cessing Letters, 57(5):249–252, 1996.
25. M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for server prob-

lems. Journal of Algorithms, 11(2):208–230, 1990.
26. L. McGeoch and D. Sleator. A strongly competitive randomized paging algorithm.

Algorithmica, 6(6):816–825, 1991.
27. S. Seiden. A general decomposition theorem for the k-server problem. In Fried-

helm Meyer auf der Heide, editor, Algorithms - ESA 2001, 9th Annual European

Symposium, Aarhus, Denmark, August 28-31, 2001, Proceedings, volume 2161 of
Lecture Notes in Computer Science, pages 86–97. Springer, 2001.

28. D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

23

